Skip to main content

Mock Circulatory Loop for Cardiovascular Assist Device Testing

  • Chapter
  • First Online:
Cardiovascular Engineering

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

Medical device prototype developed for use on human has to be tested in various aspect; from numerical simulation, laboratory testing, testing on animals and finally human trial, increasing scope in term of complexity and number of participants. This chapter reviews one of the testing methods used by researchers in cardiovascular engineering in order to verify the performance of the prototype developed as per intended which is the in vitro test using the mock circulatory loop (MCL). MCL has many types and functions, depending on the medical device prototype intent of use. From simple hydraulic loop to a more complex loop combining hydraulic and computer interface. This chapter consists of condition of heart failure (HF), treatment modality, cardiovascular assist device types, MCL types, components in MCL, current literature and lastly, an example of an MCL is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers, C.: The Global Burden of Disease: 2004 Update. World Health Organization (2008)

    Google Scholar 

  2. Benjamin, E.J., et al.: Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135(10), e146–e603 (2017)

    Article  Google Scholar 

  3. Lloyd-Jones, D.M., et al.: Lifetime risk for developing congestive heart failure: the Framingham Heart Study. Circulation 106(24), 3068–3072 (2002)

    Article  Google Scholar 

  4. Timms, D.L., et al.: A compact mock circulation loop for the in vitro testing of cardiovascular devices. Artif. Organs 35(4), 384–391 (2011)

    Article  Google Scholar 

  5. Petersen, S., Rayner, M., Wolstenholme, J.: Coronary Heart Disease Statistics: Heart Failure Supplement, 2002 edn. University of Oxford (2002)

    Google Scholar 

  6. Miller, L.W.: Left ventricular assist devices are underutilized response to miller. Circulation 123(14), 1552–1558 (2011)

    Article  Google Scholar 

  7. Savarese, G., Lund, L.H.: Global public health burden of heart failure. Cardiac Failure Review 3(1), 7–11 (2017)

    Article  Google Scholar 

  8. Cowie, M., et al.: Survival of patients with a new diagnosis of heart failure: a population based study. Heart 83(5), 505–510 (2000)

    Article  Google Scholar 

  9. McDonagh, T.A., et al.: Symptomatic and asymptomatic left-ventricular systolic dysfunction in an urban population. The Lancet 350(9081), 829–833 (1997)

    Article  Google Scholar 

  10. McKee, P.A., et al.: The natural history of congestive heart failure: the Framingham study. N. Engl. J. Med. 285(26), 1441–1446 (1971)

    Article  Google Scholar 

  11. McMurray, J.J., Stewart, S.: Epidemiology, aetiology, and prognosis of heart failure. Heart 83(5), 596–602 (2000)

    Article  Google Scholar 

  12. Birks, E.J., et al.: Left ventricular assist device and drug therapy for the reversal of heart failure. N. Engl. J. Med. 355(18), 1873–1884 (2006)

    Article  Google Scholar 

  13. Dorent, R., et al.: Assessment of potential heart donors: a statement from the French heart transplant community. Arch. Cardiovasc. Dis. (2017)

    Google Scholar 

  14. Ratner, B.D., et al.: Biomaterials Science: An Introduction to Materials in Medicine. Elsevier, Amsterdam (2004)

    Chapter  Google Scholar 

  15. DeBakey, M.E.: Left ventricular bypass pump for cardiac assistance: clinical experience. Am. J. Cardiol. 27(1), 3–11 (1971)

    Article  Google Scholar 

  16. Reul, H.M., Akdis, M.: Blood pumps for circulatory support. Perfusion 15(4), 295–311 (2000)

    Article  Google Scholar 

  17. Lim, K.M., et al.: Computational analysis of the effect of the type of LVAD flow on coronary perfusion and ventricular afterload. J. Physiol. Sci. 59(4), 307–316 (2009)

    Article  Google Scholar 

  18. Doost, S.N., Zhong, L., Morsi, Y.S.: Ventricular assist devices: current state and challenges. J. Med. Dev. 11(4), 040801–040801-11 (2017)

    Article  Google Scholar 

  19. Dasi, L.P., et al.: Fluid mechanics of artificial heart valves. Clin. Exp. Pharmacol. Physiol. 36(2), 225–237 (2009)

    Article  Google Scholar 

  20. Li, C.-P., et al.: Role of vortices in cavitation formation in the flow at the closure of a bileaflet mitral mechanical heart valve. J. Artif. Organs 15(1), 57–64 (2012)

    Article  Google Scholar 

  21. McMillan, I.: Aortic stenosis: a post-mortem cinephotographic study of valve action. Br. Heart J. 17(1), 56 (1955)

    Article  Google Scholar 

  22. McMillan, I., Daley, R., Matthews, M.: The movement of aortic and pulmonary valves studied post mortem by colour cinematography. Br. Heart J. 14(1), 42 (1952)

    Article  Google Scholar 

  23. Davila, J.C., et al.: A simple mechanical pulse duplicator for cinematography of cardiac valves in action. Ann. Surg. 143(4), 544 (1956)

    Article  Google Scholar 

  24. Cornhill, J.: An aortic-left ventricular pulse duplicator used in testing prosthetic aortic heart valves. J. Thorac. Cardiovasc. Surg. 73(4), 550–558 (1977)

    Google Scholar 

  25. Duran, C., Gunning, A., McMillan, T.: A simple versatile pulse duplicator. Thorax 19(6), 503 (1964)

    Article  Google Scholar 

  26. Hildebrand, D.K., et al.: Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann. Biomed. Eng. 32(8), 1039–1049 (2004)

    Article  MathSciNet  Google Scholar 

  27. Morsi, Y.S.: In vitro comparison of steady and pulsatile flow characteristics of jellyfish heart valve. J. Artif. Organs 3(2), 143–148 (2000)

    Article  Google Scholar 

  28. Raftery, E., Dayem, M., Melrose, D.: Mechanical performance of Hammersmith mitral valve prosthesis. Br. Heart J. 30(5), 666 (1968)

    Article  Google Scholar 

  29. Kolff, W.J.: Mock circulation to test pumps designed for permanent replacement of damaged hearts. Clevel. Clin. Q. 26, 223 (1959)

    Article  Google Scholar 

  30. Donovan, F.M.: Design of a hydraulic analog of the circulatory system for evaluating artificial hearts. Biomater. Med. Devices Artif. Organs 3(4), 439–449 (1975)

    Article  Google Scholar 

  31. Rosenberg, G., et al.: Design and evaluation of the Pennsylvania State University mock circulatory system. ASAIO J. 4(2), 41–49 (1981)

    Google Scholar 

  32. Orime, Y., et al.: In vitro and in vivo validation tests for total artificial heart. Artif. Organs 18(1), 54–72 (1994)

    Article  Google Scholar 

  33. Cassot, F., et al.: New versatile physical model fitting the systemic circulation accurately. Med. Biol. Eng. Comput. 23(6), 511 (1985)

    Article  Google Scholar 

  34. Gregory, S., et al.: A naturally shaped silicone ventricle evaluated in a mock circulation loop: a preliminary study. J. Med. Eng. Technol. 33(3), 185–191 (2009)

    Article  Google Scholar 

  35. Zannoli, R., Corazza, I., Branzi, A.: Mechanical simulator of the cardiovascular system. Physica Medica: Eur. J. Med. Phys. 25(2), 94–100 (2009)

    Article  Google Scholar 

  36. Liu, Y., et al.: Construction of an artificial heart pump performance test system. Cardiovasc. Eng. 6(4), 151–158 (2006)

    Article  Google Scholar 

  37. Wu, Y., et al.: Modeling, estimation, and control of human circulatory system with a left ventricular assist device. IEEE Trans. Control Syst. Technol. 15(4), 754–767 (2007)

    Article  Google Scholar 

  38. Ferrari, G., et al.: A hybrid mock circulatory system: testing a prototype under physiologic and pathological conditions. ASAIO J. 48(5), 487–494 (2002)

