Skip to main content

Advertisement

Log in

Effects of boric acid on alveolar sockets filling after dental extraction in rats

  • Research
  • Published:
Oral and Maxillofacial Surgery Aims and scope Submit manuscript

Abstract

Purpose

After extraction, dental alveolus filling aims to reduce bone loss and maintain the alveolus volume during patient rehabilitation. Boric acid (BA) is a boron-derived compound with osteogenic properties and an interesting candidate for alveoli filling. This study aims to investigate the osteogenic capacity of the local application of BA in dental socket preservation.

Methods

Thirty-two male Wistar rats were submitted to upper right incisor extraction and randomly divided into four groups (n = 8): control group (no intervention), BA (8 mg/kg) socket filling, bone graft (Cerabone®, Botiss, Germany), and BA + bone graft socket filling. Animals were euthanized 28 days after dental extraction. MicroCT and histological analysis were performed to evaluate the newly formed bone on the dental alveolus.

Results

MicroCT analysis demonstrated that bone volume fraction (BV/TV), bone surface (BS), bone surface/bone volume ratio (BS/BV), bone surface density (BS/TV), trabecular thickness (Tb.Th), total bone porosity (Po-tot), and total volume of pore space (Po.V(tot)) from BA and BA + bone graft rats were significantly different from the control group. Histological evaluation displayed a delayed bone repair in BA rats, with the presence of connective tissue and inflammatory infiltrate. However, the BA + bone graft group demonstrated histological aspects like the bone graft animals, with less organized osteoblasts, suggesting inferior bone repair.

Conclusion

Osteogenic capacity did not depend on the BA local application after 28 days of dental extraction. The presence of inflammation in the BA group can represent toxicity induced by the substance dosage used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gholami GA, Najafi B, Mashhadiabbas F et al (2012) Clinical, histologic and histomorphometric evaluation of socket preservation using a synthetic nanocrystalline hydroxyapatite in comparison with a bovine xenograft: a randomized clinical trial. Clin Oral Implants Res 23:1198–1204. https://doi.org/10.1111/j.1600-0501.2011.02288.x

    Article  PubMed  Google Scholar 

  2. Araujo MG, Lindhe J (2005) Dimensional ridge alterations following tooth extraction. An experimental study in the dog. J Clin Periodontol 32:212–218. https://doi.org/10.1111/j.1600-051X.2005.00642.x

    Article  PubMed  Google Scholar 

  3. Araujo M, Linder E, Wennström J, Lindhe J (2008) The influence of Bio-Oss Collagen on healing of an extraction socket: an experimental study in the dog. International Journal of Periodontics & Restorative Dentistry 28:123–135

    Google Scholar 

  4. Okamoto T, Fialho ACV (1990) Estudo histológico comparativo entre dois métodos de obtenção de cortes de alvéolos de ratos. Rev Odont UNESP 19:63–74

    CAS  Google Scholar 

  5. Gölge UH, Kaymaz B, Arpaci R et al (2015) Effects of boric acid on fracture healing: an experimental study. Biol Trace Elem Res 167:264–271. https://doi.org/10.1007/s12011-015-0326-3

    Article  CAS  PubMed  Google Scholar 

  6. Ulu M, Kütük N, Cıcık MF et al (2018) Effects of boric acid on bone formation after maxillary sinus floor augmentation in rabbits. Oral Maxillofac Surg 22:443–450. https://doi.org/10.1007/s10006-018-0729-3

    Article  PubMed  Google Scholar 

  7. Kömürcü E, Özyalvaçlı G, Kaymaz B et al (2015) Effects of local administration of boric acid on posterolateral spinal fusion with autogenous bone grafting in a rodent model. Biol Trace Elem Res 167:77–83. https://doi.org/10.1007/s12011-015-0274-y

    Article  CAS  PubMed  Google Scholar 

  8. Hakki SS, Buket Bozkurt S, Hakki EE, Nielsen FH (2021) Boron as boric acid induces mRNA expression of the differentiation factor tuftelin in pre-osteoblastic MC3T3-E1 cells. Biol Trace Elem Res 199:1534–1543. https://doi.org/10.1007/s12011-020-02257-x/Published

    Article  CAS  PubMed  Google Scholar 

  9. Gallardo-Williams MT, Maronpot RR, Turner CH et al (2003) Effects of boric acid supplementation on bone histomorphometry, metabolism, and biomechanical properties in aged female F-344 rats. Biol Trace Elem Res 93:155–170. https://doi.org/10.1385/BTER:93:1-3:155

    Article  CAS  PubMed  Google Scholar 

  10. Chapin R, Ku W, Kenney M, MccoyH (1997) The effects of dietary boron on bone strength in rats. Fundam Appl Toxicol 35:205–215. https://doi.org/10.1006/faat.1996.2275

  11. Ying X, Cheng S, Wang W et al (2011) Effect of boron on osteogenic differentiation of human bone marrow stromal cells. Biol Trace Elem Res 144:306–315. https://doi.org/10.1007/s12011-011-9094-x

    Article  CAS  PubMed  Google Scholar 

  12. Hakki SS, Bozkurt BS, Hakki EE (2010) Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1). J Trace Elem Med Biol 24:243–250. https://doi.org/10.1016/j.jtemb.2010.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Hadidi L, Ge S, Comeau-Gauthier M et al (2021) Local delivery of therapeutic boron for bone healing enhancement. J Orthop Trauma 35:e165–e170. https://doi.org/10.1097/BOT.0000000000001974

    Article  PubMed  Google Scholar 

  14. Kilkenny C, Browne WJ, Cuthill IC et al (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412. https://doi.org/10.1371/journal.pbio.1000412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. da Costa R, Freitas RDS, da Cunha G, de Oliveira SD, Weber JBB (2023) Antimicrobial and bone repair effects of boric acid in a rat model of dry socket (alveolar osteitis) following dental extraction. J Trace Elem Med Biol 76:127118. https://doi.org/10.1016/j.jtemb.2022.127118

    Article  CAS  PubMed  Google Scholar 

  16. Hassumi JS, Mulinari-Santos G, Fabris AL da S, et al (2018) Alveolar bone healing in rats: micro-CT, immunohistochemical and molecular analysis. Journal of applied oral science: revista FOB 26:e20170326. https://doi.org/10.1590/1678-7757-2017-0326

  17. Okamoto T, de Russo M (1973) Wound healing following tooth extraction. Histochemical study in rats. Rev Fac Odontol Aracatuba 2:153–169

    CAS  PubMed  Google Scholar 

  18. Faot F, Chatterjee M, de Camargos GV et al (2015) Micro-CT analysis of the rodent jaw bone micro-architecture: a systematic review. Bone Reports 2:14–24. https://doi.org/10.1016/j.bonr.2014.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gorustovich AA, Steimetz T, Nielsen FH, Guglielmotti MB (2008) A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Arch Oral Biol 53:677–682. https://doi.org/10.1016/j.archoralbio.2008.01.011

    Article  CAS  PubMed  Google Scholar 

  20. Uysal T, Ustdal A, Sonmez MF, Ozturk F (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79:984–990. https://doi.org/10.2319/112708-604.1

    Article  PubMed  Google Scholar 

  21. Colli VC, Okamoto R, Spritzer PM, Dornelles RCM (2012) Oxytocin promotes bone formation during the alveolar healing process in old acyclic female rats. Arch Oral Biol 57:1290–1297. https://doi.org/10.1016/j.archoralbio.2012.03.011

    Article  CAS  PubMed  Google Scholar 

  22. Schmid J, Wallkamm B, Hämmerle CHF et al (1997) The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin Oral Implants Res 8:244–248. https://doi.org/10.1034/J.1600-0501.1997.080311.X

    Article  CAS  PubMed  Google Scholar 

  23. Araújo MG, Carmagnola D, Berglundh T et al (2001) Orthodontic movement in bone defects augmented with Bio-Oss. An experimental study in dogs. J Clin Periodontol 28:73–80. https://doi.org/10.1034/J.1600-051X.2001.280111.X

    Article  PubMed  Google Scholar 

  24. Hämmerle CHF, Chiantella GC, Karring T, Lang NP (1998) The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants. Clin Oral Implants Res 9:151–162. https://doi.org/10.1034/J.1600-0501.1998.090302.X

    Article  PubMed  Google Scholar 

  25. Movahedi Najafabadi B-A-H, Abnosi MH (2016) Boron induces early matrix mineralization via calcium deposition and elevation of alkaline phosphatase activity in differentiated rat bone marrow mesenchymal stem cells. Cell J 18:62–73. https://doi.org/10.22074/cellj.2016.3988

    Article  PubMed  PubMed Central  Google Scholar 

  26. Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231. https://doi.org/10.1080/10408690390826491

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported and funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) – [Finance Code 001].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João B.B. Weber.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Costa, R.R., da Cunha, G., Freitas, R.D.S. et al. Effects of boric acid on alveolar sockets filling after dental extraction in rats. Oral Maxillofac Surg 28, 355–361 (2024). https://doi.org/10.1007/s10006-023-01151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10006-023-01151-9

Keywords

Navigation