Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 182))

  • 130 Accesses

Abstract

The primary role of the Na-K pump is the generation and maintenance of transmembrane Na+ and K+ gradients. The Na-K pump actively transports these ions across the cell membrane against concentration gradients. Although there are other mechanisms and ion channels that modify intracellular Na+ and K+ concentrations, the Na-K pump is essential for maintaining an intracellular environment of low Na+ and high K+ concentrations. The K+ and Na+ gradients in turn are the basis for transmembrane potentials, membrane excitability, and action potentials in the cardiac muscle. In addition, activity of the Na-K pump indirectly modulate intracellular Ca2+ concentrations through the Na/Ca exchanger. A low intracellular Ca2+ concentration is necessary for relaxation of heart muscle, proper functions of mitochondria, and Na-K pump activity. Equally important is the function of Na+, K+-ATPase as the only known receptor for cardiac glycosides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lingrel JB, Orlowski J, Shull MM, Price EM. Molecular genetics of Na, K-ATPase. Prog Nucl Acid Res Mol Biol 1990;38:37–89.

    Article  CAS  Google Scholar 

  2. Shull GE, Greeb J, Lingrel JB. Molecular cloning of three distinct forms of the Na+, K+-ATPase alpha-subunit from rat brain. Biochemistry 1986;25:8125–32.

    Article  PubMed  CAS  Google Scholar 

  3. Sweadner KJ. Isozymes of the Na+/K+-ATPase. Biochimt Biophys Acta 1989;988:185–220.

    Article  CAS  Google Scholar 

  4. Shyjan AW, Cena V, Klein DC, Levenson R. Differential expression and enzymatic properties of the Na+, K+-AT-Pase alpha3 isoenzyme in rat pineal glands. Proc Natl Acad Sci USA 1990;87:1178–82.

    Article  PubMed  CAS  Google Scholar 

  5. Jewell EA, Lingrel JB. Comparison of the substrate dependence properties of the rat Na,K-ATPase alphal, alpha2, and alpha3 isoforms expressed in HeLa cells. J Bio Chem 1991;266:16925–30.

    CAS  Google Scholar 

  6. Shamraj OI, Melvin D, Lingrel JB. Expression of Na,K-ATPase isoforms in human heart. Biochem Biophys Res Commun 1991;179:1434–40.

    Article  PubMed  CAS  Google Scholar 

  7. Zahler R, Gilmore-Hebert M, Baldwin JC, Franco K, Benz EJ Jr. Expression of alpha isoforms of Na,K-ATPase in human heart. Biochim Biophys Acta 1993;1149:189–94.

    Article  PubMed  CAS  Google Scholar 

  8. Ng YC, Akera T. Two classes of ouabain binding sites in ferret heart and two forms of Na+-K+-ATPase. Am J Physiol 1987;252:H1016–22.

    PubMed  CAS  Google Scholar 

  9. Ng YC, Book CB. Expression of Na,K-ATPase alphal and alpha3 isoforms in adult and neonatal ferret hearts. Am J Physiol 1992;263:H1430–6.

    PubMed  CAS  Google Scholar 

  10. Lompre AM, Mercadier JJ, Schwartz K. Changes in gene expression during cardiac growth. Intl Rev Cytol 1991;124:137–86.

    Article  CAS  Google Scholar 

  11. Lompre AM, Nadal-Ginard B, Mahdavi V. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Bio Chem 1984;259:6437–46.

    CAS  Google Scholar 

  12. Orlowski J, Lingrel JB. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic alpha isoform and beta subunit mRNAs. J Bio Chem 1988;263:10436–42.

    CAS  Google Scholar 

  13. Lucchesi PA, Sweadner KJ. Postnatal changes in Na,K-ATPase isoform expression in rat cardiac ventricle. Conservation of biphasic ouabain affinity. J Bio Chem 1991;266:9327–31.

    CAS  Google Scholar 

  14. Melikian J, Ismail-Beigi F. Thyroid hormone regulation of Na,K-ATPase subunit-mRNA expression in neonatal rat myocardium. J Membr Bio 1991;119:171–7.

    Article  CAS  Google Scholar 

  15. Horowitz B, Hensley CB, Quintero M, Azuma KK, Putnam D, McDonough AA. Differential regulation of Na,K-ATPase alpha1, alpha2, and beta subunit mRNA and protein levels by thyroid hormone. J Bio Chem 1990;265:14308–14.

    CAS  Google Scholar 

  16. Ng YC, Yao AZ, Akera T. Tissue-specific isoform regulation of Na+-K+-ATPase by thyroid hormone in ferrets. Am J Physiol 1989;257:H534–9.

    PubMed  CAS  Google Scholar 

  17. Schmitt CA, McDonough AA. Thyroid hormone regulates alpha and alpha+ isoforms of Na,K-ATPase during development in neonatal rat brain. J Bio Chem 1988;263:17643–9.

    CAS  Google Scholar 

  18. Schmitt CA, McDonough AA. Developmental and thyroid hormone regulation of two molecular forms of Na+-K+ATPase in brain. J Bio Chem 1986;261:10439–44.

    CAS  Google Scholar 

  19. Kearin M, Kelly JG, O’Malley K. Digoxin “receptors” in neonates: an explanation of less sensitivity to digoxin than in adults. Clin Pharm 1980;28:346–9.

    CAS  Google Scholar 

  20. Herrera VL, Chobanian AV, Ruiz-Opazo N. Isoformspecific modulation of Na+,K+-ATPase alpha-subunit gene expression in hypertension. Science 1988;241:221–3.

