Skip to main content
Log in

An experimental study on infrared drying kinetics of an aqueous adhesive supported by polymer composite

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The infrared drying of an aqueous polymer emulsion spread on a thin composite flat film is experimentally studied. The composite film is composed of polyamide fibers supported by a poly(vinyl fluoride) film. The aqueous polymer is an Ethylene Vinyl Acetate emulsion playing the role of adhesive. It is spread over the film with a low thickness, about one hundred micrometers. The aim of this work is to understand the effects of the presence of fibers on the drying of this thin-layer product. With this in mind, a specific laboratory set up composed of a near infrared heater is used in order to get the drying kinetics. First, incident heat fluxes received at the product surface and transmittances of materials (semi-transparent medium) are measured with an ad-hoc heat flux sensor. Then, many experiments are performed with and without fibers. For linking the final moisture content to the fibers thermal and hydric behavior, a microscopic analysis of the dried samples is investigated. This analysis is performed for two thicknesses of polymer corresponding to two covering rates of fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alsoy S, Duda JL (1998) Drying of solvent coated polymer films. Drying Technol 16:15–44. doi:10.1080/07373939808917390

    Article  Google Scholar 

  2. Allanic N, Salagnac P, Glouannec P, Guerrier B (2009) Estimation of an effective water diffusion coefficient during infrared-convective drying of a polymer solution. AIChE J 55:2345–2355

    Article  Google Scholar 

  3. Arai S, Doi M (2012) Skin formation and bubble growth during drying process of polymer solution. Eur Phys J E 35:1–9. doi:10.1140/epje/i2012-12057-2

    Article  Google Scholar 

  4. Arai S (2013) Doi M Anomalous drying dynamics of a polymer solution on a substrate. Eur Phys J E 36:1–6. doi:10.1140/epje/i2013-13063-6

    Article  Google Scholar 

  5. Doumenc F, Chénier E, Trouette B, Boeck T, Delcarte C, Guerrier B, Rossi M (2013) Free convection in drying binary mixtures: solutal versus thermal instabilities. Int J Heat Mass Transf 63:336–350. doi:10.1016/j.ijheatmasstransfer.2013.03.070

    Article  Google Scholar 

  6. Price PE, Cairncross RA (1999) Optimization of single-zone drying of polymer solution coatings to avoid blister defects. Drying Technol 17:1303–1311. doi:10.1080/07373939908917616

    Article  Google Scholar 

  7. Labukas J, Escarsega J, Crawford D (2014) Accelerated drying of water-dispersible polyurethane blends. J Coat Technol Res 11:217–229. doi:10.1007/s11998-013-9536-9

    Article  Google Scholar 

  8. Ludwig I, Schabel W, Ferlin P, Castaing JC, Kind M (2009) Drying, film formation and open time of aqueous polymer dispersions. Eur Phys J Spec Top 166:39–43. doi:10.1140/epjst/e2009-00875-1

    Article  Google Scholar 

  9. Allanic N, Le Bideau P, Glouannec P, Bourmaud A (2014) Infrared drying of water based varnish coated on elastomer substrate. Int J Therm Sci 79:103–110

    Article  Google Scholar 

  10. Allanic N, Salagnac P, Glouannec P (2007) Convective and radiant drying of a polymer aqueous solution. Heat Mass Transf 43:1087–1095

    Article  Google Scholar 

  11. Ranjan R, Irudayaraj J, Jun S (2002) Simulation of infrared drying process. Drying Technol 20:363–379. doi:10.1081/DRT-120002547

    Article  Google Scholar 

  12. Wang J, Sheng KC (2004) Modeling of muti-layer far-infrared dryer. Drying Technol 22:809–820. doi:10.1081/DRT-120034264

    Article  Google Scholar 

  13. Kowalski SJ, Rajewska K (2009) Convective drying enhanced with microwave and infrared radiation. Drying Technol 27:878–887. doi:10.1080/07373930903014837

    Article  Google Scholar 

  14. Seyed-Yagoobi J, Wirtz JW (2001) An experimental study of gas-fired infrared drying of paper. Drying Technol 19:1099–1112. doi:10.1081/DRT-100104807

    Article  Google Scholar 

  15. Islam M (2008) Modeling of infrared drying of polymer solutions. Thesis, Ryerson University, Toronto, Ontario, Canada

  16. Islam M, Dhib R, Dahman Y (2010) Modeling of infrared drying of polymer solutions. Chem Prod Process Model 5:21

    Google Scholar 

  17. Pawar SB, Kumar PSR, Mujumdar AS, Thorat BN (2008) Infrared-convective drying of organic pigments. Drying Technol 26:315–322. doi:10.1080/07373930801898042

    Article  Google Scholar 

  18. Allanic N, Salagnac P, Glouannec P (2009) Optimal constrained control of an infrared-convective drying of a polymer aqueous solution. Chem Eng Res Des 87:908–914

    Article  Google Scholar 

  19. Dhib R (2007) Infrared drying: from process modeling to advanced process control. Drying Technol 25:97–105. doi:10.1080/07373930601160908

    Article  Google Scholar 

  20. Dufour P, Touré Y, Blanc D, Laurent P (2003) On nonlinear distributed parameter model predictive control strategy: on-line calculation time reduction and application to an experimental drying process. Comput Chem Eng 27:1533–1542

    Article  Google Scholar 

  21. Overbeek A (2010) Polymer heterogeneity in waterborne coatings. J Coat Technol Res 7:1–21

    Article  Google Scholar 

  22. Cognard P (2006) Handbook of adhesives and sealants: general knowledge, application of adhesives, new curing techniques. Elsevier, Amsterdam

    Google Scholar 

  23. Ebnesajjad S, Landrock AH (2015) Adhesives technology handbook, 3rd edn. William Andrew Publishing, Boston

    Google Scholar 

  24. Mintzlaff J (2001) Determination of properties for the calculation of aqueous thin film drying. Heat Mass Transf 37:617–622

    Article  Google Scholar 

  25. Schult K, Paul D (1996) Techniques for measurement of water vapor sorption and permeation in polymer films. J Appl Polym Sci 61:1865–1876

    Article  Google Scholar 

  26. Basu S, Shivhare U, Mujumdar A (2006) Models for sorption isotherms for foods: a review. Drying Technol 24:917–930

    Article  Google Scholar 

  27. Timmermann E, Chirife J, Iglesias H (2001) Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J Food Eng 48:19–31

    Article  Google Scholar 

  28. Bergman TL, Incropera FP, Lavine AS (2011) Fundamentals of heat and mass transfer. Wiley, NewYork

    Google Scholar 

  29. Irvine WM, Pollack JB (1968) Infrared optical properties of water and ice spheres. Icarus 8:324–360

    Article  Google Scholar 

  30. Ploteau JP, Glouannec P, Noel H (2007) Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces. Appl Therm Eng 27:674–681

    Article  Google Scholar 

  31. McGee TD (1988) Principles and methods of temperature measurement. Wiley, NewYork

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Allanic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allanic, N., Le Bideau, P., Glouannec, P. et al. An experimental study on infrared drying kinetics of an aqueous adhesive supported by polymer composite. Heat Mass Transfer 53, 223–231 (2017). https://doi.org/10.1007/s00231-016-1816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-016-1816-3

Keywords

Navigation