    Article  Google Scholar 

  39. Ferrari, G., et al.: A hybrid (numerical-physical) model of the left ventricle. Int. J. Artif. Organs 24(7), 456–462 (2001)

    Article  Google Scholar 

  40. Ferrari, G., et al.: Development of hybrid (numerical-physical) models of the cardiovascular system: numerical-electrical and numerical hydraulic applications. Biocyber. Biomed. Eng. 25(4), 3–15 (2005)

    Google Scholar 

  41. Ferrari, G., et al.: Mock circulatory system for in vitro reproduction of the left ventricle, the arterial tree and their interaction with a left ventricular assist device. J. Med. Eng. Technol. 18(3), 87–95 (1994)

    Article  Google Scholar 

  42. Kozarski, M., et al.: A new hybrid electro-numerical model of the left ventricle. Comput. Biol. Med. 38(9), 979–989 (2008)

    Article  Google Scholar 

  43. Timms, D., et al.: A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices. Artif. Organs 29(7), 564–572 (2005)

    Article  Google Scholar 

  44. Vilchez-Monge, M., Truque-Barrantes, A., Ortiz-Leon, G.: Design and construction of a hydro-pneumatic mock circulation loop that emulates the systemic circuit of the circulatory system. In: 36th Central American and Panama Convention (CONCAPAN XXXVI). IEEE (2016)

    Google Scholar 

  45. Levick, J.: Overview of cardiovascular system. In: An Introduction to Cardiovascular Physiology, pp. 1–13 (2003)

    Google Scholar 

  46. Sharp, M.K., Dharmalingham, R.: Development of a hydraulic model of the human systemic circulation. ASAIO J. (American Society for Artificial Internal Organs: 1992), 45(6), 535–540 (1999)

    Article  Google Scholar 

  47. Pantalos, G.M., et al.: Characterization of an adult mock circulation for testing cardiac support devices. ASAIO J. 50(1), 37–46 (2004)

    Article  Google Scholar 

  48. Timms, D., et al.: Evaluation of left ventricular assist device performance and hydraulic force in a complete mock circulation loop. Artif. Organs 29(7), 573–580 (2005)

    Article  Google Scholar 

  49. Guyton, A.C., Hall, J.: Insulin, glucagon, and diabetes mellitus. Textbook Med. Physiol. 8, 855–867 (2006)

    Google Scholar 

  50. Berne, R.M., Levy, M.N.: Principles of Physiology. Mosby Incorporated (2000)

    Google Scholar 

  51. Donovan, F.: Design of a hydraulic analog of the circulatory system for evaluating artificial hearts. Biomater. Med. Devices Artif. Organs 3(4), 439–449 (1975)

    Article  Google Scholar 

  52. Knierbein, B., et al.: Compact mock loops of the systemic and pulmonary circulation for blood pump testing. Int. J. Artif. Organs 15(1), 40–48 (1992)

    Article  Google Scholar 

  53. Kolyva, C., et al.: A mock circulatory system with physiological distribution of terminal resistance and compliance: application for testing the intra‐aortic balloon pump. Artif. Organs 36(3) (2012)

    Article  Google Scholar 

  54. Geven, M.C., et al.: A physiologically representative in vitro model of the coronary circulation. Physiol. Meas. 25(4), 891 (2004)

    Article  Google Scholar 

  55. Downey, J.M., Kirk, E.S.: Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ. Res. 36(6), 753–760 (1975)

    Article  Google Scholar 

  56. Khudzari, A.Z.B.M.: The development and investigation of a novel pulsatile heart assist device (2012)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank all team members for helpful discussion as well as their contributions in reviewing and editing this review topic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Z. M. Khudzari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khudzari, A.Z.M., Kadir, M.R.A., Osman, K., Hudzari, A.H.M. (2020). Mock Circulatory Loop for Cardiovascular Assist Device Testing. In: Dewi, D., Hau, Y., Khudzari, A., Muhamad, I., Supriyanto, E. (eds) Cardiovascular Engineering. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8405-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8405-8_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8404-1

  • Online ISBN: 978-981-10-8405-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics