Skip to main content

Part of the book series: Research for Development ((REDE))

Abstract

Energy dissipation is one of the most important characteristics of granular gas, which makes its behavior different from that of molecular gas. In this chapter we first show the investigations on the freely-cooling evolution of granular gas under microgravity in a drop tower experiment, the granular segregation in a two-compartment cell, known as Maxwell’s Demon phenomenon in granular gas, is then shown, which is investigated in SJ-10 satellite. DEM simulations of both investigations are given. The simulation results on granular freely-cooling evolution support Haff’s law that the kinetic energy dissipates with time t as E(t) ~ (1 + t/τ)−2, with a modified τ, of which the friction dissipation during collisions has to be taken into account. The DEM simulation on Maxwell’s Demon with and without gravity shows that the segregation quantified by parameter is non-zero in zero gravity. However, not like the case with gravity, it does not depend on the excitation strength. The waiting time τ, in zero gravity, depends strongly on: higher the, lower the waiting time. The simulation results are confirmed by the SJ-10 satellite microgravity experiments. The major content of this chapter is adopted from our previous papers (Wang et al. Chin Phys B 26:044501, 2017 [1]; Chin Phys B 27:084501, 2018 [2]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang W, Zhou Z, Zong J, Hou M (2017) Dem simulation of granular segregation in two-compartment system under zero gravity. Chin Phys B 26:044501

    Article  ADS  Google Scholar 

  2. Wang W, Hou M, Chen K, Yu P, Sperl M (2018) Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity. Chin Phys B 27:084501

    Google Scholar 

  3. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68:1259

    Article  Google Scholar 

  4. De Gennes PG (1999) Granular matter: a tentative view. Rev Mod Phys 71:S374

    Article  ADS  Google Scholar 

  5. Kadanoff LP (1999) Built upon sand: theoretical ideas inspired by granular flows. Rev Mod Phys 71:435

    Article  ADS  Google Scholar 

  6. Goldhirsch II, Zanetti G (1993) Clustering instability in dissipative gases. Phys Rev Lett 70:1619

    Article  ADS  Google Scholar 

  7. McNamara S, Young WR (1994) Inelastic collapse in two dimensions. Phys Rev E 50:R28

    Article  ADS  Google Scholar 

  8. Falcon É, Wunenburger R, Évesque P, Fauve S, Chabot C, Garrabos Y, Beysens D (1999) Cluster formation in a granular medium fluidized by vibrations in low gravity. Phys Rev Lett 83:440

    Article  ADS  MATH  Google Scholar 

  9. Luding S, Herrmann HJ (1999) Cluster-growth in freely cooling granular media. Chaos 9:673

    Article  ADS  Google Scholar 

  10. Painter B, Dutt M, Behringer RP (2003) Energy dissipation and clustering for a cooling granular material on a substrate. Phys D 175:43

    Article  ADS  Google Scholar 

  11. Miller S, Luding S (2004) Cluster growth in two- and three-dimensional granular gases. Phys Rev E 69:031305

    Google Scholar 

  12. Efrati E, Livne E, Meerson B (2005) Hydrodynamic singularities and clustering in a freely cooling inelastic gas. Phys Rev Lett 94:088001

    Article  MathSciNet  Google Scholar 

  13. Meerson B, Puglisi A (2005) Towards a continuum theory of clustering in a freely cooling inelastic gas. Europhys Lett 70:478

    Article  MATH  Google Scholar 

  14. Aranson IS, Tsimring LS (2006) Patterns and collective behavior in granular media: theoretical concepts. Rev Mod Phys 78:641

    Article  ADS  Google Scholar 

  15. Fingerle A, Herminghaus S (2006) Unclustering transition in freely cooling wet granular matter. Phys Rev Lett 97:078001

    Article  ADS  Google Scholar 

  16. Yu P, Frank-Richter S, Börngen A, Sperl M (2014) Monitoring three-dimensional packings in microgravity. Granul Matter 16:165

    Google Scholar 

  17. Chen Y, Pierre E, Hou M (2012) Breakdown of energy equipartition in vibro-fluidized granular media in micro-gravity. Chin Phys Lett 29:074501

    Google Scholar 

  18. Mei Y, Chen Y, Wang W, Hou M (2016) Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity. Chin Phys B 25:084501

    Article  ADS  Google Scholar 

  19. Wang Y (2017) Granular packing as model glass formers. Chin Phys B 26:014503

    Article  ADS  Google Scholar 

  20. Haff PK (1983) Grain flow as a fluid-mechanical phenomenon. J Fluid Mech 134:401

    Article  ADS  Google Scholar 

  21. Brito R, Ernst MH (1998) Extension of Haff’s cooling law in granular flows. Europhys Lett  43:497

    Article  ADS  Google Scholar 

  22. Luding S, Huthmann M, McNamara S, Zippelius A (1998) Zippelius, homogeneous cooling of rough, dissipative particles: theory and simulations. Phys Rev E 58:3416

    Google Scholar 

  23. Garzó V, Dufty J (1999) Homogeneous cooling state for a granular mixture. Phys Rev E 60:5706

    Article  MATH  Google Scholar 

  24. Huthmann M, Orza JAG, Brito R (2000) Dynamics of deviations from the gaussian state in a freely cooling homogeneous system of smooth inelastic particles. Granul Matter 2:189

    Article  MATH  Google Scholar 

  25. Zaburdaev VY, Brinkmann M, Herminghaus S (2006) Free cooling of the one-dimensional wet granular gas. Phys Rev Lett 97:018001

    Article  ADS  Google Scholar 

  26. Hayakawa H, Otsuki M (2007) Long-time tails in freely cooling granular gases. Phys Rev E 76:051304

    Article  Google Scholar 

  27. Meerson B, Fouxon I, Vilenkin A (2008) Nonlinear theory of nonstationary low mach number channel flows of freely cooling nearly elastic granular gases. Phys Rev E 77:021307

    Google Scholar 

  28. Santos A, Montanero JM (2009) The second and third sonine coefficients of a freely cooling granular gas revisited. Granul Matter 11:157

    Article  ADS  Google Scholar 

  29. Kolvin I, Livne E, Meerson B (2010) Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas. Phys Rev E 82:021302

    Article  Google Scholar 

  30. Mitrano PP, Garzo V, Hilger AM, Ewasko CJ, Hrenya CM (2012) Assessing a hydrodynamic description for instabilities in highly dissipative, freely cooling granular gases. Phys Rev E 85:041303

    Article  ADS  Google Scholar 

  31. Brilliantov NV, Pöschel T(2000)Velocity distribution in granular gases of viscoelastic particles. Phys Rev E 61:5573

    Article  ADS  Google Scholar 

  32. McNamara S, Luding S (1998) Energy nonequipartition in systems of inelastic, rough spheres. Phys Rev E 58:2247

    Article  ADS  Google Scholar 

  33. Ben-Naim E, Chen SY, Doolen GD, Redner S (1999) Shock like dynamics of inelastic gases. Phys Rev Lett 83:4069

    Article  ADS  Google Scholar 

  34. Nie X, Ben-Naim E, Chen S (2002) Dynamics of freely cooling granular gases. Phys Rev Lett 89:204301

    Google Scholar 

  35. van Zon JS, MacKintosh FC (2004) Velocity distributions in dissipative granular gases. Phys Rev Lett 93:038001

    Article  MATH  Google Scholar 

  36. Shinde M, Das D, Rajesh R (2007) Violation of the porod law in a freely cooling granular gas in one dimension. Phys Rev Lett 99:234505

    Article  ADS  Google Scholar 

  37. Shinde M, Das D, Rajesh R (2009) Equivalence of the freely cooling granular gas to the sticky gas. Phys Rev E 79:021303

    Article  ADS  Google Scholar 

  38. Shinde M, Das D, Rajesh R (2011) Coarse-grained dynamics of the freely cooling granular gas in one dimension. Phys Rev E 84:031310

    Article  ADS  Google Scholar 

  39. Villemot F, Talbot J (2012) Homogeneous cooling of hard ellipsoids. Granul Matter 14:91

    Article  ADS  Google Scholar 

  40. Pathak SN, Das D, Rajesh R (2014) Inhomogeneous cooling of the rough granular gas in two dimensions. Europhys Lett 107:44001

    Article  ADS  Google Scholar 

  41. Pathak SN, Jabeen Z, Das D, Rajesh R (2014) Energy decay in three-dimensional freely cooling granular gas. Phys Rev Lett 112:038001

    Article  ADS  Google Scholar 

  42. Maaß CC, Isert N, Maret G, Aegerter CM (2008) Experimental investigation of the freely cooling granular gas. Phys Rev Lett 100:248001

    Article  ADS  Google Scholar 

  43. Tatsumi S, Murayama Y, Hayakawa H, Sano M (2009) Experimental study on the kinetics of granular gases under microgravity. J Fluid Mech 641:521

    Article  ADS  Google Scholar 

  44. Burton JC, Lu PY, Nagel SR (2013) Energy loss at propagating jamming fronts in granular gas clusters. Phys Rev Lett 111:188001

    Article  ADS  Google Scholar 

  45. Harth K, Trittel T, Wegner S, Stannarius R (2018) Competitive clustering in a bidisperse granular gas. Phys Rev Lett 120:214301

    Article  ADS  Google Scholar 

  46. Berry MV, Geim AK (1997) Of flying frogs and levitrons. Eur J Phys 18:307

    Article  ADS  Google Scholar 

  47. Luding S (2008) Cohesive, frictional powders: contact models for tension. Granul Matter 10:235

    Article  MATH  Google Scholar 

  48. Opsomer E, Ludewig F, Vandewalle N (2012) Dynamical clustering in driven granular gas. Europhys Lett 99:40001

    Article  ADS  Google Scholar 

  49. Clément E, Duran J, Rajchenbach J (1992) Experimental study of heaping in a two-dimensional sand pile. Phys Rev Lett 69

    Article  ADS  Google Scholar 

  50. Jia LC, Lai PY, Chan CK (1999) Empty Site models for heap formation in vertically vibrating grains. Phys Rev Lett 83:3832

    Article  Google Scholar 

  51. Lai PY, Jia LC, Chan CK (2000) Symmetric heaping in grains: a phenomenological model. Phys Rev E 61:5593

    Article  ADS  Google Scholar 

  52. Hong DC, Quinn PV, Luding S (2001) Reverse Brazil nut problem: competition between percolation and condensation. Phys Rev Lett 86:3423

    Google Scholar 

  53. Breu APJ, Ensner HM, Kruelle CA, Rehberg I (2003) Reversing the Brazil-Nut effect: competition between percolation and condensation. Phys Rev Lett 90:014302

    Article  ADS  Google Scholar 

  54. Schlichting HJ, Nordmeier V (1996) Math. Naturwiss. Unterr. 49323 (in German)

    Article  ADS  Google Scholar 

  55. Eggers J (1999) Sand as Maxwell’s Demon. Phys Rev Lett 83:5322

    Article  ADS  Google Scholar 

  56. van der Weele K, van der Meer D, Versluis M, Lohse D (2001) Hysteretic clustering in granular gas. Europhys Lett 53:328

    Article  ADS  Google Scholar 

  57. van der Meer D, Reimann P, van der Weele K, Lohse D (2004) Spontaneous ratchet effect in a granular gas. Phys Rev Lett 92:184301

    Article  Google Scholar 

  58. van der Meer D, van der Weele K, Lohse D (2001) Bifurcation diagram for compartmentalized granular gases. Phys Rev E 63:061304

    Article  ADS  MATH  Google Scholar 

  59. Meerson B, Pöschel T, Sasorov PV, Schwager T (2004) Giant fluctuations at a granular phase separation threshold. Phys Rev E 69:021302

    Article  ADS  Google Scholar 

  60. Costantini G, Paolotti D, Cattubo C, Marconi UMB (2005) Bistable clustering in driven granular mixtures. Phys A 347:411–428

    Article  ADS  Google Scholar 

  61. Lambiotte R, Salazar JM, Brenig L (2005) From particle segregation to the granular clock. Phys Lett A 343:224–230

    Article  ADS  Google Scholar 

  62. Liu R, Li Y, Hou M (2007) Van der Waals-like phase-separation instability of a driven granular gas in three dimensions. Phys Rev E 75:061304

    Google Scholar 

  63. Liu R, Li Y, Hou M (2009) Oscillatory phenomena of compartmentalized bidisperse granular gases. Phys Rev E 79:052301

    Article  ADS  Google Scholar 

  64. Hou M, Li Y, Liu R, Zhang Y, Lu K (2010) Oscillatory clusterings in compartmentalized granular systems. Phys Status Solidi A 207:2739–2749

    Article  ADS  Google Scholar 

  65. Li Y, Hou M, Evesque P (2011) Directed clustering in driven compartmentalized granular gas systems in zero gravity. J Phys: Conf Ser 327:012034

    Article  ADS  Google Scholar 

  66. Li Y, Liu R, Shinde M, Hou M (2012) Flux measurement in compartmentalized mono-disperse and bi-disperse granular gases. Granular Matter 14:137–143

    Article  ADS  Google Scholar 

  67. Li Y, Liu R, Hou M (2012) Gluing bifurcation and noise-induced hopping in the oscillatory phenomena of compartmentalized bidisperse granular gases. Phys Rev Lett 109:198001

    Article  ADS  Google Scholar 

  68. Shah SH, Li Y, Cui F, Evesque P, Hou M (2012) Irregular oscillation of bi-disperse granular gas in cyclic three compartments. Chin Phys Lett 29:034501

    Article  ADS  Google Scholar 

  69. Bray JJ, Moreno F, García-Rojo R, Ruiz-Montero MJ (2001) Hydrodynamic Maxwell Demon in granular systems. Phys Rev E 65:011305

    Google Scholar 

  70. Lipowski A, Droz M (2002) Urn model of separation of sand. Phys Rev E 65:031307

    Article  ADS  Google Scholar 

  71. Marconi UMB, Conti M (2004) Dynamics of vibrofluidized granular gases in periodic structures. Phys Rev E 69:011302

    Article  ADS  Google Scholar 

  72. Mikkelsen R, van der Meer D, van der Weele K, Lohse D (2004) Competitive clustering in a bidisperse granular gas: experiment, molecular dynamics, and flux model. Phys Rev E 70:061307

    Article  ADS  Google Scholar 

  73. Leconte M, Evesque P (2006) Maxwell demon in granular gas: a new kind of bifurcation? The hypercritical bifurcation. Physics 0609204

    Google Scholar 

  74. Lai P, Hou M, Chan C (2009) Granular gases in compartmentalized systems. J Phys Soc Jpn 78:041001

    Article  ADS  Google Scholar 

  75. Mikkelsen R, van der Meer D, van der Weele K, Lohse D (2002) Competitive clustering in a bidisperse granular gas. Phys Rev Lett 89:214301

    Article  Google Scholar 

  76. van der Meer D, van der Weele K, Lohse D (2002) Sudden collapse of a granular cluster. Phys Rev Lett 88:174302

    Article  ADS  Google Scholar 

  77. Jean P, Bellenger H, Burban P, Ponson L, Evesque P (2002) Phase transition or Maxwell’s Demon in granular gas. Pourders Grains 13:27–39

    Google Scholar 

  78. Mikkelsen R, van der Weele K, van der Meer D, van Hecke M, Lohse D (2005) Small-number statistics near the clustering transition in a compartmentalized granular gas. Phys Rev E 71:041302

    Article  ADS  Google Scholar 

  79. Miao T, Liu Y, Miao F, Mu Q (2005) On cyclic oscillation in granular gas. Chin Sci Bull 50:726–730

    Article  ADS  Google Scholar 

  80. Viridi S, Schmick M, Markus M (2006) Experimental observations of oscillations and segregation in a binary granular mixture. Phys Rev E 74:04130

    Article  ADS  Google Scholar 

  81. Hou M, Tu H, Liu R, Li Y, Lu K (2008) Temperature oscillations in a compartmentalized bidisperse granular gas. Phys Rev Lett 100:068001

    Article  ADS  Google Scholar 

  82. Hou M, Liu R, Zhai G, Sun Z, Lu K, Garrabos Y, Evesque P (2008) Velocity distribution of vibration-driven granular gas in knudsen regime in microgravity. Microgravity Sci Technol 20:73–80

    Article  ADS  Google Scholar 

  83. Isert N, Maaß CC, Aegerter CM (2009) Influence of gravity on a granular Maxwell’s Demon experiment. Eur Phys J E 28:205–210

    Article  ADS  Google Scholar 

  84. Shah SH, Li Y, Cui F, Hou M (2012) Directed segregation in compartmentalized bi-disperse granular gas. Chin Phys B 21:014501

    Article  ADS  Google Scholar 

  85. Zhang Y, Li Y, Liu R, Cui F, Evesque P, Hou M (2013) Imperfect pitchfork bifurcation in asymmetric two-compartment granular gas. Chin Phys B 22:054701

    Article  ADS  Google Scholar 

  86. Opsomer E, Noirhomme M, Vandewalle N, Ludewig F (2013) How dynamical clustering triggers Maxwell’s Demon in microgravity. Phys Rev E 88:012202

    Article  ADS  Google Scholar 

  87. Noirhomme M, Opsomer E, Vandewalle N, Ludewig F (2015) Granular transport in driven granular gas. Eur Phys J E38

    Article  ADS  Google Scholar 

  88. Luding S (2008) Cohesive, frictional powders: contact models for tension. Granular Matter 10:235–246

    Article  Google Scholar 

  89. Dintwa E, Tijskens E, Ramon H (2007) On the accuracy of the hertz model to describe the normal contact of soft elastic spheres. Granular Matter 10:209–221

    Article  ADS  Google Scholar 

  90. Wang H, Chen Q, Wang WG, Hou MY (2016) Experimental study of clustering behaviors in granular gases. Acta Phys Sin 65:014502

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Science Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, M., Wang, W., Jiang, Q. (2019). Granular Clustering Studied in Microgravity. In: Hu, W., Kang, Q. (eds) Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite. Research for Development. Springer, Singapore. https://doi.org/10.1007/978-981-13-1340-0_3

Download citation

Publish with us

Policies and ethics