Skip to main content
Log in

Convective and radiant drying of a polymer aqueous solution

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The aim of this work is to minimize the drying time of a polymer aqueous solution placed into a Petri dish while respecting strict constraints. Several experiments performed in a laboratory setup have shown the interest of a drying combining convective and infrared radiation as long as irradiation is correctly controlled. In this way, a one dimensional liquid diffusion model taking into account the product shrinkage was developed. Model predictions are in good adequacy to mass and temperature experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

a w :

water activity

C p :

specific heat (J kg–1 K−1)

D :

diffusion coefficient (m2 s−1)

e :

thickness (m)

E a :

activation energy (J mol−1)

F m :

drying rate (kg m−2 s−1)

h :

convective heat-transfer coefficient (W m−2 K−1)

H air :

relative humidity (%)

k m :

mass-transfer coefficient (m s−1)

L v :

latent heat of vaporization (J kg−1)

m :

mass of the product (kg)

M v :

molecular weight (kg mol−1)

P IR :

infrared irradiation (W m−2)

P vsat :

saturated water vapor pressure (Pa)

P va :

air vapor pressure (Pa)

Q IR :

volume infrared power (W m−3)

R :

gas constant (J K−1 mol−1)

t :

time (s)

T :

temperature (K)

v :

velocity (m s−1)

X :

moisture content (kg kg−1)

z :

coordinate (m)

ε :

emissivity

ψ :

linear shrinkage coefficient

κ :

extinction coefficient

λ :

thermal conductivity (W m−1 K−1)

ρ :

density (kg m−3)

τ :

transmissivity

σ :

Stefan–Boltzmann constant (W m−2 K−4)

ξ :

dimensionless space coordinate

+ :

Petri dish

d:

dried product

m:

mean value

p:

product

w:

water

i:

initial

f:

final

u:

upper

l:

lower

References

  1. Price PE, Cairncross RA (2000) Optimization of single-zone drying of polymer solution solution coatings using mathematical modelling. J Appl Polym Sci 78:149–165

    Google Scholar 

  2. Guerrier B, Bouchard C, Allain C, Bénard C (1998) Drying kinetics of polymer films. AIChE J 44(4):791–798

    Article  Google Scholar 

  3. Cairncross RA, Jeyadev S, Dunham RF, Evans K, Francis LF, Scriven LE (1995) Modeling and design of an industrial dryer with convective and radiant heating. J Appl Polym Sci 58(8):1279–1290

    Article  Google Scholar 

  4. Geipel C, Stephan P (2005) Experimental investigation of the drying process of automotive base paints. Appl Therm Eng 25(16):2578–2590

    Article  Google Scholar 

  5. Mintzlaff J (2001) Determination of properties for the calculation of aqueous thin film drying. Heat Mass Transfer 37:617–622

    Article  Google Scholar 

  6. Le Person S, Puiggali JR, Baron M, Roques M (1998) Near infrared drying of pharmaceutical thin films: experimental analysis of internal mass transport. Chem Eng Process 37:257–263

    Article  Google Scholar 

  7. Blanc D, Laurent P, Andrieu J, Gérard JF (1999) Convective and radiant (IR) curing of bulk and waterborne epoxy coatings as thin layers. Part II: Infrared curing. Polym Eng Sci 39(12):2487–2497

    Article  Google Scholar 

  8. Glouannec P, Lecharpentier D, Noël H (2002) Experimental survey on the combination of radiating infrared and microwave sources for the drying of porous material. Appl Therm Eng 22:1689–1703

    Article  Google Scholar 

  9. Frias J, Olivieira JC, Schittkowski K (2001) Modelling and parameter identification of a maltodextrin DE 12 drying process in a convection oven. Appl Math Model 25:449–462

    Article  MATH  Google Scholar 

  10. Navarri P, Andrieu J (1993) High-intensity infrared drying study, Part II. Case of thin coated films. Chem Eng Process 32:319–325

    Article  Google Scholar 

  11. Wypych G (2004) Handbook of plasticizers. Chem Tec publishing, William Andrew Publishing, Toronto, New York

    Google Scholar 

  12. Noël H, Ploteau JP, Glouannec P (2001) Thermoelectric device for infrared radiation measurements. In: Proceedings 8th international symposium on temperature and thermal measurements in industry science, Berlin, pp 925–930

  13. Ventras JS, Ventras CM (1994) Drying of solvent-coated polymer films. J Polym Sci Pol Phys 32:187–194

    Article  Google Scholar 

  14. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere publishing corporation, New York

    MATH  Google Scholar 

  15. Carnahan B (1990) Applied numerical methods. In: Luther HA, Wilkes JO, Robert E (eds) Krieger publishing company, Malabar

  16. Dufour P, Touré Y, Blanc D, Laurent P (2003) On nonlinear distributed parameter model predictive control strategy: on-line calculation time reduction and application to an experimental drying process. Comput Chem Eng 27(11):1533–1542

    Article  Google Scholar 

  17. Azzouz S, Guizani A, Jomaa W, Belghith A (2002) Moisture diffusivity and drying kinetic equation of convective drying of grapes. J Food Eng 55:323–330

    Article  Google Scholar 

  18. Levenberg K (1944) A method for the solution of certain problems in least squares. Q Appl Math 2:164–168

    MATH  MathSciNet  Google Scholar 

  19. Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  MATH  MathSciNet  Google Scholar 

  20. Allanic N, Salagnac P, Glouannec P (2006) Estimation of diffusion coefficient in drying of polymer aqueous solution. In: Mujumdar AS (ed) 15th international drying symposium (IDS 2006), Budapest, Hungary, Series, vol C, pp 1836–1843

  21. Nishimura M, Kuraishi M, Bando Y (1983) Effect of internal heating on infrared drying of coated films. Kagaku Kogaku Ronbun 9:148–153

    Google Scholar 

  22. Allanic N, Salagnac P, Glouannec P (2005) Study of the drying behavior of poly(vinyl alcohol) aqueous solution. Macromol Symp 222:253–258

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Salagnac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allanic, N., Salagnac, P. & Glouannec, P. Convective and radiant drying of a polymer aqueous solution. Heat Mass Transfer 43, 1087–1095 (2007). https://doi.org/10.1007/s00231-006-0196-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-006-0196-5

Keywords

Navigation