Skip to main content
Log in

Flux measurement in compartmentalized mono-disperse and bi-disperse granular gases

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Flux models play a crucial role in understanding clustering behavior of compartmentalized granular gases. In this work we propose a method to measure the flux of mono-disperse and bi-disperse granular gases in an equivalent compartmentalized system by molecular dynamics simulation. The simulation results are useful for quantitative comparison with an existing flux model that presents essential features of the oscillatory clustering behavior in a two-compartment system. By some minor improvement to one of the models, we show results of quantitative comparisons between predictions of the model and our simulation results. We also discuss the evolution of the system through oscillatory and degenerate oscillatory states using flux contour maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger H.M., Nagel S.R., Behringer R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  2. de Gennes P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, 374 (1999)

    Article  Google Scholar 

  3. Kadanoff L.P.: Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71, 435 (1999)

    Article  ADS  Google Scholar 

  4. Aranson I.S., Tsimring L.S.: Patterns and collective behavior in granular media: Theoretical concepts. Rev. Mod. Phys. 78, 641 (2006)

    Article  ADS  Google Scholar 

  5. Schlichting, H.J., Nordmeier, V.: Strukturen im Sand. Math. Naturwiss. Unterr. 49, 323 (1996) (in German)

  6. Schinner, A.: Ein Simulationssystem fuer granulare Aufschuettungen aus Teilchen variable Form. Ph.D. thesis, University of Magdeburg (2000)

  7. Mikkelsen R., van der Meer D., van der Weele K., Lohse D.: Competitive clustering in a bidisperse granular gas. Phys. Rev. Lett. 89, 214301 (2002)

    Article  ADS  Google Scholar 

  8. Mikkelsen R., van der Meer D., van der Weele K., Lohse D.: Competitive clustering in a bidisperse granular gas: Experiment, molecular dynamics, and flux model. Phys. Rev. E 70, 061307 (2004)

    Article  ADS  Google Scholar 

  9. Liu R., Li Y., Hou M.: Oscillatory phenomena of compartmentalized bidisperse granular gases. Phys. Rev. E 79, 052301 (2009)

    Article  ADS  Google Scholar 

  10. Costantinia G., Paolotti D., Cattuto C., Marconi U.M.B.: Bistable clustering in driven granular mixtures. Physica A 347, 411 (2004)

    Article  ADS  Google Scholar 

  11. Lambiotte R., Salazar J.M., Brenig L.: From particle segregation to the granular clock. Phys. Lett. A 343, 224 (2005)

    Article  ADS  MATH  Google Scholar 

  12. Hou M., Tu H., Liu R., Li Y., Lu K., Lai P., Chan C.K.: Temperature oscillations in a compartmentalized bidisperse granular gas. Phys. Rev. Lett. 100, 068001 (2008)

    Article  ADS  Google Scholar 

  13. Miao T., Liu Y., Miao F., Mu Q.: Oscillations of granular mixture gases with vertical vibration. Chin. Sci. Bull. 50, 740 (2005)

    Google Scholar 

  14. Viridi S., Schmick M., Markus M.: Experimental observations of oscillations and segregation in a binary granular mixture. Phys. Rev. E 74, 041301 (2006)

    Article  ADS  Google Scholar 

  15. Chen K.C., Li C.C., Lin C.H., Guo G.H.: Clustering and phases of compartmentalized granular gases. Phys. Rev. E 79, 021307 (2009)

    Article  ADS  Google Scholar 

  16. Eggers J.: Sand as Maxwells demon. Phys. Rev. Lett. 83, 5322 (1999)

    Article  ADS  Google Scholar 

  17. Brey J.J., Ruiz-Montero M.J., Moreno F.: Hydrodynamic Maxwell demon in granular systems. Phys. Rev. E 65, 011305 (2001)

    Article  ADS  Google Scholar 

  18. van der Meer, D., van der Weele, K., Reimann, P., Lohse, D.: Compartmentalized granular gases: flux model results. J. Stat. Mech. P07021 (2007)

  19. Li Y., Zhang Z., Tu H., Liu R., Hu H., Hou M.: The flux profile of granular gas in compartmentalized system. Acta Phys. Sin. 58, 5840 (2009)

    Google Scholar 

  20. Evesque P.: Are temperature and other thermodynamics variables efficient concepts for describing granular gases and/or flows. Poudres et Grains 13, 27 (2002)

    Google Scholar 

  21. Meerson B., Pöschel T., Bromberg Y.: Close-packed floating clusters: granular hydrodynamics beyond the freezing point?. Phys. Rev. Lett. 91, 024301 (2003)

    Article  ADS  Google Scholar 

  22. Rouyer F., Menon N.: Velocity fluctuations in a homogeneous 2D granular gas in steady state. Phys. Rev. Lett. 85, 3676 (2000)

    Article  ADS  Google Scholar 

  23. van Zon J.S., MacKintosh F.C.: Velocity distributions in dissipative granular gases. Phys. Rev. Lett. 93, 038001 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiying Hou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Liu, R., Shinde, M. et al. Flux measurement in compartmentalized mono-disperse and bi-disperse granular gases. Granular Matter 14, 137–143 (2012). https://doi.org/10.1007/s10035-012-0344-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0344-1

Keywords

Navigation