    Article  PubMed  CAS  Google Scholar 

  21. Book CS, Moore RL, Semanchik A, Ng YC. Cardiac hypertrophy alters expression of the Na+,K+-ATPase subunit isoforms at mRNA and protein levels in rat myocardium. J Mol Cell Cardiol 1994;26:591–60.

    Article  PubMed  CAS  Google Scholar 

  22. Zahler R, Brines M, Kashgarian M, Benz EJ Jr, Gilmore-Hebert M. The cardiac conduction system in the rat expresses the alpha2 and alpha3 isoforms of the Na+,K+-ATPase. Proc Natl Acad Sci USA 1992;89:99–103.

    Article  PubMed  CAS  Google Scholar 

  23. Charlemagne D, Orlowski J, Oliviero P et al. Alteration of Na,K-ATPase subunit mRNA and protein levels in hypertrophied rat heart. J Bio Chem 1994;269:1541–7.

    CAS  Google Scholar 

  24. Book C-BS, Wilson RP, Ng YC. Cardiac hypertrophy increases expression of the Na,K-ATPase alphal- but not alpha3-isoform in the ferret. Am J Physiol 1994; 266:H1221–7.

    PubMed  CAS  Google Scholar 

  25. Frohlich ED. The heart in hypertension: A 1991 overview. Hypertension 1991;18(III Suppl):62–8.

    Google Scholar 

  26. Houser SR, Freeman AR, Jaeger JM et al. Resting potential changes associated with Na-K pump in failing heart muscle. Am J Physiol 1981;240:H168–76.

    PubMed  CAS  Google Scholar 

  27. Keung ECH, Aronson RS. Non-uniform electrophysiological properties and electrotonic interaction in hypertrophied rat myocardium. Circ Res 1981;49:150–8.

    Article  PubMed  CAS  Google Scholar 

  28. Akera T, Ng YC, Hadley R, Katano Y, Brody TM. High affinity and low affinity ouabain binding sites in the rat heart. Eur J Pharmacol 1986;132:137–46.

    Article  PubMed  CAS  Google Scholar 

  29. Ghosh S, Hernando N, Mart:in-Alonso JM, Martin-Vasallo P, Coca-Prados M. Expression of multiple Na+,K+-ATPase genes reveals a gradient of isoforms along the nonpigmented ciliary epithelium: functional implications in aqueous humor secretion. J Cell Physiol 1991; 149:184–94.

    Article  PubMed  CAS  Google Scholar 

  30. McGrail KM, Phillips JM, Sweadner KJ. Immunofluorescent localization of three Na,K-ATPase isozymes in the rat central nervous system: both neurons and glia can express more than one Na,K-ATPase. J Neurosci 1991;11:381–91.

    PubMed  CAS  Google Scholar 

  31. Ahn KY, Madsen KM, Tisher CC, Kone BC. Differential expression and cellular distribution of mRNAs encoding alpha- and beta-isoforms of Na+-K+-ATPase in rat kidney. Am J Physiol 1993;265:F792–801.

    PubMed  CAS  Google Scholar 

  32. Bugaisky LB, Anderson PG, Hall RS, Bishop SP. Differences in myosin isoform expression in the subepicardial and subendocardial myocardium during cardiac hypertrophy in the rat. Circ Res 1990;66:1127–32.

    Article  PubMed  CAS  Google Scholar 

  33. Eisenberg BR, Edwards JA, Zak R. Transmural distribution of isomyosin in rabbit ventricle during maturation examined by immunofluorescence and staining for calcium activated adenosine triphosphatase. Circ Res 1985;56:548–55.

    Article  PubMed  CAS  Google Scholar 

  34. Imamura S-I, Matsuoka R, Hiratsuka E, Kimura M, Nishikawa T, Takao A. Local response to cardiac overload on myosin heavy chain gene expression and isozyme transition. Circ Res 1990;66:1067–73.

    Article  PubMed  CAS  Google Scholar 

  35. Young RM, Lingrel JB. Tissue distribution of mRNAs encoding the alpha isoforms and beta subunit of rat Na+,K+-ATPase. Biochem Biophys Res Commun 1987;145:52–8.

    Article  PubMed  CAS  Google Scholar 

  36. Ng YC, Akera T. Relative abundance of two molecular forms of Na+,K+-ATPase in the ferret heart: developmental changes and associated alterations of digitalis sensitivity. Mol Pharmacol 1987;32:201–5.

    PubMed  CAS  Google Scholar 

  37. Akera T, Ng YC. Basic aspects of Na+,K+-ATPase. In: Gwathmey JK, Briggs GM, Allen PD, editors. Heart Failure — Basic science and clinical aspects. Marcel Dekker, Inc., 1993: 307–24.

    Google Scholar 

  38. Grupp I, Im WB, Lee CO, Lee SW, Pecker MS, Schwartz A. Relation of sodium pump inhibition to positive inotrophy at low concentrations of ouabain in rat heart muscle. J Physiol 1985;360:149–60.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ng, YC., Akera, T. (1996). Na-K pump: Multiple isoforms and their roles in cardiac functions. In: Morad, M., Ebashi, S., Trautwein, W., Kurachi, Y. (eds) Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. Developments in Cardiovascular Medicine, vol 182. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3990-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3990-8_48

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5765-3

  • Online ISBN: 978-94-011-3990-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics