Skip to main content
Log in

The second and third Sonine coefficients of a freely cooling granular gas revisited

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

In its simplest statistical-mechanical description, a granular fluid can be modeled as composed of smooth inelastic hard spheres (with a constant coefficient of normal restitution α) whose velocity distribution function obeys the Enskog–Boltzmann equation. The basic state of a granular fluid is the homogeneous cooling state, characterized by a homogeneous, isotropic, and stationary distribution of scaled velocities, F(c). The behavior of F(c) in the domain of thermal velocities (c ~ 1) can be characterized by the two first non-trivial coefficients (a 2 and a 3) of an expansion in Sonine polynomials. The main goals of this paper are to review some of the previous efforts made to estimate (and measure in computer simulations) the α-dependence of a 2 and a 3, to report new computer simulations results of a 2 and a 3 for two-dimensional systems, and to investigate the possibility of proposing theoretical estimates of a 2 and a 3 with an optimal compromise between simplicity and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell C.S.: Rapid granular flows. Annu. Rev. Fluid Mech. 22, 57 (1990)

    Article  ADS  Google Scholar 

  2. Goldhirsch I.: Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brilliantov N., Pöschel T.: Kinetic Theory of Granular Gases. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  4. Brey J.J., Dufty J.W., Santos A.: Dissipative dynamics for hard spheres. J. Stat. Phys. 87, 1051 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Haff P.K.: Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech. 134, 401 (1983)

    Article  MATH  ADS  Google Scholar 

  6. van Noije T.P.C., Ernst M.H.: Velocity distributions in homogeneous granular fluids: the free and the heated case. Granul. Matter 1, 57 (1998)

    Article  Google Scholar 

  7. Esipov S.E., Pöschel T.: The granular phase diagram. J. Stat. Phys. 86, 1385 (1997)

    Article  MATH  ADS  Google Scholar 

  8. Abramowitz M., Stegun I.A. (eds) Handbook of Mathematical Functions, Ch. 22. Dover, New York (1972)

    Google Scholar 

  9. Noskowicz S.H., Bar-Lev O., Serero D., Goldhirsch I.: Computer-aided kinetic theory and granular gases. Europhys. Lett. 79, 60001 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. Goldshtein A., Shapiro M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid Mech. 282, 75 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. Brey J.J., Ruiz-Montero M.J., Cubero D.: Homogeneous cooling state of a low-density granular flow. Phys. Rev. E 54, 3664 (1996)

    Article  ADS  Google Scholar 

  12. Garzó V., Dufty J.W.: Homogeneous cooling state for a granular mixture. Phys. Rev. E 60, 5706 (1999)

    Article  ADS  Google Scholar 

  13. Montanero J.M., Santos A.: Computer simulation of uniformly heated granular fluids. Granul. Matter 2, 53 (2000)

    Article  Google Scholar 

  14. Brilliantov N., Pöschel T.: Deviation from Maxwell distribution in granular gases with constant restitution coefficient. Phys. Rev. E 61, 2809 (2000)

    Article  ADS  Google Scholar 

  15. Huthmann M., Orza J.A.G., Brito R.: Dynamics of deviations from the Gaussian state in a freely cooling homogeneous system of smooth inelastic particles. Granul. Matter 2, 189 (2000)

    Article  Google Scholar 

  16. Montanero J.M., Garzó V.: Monte Carlo simulation of the homogeneous cooling state for a granular mixture. Granul. Matter 4, 17 (2002)

    Article  Google Scholar 

  17. Coppex F., Droz M., Piasecki J., Trizac E.: On the first Sonine correction for granular gases. Physica A 329, 114 (2003)

    Article  MATH  ADS  Google Scholar 

  18. Brilliantov N., Pöschel T.: Breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 74, 424 (2006)

    Article  ADS  Google Scholar 

  19. Brilliantov N., Pöschel T.: Erratum: breakdown of the Sonine expansion for the velocity distribution of granular gases. Europhys. Lett. 75, 188 (2006)

    Article  ADS  Google Scholar 

  20. Ahmad S.R., Puri S.: Velocity distributions in a freely evolving granular gas. Europhys. Lett. 75, 56 (2006)

    Article  ADS  Google Scholar 

  21. Ahmad S.R., Puri S.: Velocity distributions and aging in a cooling granular gas. Phys. Rev. E 75, 031302 (2007)

    Article  ADS  Google Scholar 

  22. Brey J.J., Dufty J.W., Kim C.S., Santos A.: Hydrodynamics for granular flow at low density. Phys. Rev. E 58, 4638 (1998)

    Article  ADS  Google Scholar 

  23. Garzó V., Santos A., Montanero J.M.: Modified Sonine approximation for the Navier-Stokes transport coefficients of a granular gas. Physica A 376, 94 (2007)

    Article  ADS  Google Scholar 

  24. Bird G.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  25. Alexander F.J., Garcia A.L.: The direct simulation Monte Carlo method. Comp. Phys. 11, 588 (1997)

    Article  Google Scholar 

  26. Williams D.R.M., MacKintosh F.C.: Driven granular media in one dimension: correlations and equation of state. Phys. Rev. E 54, R9 (1996)

    Article  ADS  Google Scholar 

  27. Williams D.R.M.: Driven granular media and dissipative gases: correlations and liquid-gas phase transitions. Physica A 233, 718 (1996)

    Article  ADS  Google Scholar 

  28. Swift M.R., Boamfǎ M., Cornell S.J., Maritan A.: Scale invariant correlations in a driven dissipative gas. Phys. Rev. Lett. 80, 4410 (1998)

    Article  ADS  Google Scholar 

  29. Santos A., Ernst M.H.: Exact steady-state solution of the Boltzmann equation: a driven one-dimensional inelastic Maxwell gas. Phys. Rev. E 68, 011305 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santos, A., Montanero, J.M. The second and third Sonine coefficients of a freely cooling granular gas revisited. Granular Matter 11, 157–168 (2009). https://doi.org/10.1007/s10035-009-0132-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-009-0132-8

Keywords

Navigation