Skip to main content

Na+/K+-ATPase: A Perspective

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Abstract

Na+/K+-ATPase (NKA), a transmembrane protein, facilitates active transport of three Na+ out of the cell and two K+ into the cell with the expense of an ATP. It plays an important role in regulating the ionic homeostasis and maintaining membrane potential. Additionally, NKA plays a crucial role in driving a variety of secondary transport processes such as Na+-dependent glucose and amino acid transport.

NKA is composed of α and β subunits, which have several tissue-specific isoforms. The α subunit of NKA possesses catalytic activity of the enzyme and that contains binding sites for cardiac glycosides, ions, and ATP and also phosphorylation sites for protein kinase A and protein kinase C. The β-subunit is required for the insertion for the catalytic subunit into the membrane and also facilitates cell adhesion and associated signal transduction.

Cardiotonic steroids, for example, ouabain, elicit their effects by inhibiting the NKA activity, thereby raising [Na+]i leading to an increase in [Ca2+]i mainly via NCX, thereby modulating ion concentrations and contractility. There are several synthetic and endogenous protein inhibitors of NKA having similar effects that mediate an increase in [Ca2+]i.

Activation of PKA and PKC by different stimulants, for example, thrombin, regulates NKA activity in pulmonary smooth muscle cell membrane. Regulation of NKA activity by PKA and PKC has been shown to occur upon phosphorylation of FXYD proteins, which are regulated in a tissue-specific manner. Additionally, some hormones, for instance, catecholamines, increase lung fluid clearance via β-adrenergic mediated mechanisms of active Na+ transport across lung epithelial cells. NKA is associated with several cellular functions such as apoptosis and cellular proliferation. Dysregualtion of NKA is implicated for several metabolic and neuronal disorders.

“Looking for the answer:You hunt it,You catch it,You fool yourself,The answer,is always,a step ahead”.

Jens C Skou

Nobel Prize winner in Chemistry (1997)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skou JC (1957) The influence of some cations on as adenosine triphosphatase from peripheral nerve. Biochim Biophys Acta 23:394–401

    Article  CAS  PubMed  Google Scholar 

  2. Skou JC (1998) Nobel Lecture. The identification of the sodium pump. Biosci Rep 18:155–169

    Article  CAS  PubMed  Google Scholar 

  3. Koksoy AA (2002) Na+/K+-ATPase: a review. J Ank Med School 24:73–82

    Google Scholar 

  4. Blaustein MP (1977) Sodium ions, calcium ions, blood pressure regulation and hypertension: an assessment and a hypothesis. Am J Physiol 232:C165–C173

    CAS  PubMed  Google Scholar 

  5. Geering K (1988) Biosynthesis, membrane insertion and maturation of Na+K+-ATPase. Prog Clin Biol Res 268B:19–33

    CAS  PubMed  Google Scholar 

  6. Jewell EA, Shamraj OI, Lingrel JB (1992) Isoforms of the alpha subunit of Na, K-ATPase and their significance. Acta Physiol Scand Suppl 607:161–169

    CAS  PubMed  Google Scholar 

  7. Ohtsubo M, Noguchi S, Takeda K et al (1990) Site-directed mutagenesis of Asp-376, the catalytic phosphorylation site, and Lys-507, the putative ATP-binding site, of the alpha-subunit of Torpedo californica Na+/K+-ATPase. Biochim Biophys Acta 1021:157–160

    Article  CAS  PubMed  Google Scholar 

  8. Fambrough DM, Lemas MV, Hamrick M et al (1994) Analysis of subunit assembly of the Na+/K+-ATPase. Am J Physiol 266:C579–C589

    CAS  PubMed  Google Scholar 

  9. Lopina OD (1999) Na+/K+-ATPase: structure, mechanism and regulation of activity. Biol Membr (Moscow) 16:584–603

    CAS  Google Scholar 

  10. Lingrel JB, Kuntzweiler T (1994) Na+/K+-ATPase. J Biol Chem 269:19659–19662

    CAS  PubMed  Google Scholar 

  11. Lingrel JB, Young RM, Shull MM (1988) Multiple forms of the Na+/K+-ATPase: their genes and tissue specific expression. Prog Clin Biol Res 266B:105–112

    Google Scholar 

  12. Juhaszova M, Blaustein MP (1997) Na+ pump low and high ouabain affinity alpha subunit isoforms are differently distributed in cells. Proc Natl Acad Sci U S A 94:1800–1805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blanco GI, Sanchez G, Melton RJ et al (2000) The α4 isoform of the Na+/K+-ATPase is expressed in the germ cells of the testes. J Histochem Cytochem 48:1023–1032

    Article  CAS  PubMed  Google Scholar 

  14. Kirley TL (1989) Determination of three disulfide bonds and one free sulfhydryl in the beta subunit of Na+/K+-ATPase. J Biol Chem 264:7185–7192

    CAS  PubMed  Google Scholar 

  15. Therien AG, Blostein R (2000) Mechanisms of sodium pump regulation. Am J Physiol 279:C541–C566

    CAS  Google Scholar 

  16. Schmalzing G, Gloor S (1994) Na+/K+-Pump beta subunits: structure and functions. Cell Physiol Biochem 4:96–114

    Article  CAS  Google Scholar 

  17. Lutsenko S, Kaplan JH (1992) Evidence of a role for the Na+/K+-ATPase beta-subunit in active cation transport. Ann N Y Acad Sci 671:147–154

    Article  CAS  PubMed  Google Scholar 

  18. Gloor S, Stonicek H, Sweadner KJ et al (1990) The adhesion molecule on glia (AMOG) is a homologue of the beta subunit of the Na+/K+-ATPase. J Cell Biol 110:165–174

    Article  CAS  PubMed  Google Scholar 

  19. Ochieng J, Warfield P, Green-Jarvis B, Fentie I (1999) Galectin-3 regulates the adhesive interaction between breast carcinoma cells and elastin. J Cell Biochem 75:505–514

    Article  CAS  PubMed  Google Scholar 

  20. Beggah AT, Jaunin P, Geering K (1997) Role of glycosylation and disulfide bond formation in the beta subunit in the folding and functional expression of Na+/K+-ATPase. J Biol Chem 272:10318–10326

    Article  CAS  PubMed  Google Scholar 

  21. Dey K, Chakraborti T, Roy S et al (2010) Identification, purification and partial characterization of a 70 kDa inhibitor protein of Na+/K+-ATPase from cytosol of pulmonary artery smooth muscle. Life Sci 86:473–481

    Article  CAS  PubMed  Google Scholar 

  22. Vilsen B, Andersen JP, Petersen J, Jorgensen PL (1987) Occlusion of 22Na+ and 86Rb+ in membrane-bound and soluble protomeric αβ-subunits of Na+/K+-ATPase. J Biol Chem 262:10511–10517

    CAS  PubMed  Google Scholar 

  23. Repke KR, Schoen R (1973) Flip-flop model of Na+/K+-ATPase function. Acta Biol Med 31:K19–K30

    Google Scholar 

  24. Plesner IW, Plesner L, Norby JG, Klodos I (1981) The steady-state kinetic mechanism of ATP hydrolysis catalyzed by membrane-bound (Na+ + K+)-ATPase from ox brain. III. A minimal model. Biochim Biophys Acta 643:483–494

    Article  CAS  PubMed  Google Scholar 

  25. Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol Cell Physiol 264:C1367–C1387

    CAS  Google Scholar 

  26. Jing-xiang Y, Yong-Li W, Qing L (2003) Stimulative effect of low concentration dihydroouabain on Na+/K+ pump current in guinea pig ventricular myocytes. Chin Heart J 15:300–302

    Google Scholar 

  27. Brown MT, Cooper JA (1996) Regulation, substrates and functions of Src. Biochim Biophys Acta 1287:121–149

    PubMed  Google Scholar 

  28. Abram CL, Courtneidge SA (2000) Src family tyrosine kinases growth factor signaling. Exp Cell Res 254:1–13

    Article  CAS  PubMed  Google Scholar 

  29. Haas M, Askari A, Xie Z (2000) Involvement of Src and epidermal growth factor (EGF) receptor in the signal transduction function of Na+/K+-ATPase. J Biol Chem 275:27832–27837

    CAS  PubMed  Google Scholar 

  30. Saunders R, Scheiner-Bobis G (2004) Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump. Eur J Biochem 271:P1054–P1062

    Article  CAS  Google Scholar 

  31. Tamiya S, Okafar MC, Delamere NA (2007) Purinergic agonists stimulate lens Na+/K+-ATPase mediated transport via a Src tyrosine kinase dependent pathway. Am J Physiol 293:C790–C796

    Article  CAS  Google Scholar 

  32. Mandal A, Shahidullah M, Beimgraben C, Delamere NA (2011) The effect of endothelin-1 on Src family tyrosine kinases and Na+/K+-ATPase activity in porcine lens epithelium. J Cell Physiol 226:2555–2561

    Article  CAS  PubMed  Google Scholar 

  33. Carranza ML, Rousselot M, Alexander V (1998) Chibalin protein kinase A induces recruitment of active Na+, K+-ATPase units to the plasma membrane of rat proximal convoluted tubule cells. J Physiol 511:235–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mandal A, Delamere NA, Shahidullah M (2000) Ouabain induced stimulation of Na+/H+ exchanger in rat optic nerve astrocytes. Am J Physiol 295:C100–C110

    Article  CAS  Google Scholar 

  35. Berthiaume Y, Staub NC, Matthay MA (1987) Beta-adrenergic agonists increase lung liquid clearance in anesthetized sheep. J Clin Invest 79:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feschenko MS, Sweadner KJ (1995) Structural basis for species specific differences in the phosphorylation of Na+/K+-ATPase by protein kinase C. Am Soc Biochem Mol Biol 270:14072–14077

    CAS  Google Scholar 

  37. Borghini I, Geering K, Gjinovci A (1994) In vivo phosphorylation of the Na+/K+-ATPase alpha subunit in sciatic nerves of control and diabetic rats: effects of protein kinase modulators. Proc Natl Acad Sci U S A 91:6211–6215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ridge KM, Dada L, Lecuona E (2002) Dopamine-induced exocytosis of Na+/K+-ATPase is dependent on activation of protein kinase c-ε and -δ. Mol Biol Cell 13:1381–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chibalin AV, Ogimoto G, Pedemonte CH (1999) Dopamine induced endocytosis of Na+/K+-ATPase is initiated by phosphorylation of Ser-18 in the rat α-subunit and is responsible for the decreased activity in epithelial cells. J Biol Chem 274:1920–1927

    Article  CAS  PubMed  Google Scholar 

  40. Khundmiri SJ, Bertorello AM, Delamere N, Lederer ED (2004) Clathrin-mediated endocytosis of Na+/K+-ATPase in response to PTH requires ERK-dependent phosphorylation of Ser-11 within the α1-subunit. J Biol Chem 279:17418–17427

    Article  CAS  PubMed  Google Scholar 

  41. Chibalin AV, Zierath JR, Katz AI (1998) Phosphatidylinositol 3-kinase-mediated endocytosis of renal Na+/K+-ATPase alpha subunit in response to dopamine. Mol Biol Cell 9:1209–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dey K, Roy S, Ghosh B, Chakraborti S (2012) Role of protein kinase C in phospholemman mediated regulation of α2β1 isozyme of Na+/K+-ATPase in caveolae of pulmonary artery smooth muscle cells. Biochimie 94:991–1000

    Article  CAS  PubMed  Google Scholar 

  43. McKee M, Scavone C, Nathanson JA (1994) Nitric oxide, cGMP, and hormone regulation of active sodium transport. Proc Natl Acad Sci U S A 91:12056–12060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scavone C, Scanlon C, McKee M, Nathanson JA (1995) Atrial natriuretic peptide modulates sodium- and potassium-activated adenosine triphosphatase through a mechanism involving cyclic GMP and cyclic GMP-dependent protein kinase. J Pharmacol Exp Ther 272:1036–1043

    CAS  PubMed  Google Scholar 

  45. Nathanson JA, Scavone C, Scanlon C, McKee M (1995) The cellular Na+ pump as a site of action for carbon monoxide and glutamate: a mechanism for long-term modulation of cellular activity. Neuron 14:781–794

    Article  CAS  PubMed  Google Scholar 

  46. Nathanson MH, Burgstahler AD, Mennone A et al (1995) Ca2+ waves are organized among the hepatocytes in the intact organ. Am J Physiol 269:G167–G171

    CAS  PubMed  Google Scholar 

  47. Xie Z, Wang Y, Askari A et al (1990) Studies on the specificity of the oxygen free radical effects on cardiac sodium pump. J Mol Cell Cardiol 22:911–920

    Article  CAS  PubMed  Google Scholar 

  48. Huang W, Wang Y, Askari A et al (1994) Different sensitivities of the Na+/K+-ATPase isoforms to oxidants. Biochim Biophys Acta 1190:108–114

    Article  CAS  PubMed  Google Scholar 

  49. Dada LA, Sznajder JI (2003) Mechanisms of pulmonary edema clearance during acute hypoxemic respiratory failure: role of the Na+/K+-ATPase. Crit Care Med 31:S248–S252

    Article  CAS  PubMed  Google Scholar 

  50. Reuter H, Henderson SA, Han T (2002) The Na+-Ca2+ exchanger is essential for the action of cardiac glycosides. Circ Res 90:305–308

    Article  CAS  PubMed  Google Scholar 

  51. Arnon A, Hamlyn JM, Blaustein MP (2000) Ouabain augments Ca2+ transients in arterial smooth muscle without raising cytosolic Na+. Am J Physiol 279:H679–H691

    CAS  Google Scholar 

  52. Yuan Z, Cai T, Xie Z et al (2005) Na+/K+-ATPase tethers phospholipase C and IP3 receptor into a calcium-regulatory complex. Mol Biol Cell 16:4034–4045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dostanic I, Paul RJ, Lorenz JN (2005) The α2-isoform of Na+/K+-ATPase mediates ouabain-induced hypertension in mice and increased vascular contractility in vitro. Am J Physiol 288:H477–H485

    CAS  Google Scholar 

  54. Zhang J, Lee MY, Cavalli M (2005) Sodium pump α2 subunits control myogenic tone and blood pressure in mice. J Physiol 569:243–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Iwamoto T, Kita S, Uehara A (2004) Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400. J Biol Chem 279:7544–7553

    Article  CAS  PubMed  Google Scholar 

  56. Iwamoto T, Kita S, Zhang J (2004) Salt-sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type-l in vascular smooth muscle. Nat Med 10:1193–1199

    Article  CAS  PubMed  Google Scholar 

  57. Manunta P, Hamilton BP, Hamlyn JM (2001) Structure-activity relationship for hypertensinogenic activity of ouabain. Role of the sugar and lactone ring. Hypertension 37:472–477

    Article  CAS  PubMed  Google Scholar 

  58. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal inducer. Eur J Biochem 269:2434–2439

    Article  CAS  PubMed  Google Scholar 

  59. Xie Z, Cai T (2003) Na+/K+-ATPase-mediated signal transduction: from protein interaction to cellular function. Mol Interv 3:157–168

    Article  CAS  PubMed  Google Scholar 

  60. Gao J, Wymore RS, Wang Y (2002) Isoform-specific stimulation of cardiac Na+/K+-pump by nanomolar concentrations of glycosides. J Gen Physiol 119:297–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aizman O, Uhlen P, Lal M et al (2001) Ouabain, a steroid hormone that signals with slow calcium oscillations. Proc Natl Acad Sci U S A 98:13420–13424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang H, Haas M, Liang M (2004) Ouabain assembles signalling cascades through the caveolar Na+/K+-ATPase. J Biol Chem 279:17250–17259

    Article  CAS  PubMed  Google Scholar 

  63. Miyakawa-Naito A, Uhlén P, Lal M et al (2003) Cell signaling microdomain with Na+/K+-ATPase and inositol 1,4,5-triphosphate receptor generates calcium oscillations. J Biol Chem 318:50355–50361

    Article  Google Scholar 

  64. Ghosh B, Kar P, Mandal A, Dey K et al (2009) Ca2+ influx mechanisms in caveolae vesicles of pulmonary smooth muscle plasma membrane under inhibition of αβ isozyme of Na+/K+-ATPase by ouabain. Life Sci 84:139–148

    Article  CAS  PubMed  Google Scholar 

  65. Yudowski GA, Efendiev R, Pedemonte CH (2000) Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase alpha subunit and regulates its trafficking. Proc Natl Acad Sci U S A 97:6556–6561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rosen H, Glukhman V, Feldmann T (2004) Cardiac steroids induce changes in recycling of the plasma membrane in human NT2 cells. Mol Biol Cell 15:1044–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ibarra FR, Jun Cheng SX, Agrén M (2002) Intracellular sodium modulates the state of protein kinase C phosphorylation of rat proximal tubule Na+, K+-ATPase. Acta Physiol Scand 175:165–171

    Article  CAS  PubMed  Google Scholar 

  68. Lecuona E, Ridge K, Pesce L (2003) The GTP-binding protein RhoA mediates Na, K-ATPase exocytosis in alveolar epithelial cells. Mol Biol Cell 14:3888–3897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schoner W, Bobis GS (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7:173–189

    Article  CAS  PubMed  Google Scholar 

  70. Santana LF, Gómez AM, Lederer WJ (1998) Ca2+ Flux trough promiscuous cardiac Na+ channels: slip-mode conductance. Science 279:1027–1033

    Article  CAS  PubMed  Google Scholar 

  71. Mohammadi K, Kometiani P, Xie Z, Askari A (2001) Role of protein kinase C in the signal pathways that link Na+/K+-ATPase to ERK1/2. J Biol Chem 276:42050–42056

    Article  CAS  PubMed  Google Scholar 

  72. Gotoh H, Kamiyama A, Shibayarna R et al (1993) Involvement of phosphoinositide turnover in ouabain inotropism. Biochem Biophys Res Commun 194:72–78

    Article  CAS  PubMed  Google Scholar 

  73. Ekinci FJ, Malik KU, Shea TB (1999) Activation of the L voltage-sensitive calcium channel by mitogen-activated protein (MAP) kinase following exposure of neuronal cells to β-Amyloid. J Biol Chem 274:30322–30327

    Article  CAS  PubMed  Google Scholar 

  74. Dey K, Rahaman SM, Chakraborti T, Chakraborti S (2013) Role of phospholemman and the 70 kDa inhibitor protein in regulating Na+/K+ ATPase activity in pulmonary artery smooth muscle cells under U46619 stimulation. FEBS Lett 587:3535–3540

    Article  CAS  PubMed  Google Scholar 

  75. Cheung JY, Wang JF, Zhang XQ et al (2010) Phospholemman: a novel cardiac stress protein. Clin Transl Sci 3:189–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mounsey JP, John JE, Helmke SM et al (2000) Phospholemman is a substrate for myotonic dystrophy protein kinase. J Biol Chem 275:23362–23367

    Article  CAS  PubMed  Google Scholar 

  77. Cornelius F, Mahmmoud YA (2007) Modulation of FXYD interaction with Na+/K+ interaction with Na+/K+-ATPase by anionic phospholipids and protein kinase phosphorylation. Biochemistry 46:2371–2379

    Article  CAS  PubMed  Google Scholar 

  78. Cortes VF, Ribeiro LM, Barrabin H et al (2010) Regulatory phosphorylation of FXYD2 by PKC and cross-interactions between FXYD2, plasmalemmal Ca2+-ATPase and Na+/K+ATPase. Arch Biochem Biophys 505:75–82

    Article  PubMed  CAS  Google Scholar 

  79. Young JH, Saucerman JJ (2012) Phospholemman is a negative feed forward regulator of Ca2+ in β-adrenergic signaling, accelerating β-adrenergic inotropy. J Mol Cell Cardiol 52:1048–1053

    Article  CAS  Google Scholar 

  80. Therien AG, Karlish SJ, Blostein R (1999) Expression and functional role of the gamma subunit of the Na, K-ATPase in mammalian cells. J Biol Chem 274:12252–12256

    Article  CAS  PubMed  Google Scholar 

  81. Crambert G, Li C, Claeys D, Geering K (2005) FXYD3 (Mat-8), a new regulator of Na, K-ATPase. Mol Biol Cell 16:2363–2371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shi H, Levy-Holzman R, Cluzeaud F et al (2001) Membrane topology and immunolocalization of CHIF in kidney and intestine. Am J Physiol Renal Physiol 280:F505–F512

    CAS  PubMed  Google Scholar 

  83. Garty H, Lindzen M, Scanzano R et al (2002) A functional interaction between CHIF and Na-K-ATPase: implication for regulation by FXYD proteins. Am J Physiol Renal Physiol 283:F607–F615

    Article  PubMed  Google Scholar 

  84. Fu X, Kamps M (1997) E2a-Pbx1 induces aberrant expression of tissue specific and developmentally regulated genes when expressed in NIH 3T3 fibroblasts. Mol Cell Biol 17:1503–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsuiji H, Takasaki S, Sakamoto M et al (2003) Aberrant O-glycosylation inhibits stable expression of dysadherin, a carcinoma-associated antigen, and facilitates cell-cell adhesion. Glycobiology 13:521–527

    Article  CAS  PubMed  Google Scholar 

  86. Sweadner KJ, Rael E (2000) The FXYD gene family of small ion transport regulators or channels: cDNA sequence, protein signature sequence, and expression. Genomics 68:41–56

    Article  CAS  PubMed  Google Scholar 

  87. Kadowaki K, Sugimoto K, Yamaguchi F et al (2004) Phosphohippolin expression in the rat central nervous system. Mol Brain Res 125:105–112

    Article  CAS  PubMed  Google Scholar 

  88. Geering K, Béguin P, Garty H et al (2003) FXYD proteins: new tissue- and isoform-specific regulators of Na, K-ATPase. Ann N Y Acad Sci 986:388–394

    Article  CAS  PubMed  Google Scholar 

  89. Tamura M, Naruse M, Sakakibara M et al (1993) Isolation of an endogenous Na-pump specific inhibitor from normal pig urine: characterization and comparison with the inhibitor purified from bovine adrenal glands. Biochim Biophys Acta 1157:15–22

    Article  CAS  PubMed  Google Scholar 

  90. Haupert GT Jr (1988) Physiological inhibitors of Na, K-ATPase: concept and status. Prog Clin Biol Res 268:297–320

    CAS  Google Scholar 

  91. Gonick HC, Saldanha LF (1975) A natriuretic principle derived from kidney tissue of volume-expanded rats. J Clin Invest 56:247–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Buckalew VM Jr, Nelson DB (1974) Natriuretic and sodium transport inhibitory activity in plasma of volume-expanded dogs. Kidney Int 5:12–22

    Article  CAS  PubMed  Google Scholar 

  93. Clarkson E, Raw SM, de Wardener HE (1979) Further observations on a low-molecular-weight natriuretic substance in the urine of normal man. Kidney Int 16(6):710–721

    Article  CAS  PubMed  Google Scholar 

  94. Lenaerts C, Delamere M, Garbaux P, Blancert B (2013) Analytical aspects of marinobufagenin. Clin Chim Acta 421:193–201

    Article  CAS  PubMed  Google Scholar 

  95. Yu Z, Guo W, Ma X et al (2014) Gamabufotalin, a bufadienolide compound from toad venom, suppresses COX-2 expression through targeting IKKβ/NF-κB signaling pathway in lung cancer cells. Mol Cancer 13:203–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rahaman SM, Dey K, Das P et al (2014) Identification, purification and partial characterization of low molecular weight protein inhibitor of Na+/K+-ATPase from pulmonary artery smooth muscle cells. Mol Cell Biochem 393:309–317

    Article  CAS  PubMed  Google Scholar 

  97. Bhattacharyya D, Sen PC (1997) Purification and functional characterization of a low molecular-mass Na+, K+-ATPase inhibitor protein from rat brain cytosol. Eur J Biochem 244:829–834

    Article  CAS  PubMed  Google Scholar 

  98. Hamer E, Schoner W (1993) Modification of the E1ATP binding site of Na+/K+-ATPase by the chromium complex of adenosine 5′-[β, γ-methylene]triphosphate blocks the overall reaction but not the partial activities of the E2 conformation. Eur J Biochem 213:743–748

    Article  CAS  PubMed  Google Scholar 

  99. Fuller W, Parmar V, Eaton P et al (2003) Cardiac ischemia causes inhibition of the Na/K ATPase by a labile cytosolic compound whose production is linked to oxidant stress. Cardiovasc Res 57:1044–1051

    Article  CAS  PubMed  Google Scholar 

  100. Rogaeva EA, Perova NV, Alexandrov AA et al (1987) Is there a relation between the presence in the serum of patients with arterial hypertension of a protein component with molecular weight of 15 kDa and the inhibitory effect of the serum on Na, K-ATPase? Vopr Med Khim 33:34–39

    CAS  PubMed  Google Scholar 

  101. Haddy FJ (1984) The role of a humoral Na+, K+-ATPase inhibitor in regulating precapillary vessel tone. J Cardiovasc Pharmacol 6:S439–S456

    Article  PubMed  Google Scholar 

  102. Farrukh IS, Michael JR (1992) Cellular mechanisms that control pulmonary vascular tone during hypoxia and normoxia. Possible role of Ca2+ ATPases. Am Rev Respir Dis 145:1389–1397

    Article  CAS  PubMed  Google Scholar 

  103. Verrey F, Beron J, Spindler B (1996) Corticosteroid regulation of renal Na, K-ATPase. Miner Electrolyte Metab 22:279–292

    CAS  PubMed  Google Scholar 

  104. Bonvalet JP (1998) Regulation of sodium transport by steroid hormones. Kidney Int Suppl 65:S49–S56

    CAS  PubMed  Google Scholar 

  105. O’Neil RG (1990) Aldosterone regulation of sodium and potassium transport in the cortical collecting duct. Semin Nephrol 10:365–374

    PubMed  Google Scholar 

  106. Geering K, Girardet M, Bron C et al (1982) Hormonal regulation of (Na+, K+)-ATPase biosynthesis in the toad bladder. Effect of aldosterone and 3,5,3′-triiodo-L-thyronine. J Biol Chem 257:10338–10343

    CAS  PubMed  Google Scholar 

  107. Welling PA, Caplan M, Sutters M, Giebisch G (1993) Aldosterone- mediated Na/K-ATPase expression is alpha 1 isoform specific in the renal cortical collecting duct. J Biol Chem 268:23469–23476

    CAS  PubMed  Google Scholar 

  108. Grillo C, Piroli G, Lima A et al (1997) Aldosterone up-regulates mRNA for the alpha3 and beta1isoforms of (Na, K)-ATPase in several brain regions from adrenalectomized rats. Brain Res 767:120–127

    Article  CAS  PubMed  Google Scholar 

  109. Ramirez-Gil JF, Trouve P, Mougenot N, Carayon A, Lechat P, Charlemagne D (1998) Modifications of myocardial Na+, K+-ATPase isoforms and Na+/Ca2+-exchanger in aldosterone/salt-induced hypertension in guinea pigs. Cardiovasc Res 38:451–462

    Article  CAS  PubMed  Google Scholar 

  110. Oguchi A, Ikeda U, Kanbe T et al (1993) Regulation of Na-K-ATPase gene expression by aldosterone in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 265:H1167–H1172

    CAS  Google Scholar 

  111. Ikeda U, Hyman R, Smith TW, Medford RM (1991) Aldosterone-mediated regulation of Na+, K+-ATPase gene expression in adult and neonatal rat cardiocytes. J Biol Chem 266:12058–12066

    CAS  PubMed  Google Scholar 

  112. Farman N, Bonvalet JP, Seckl JR (1994) Aldosterone selectively increases Na+-K+-ATPase alpha 3-subunit subunit mRNA expression in rat hippocampus. Am J Physiol Cell Physiol 266:C423–C428

    CAS  Google Scholar 

  113. Wehling M, Eisen C, Christ M (1992) Aldosterone-specific membrane receptors and rapid non-genomic actions of mineralocorticoids. Mol Cell Endocrinol 90:C5–C9

    Article  CAS  PubMed  Google Scholar 

  114. Palmer LG, Antonian L, Frindt G (1990) Regulation of the Na-K pump of the rat cortical collecting tubule by aldosterone. J Gen Physiol 102:43–57

    Article  Google Scholar 

  115. Shahedi M, Laborde K, Bussieres L, Sachs C (1993) Acute and early effects of aldosterone on Na-K-ATPase activity in Madin-Darby canine kidney epithelial cells. Am J Physiol 264:F1021–F1026

    CAS  PubMed  Google Scholar 

  116. Pfeiffer R, Beron J, Verrey F (1999) Regulation of Na+ pump function by aldosterone is alpha-subunit isoform specific. J Physiol (Lond) 516:647–655

    Article  CAS  Google Scholar 

  117. Fujii Y, Takemoto F, Katz AI (1990) Early effects of aldosterone on Na-K pump in rat cortical collecting tubules. Am J Physiol 259:F40–F45

    CAS  PubMed  Google Scholar 

  118. Beron J, Verrey F (1994) Aldosterone induces early activation and late accumulation of Na-K-ATPase at surface of A6 cells. Am J Physiol Cell Physiol 266:C1278–C1290

    CAS  Google Scholar 

  119. Beron J, Mastroberardino L, Spillmann A, Verrey F (1995) Aldosterone modulates sodium kinetics of Na, K-ATPase containing an a subunit in A6 kidney cell epithelia. Mol Biol Cell 6:261–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pellanda AM, Gaeggeler HP, Horisberger JD, Rossier BC (1992) Sodium-independent effect of aldosterone on initial rate of ouabain binding in A6 cells. Am J Physiol Cell Physiol 262:C899–C906

    CAS  Google Scholar 

  121. Aperia A, Fryckstedt J, Holtback U et al (1996) Cellular mechanisms for bi-directional regulation of tubular sodium reabsorption. Kidney Int 49:1743–1747

    Article  CAS  PubMed  Google Scholar 

  122. Meister B, Aperia A (1993) Molecular mechanisms involved in catecholamine regulation of sodium transport. Semin Nephrol 13:41–49

    CAS  PubMed  Google Scholar 

  123. Aperia A (1994) Dopamine action and metabolism in the kidney. Curr Opin Nephrol Hypertens 3:39–45

    Article  CAS  PubMed  Google Scholar 

  124. Hussain T, Lokhandwala MF (1998) Renal dopamine receptor function in hypertension. Hypertension 32:187–197

    Article  CAS  PubMed  Google Scholar 

  125. Aperia A, Bertorello A, Seri I (1987) Dopamine causes inhibition of Na+-K+-ATPase activity in rat proximal convoluted tubule segments. Am J Physiol 252:F39–F45

    CAS  PubMed  Google Scholar 

  126. Aperia A, Fryckstedt S, Svensson L et al (1991) Phosphorylated Mr 32,000 dopamine- and cAMP-regulated phosphoprotein inhibits Na+, K+-ATPase activity in renal tubule cells. Proc Natl Acad Sci U S A 88:2798–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Satoh T, Cohen HT, Katz AI (1992) Intracellular signaling in the regulation of renal Na-K-ATPase. I. Role of cyclic AMP and phospholipase A2. J Clin Invest 89:1496–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rashed SM, Songu-Mize E (1996) Regulation of Na+, K+-ATPase activity by dopamine in cultured rat aortic smooth muscle cells. Eur J Pharmacol 305:223–230

    Article  CAS  PubMed  Google Scholar 

  129. Barnard ML, Olivera WG, Rutschman DM et al (1997) Dopamine stimulates sodium transport and liquid clearance in rat lung epithelium. Am J Respir Crit Care Med 156:709–714

    Article  CAS  PubMed  Google Scholar 

  130. Nishi A, Bertorello AM, Aperia A (1992) High salt diet downregulates proximal tubule Na+, K+-ATPase activity in Dahl salt-resistant but not in Dahl salt-sensitive rats: evidence of defective dopamine regulation. Acta Physiol Scand 144:263–267

    Article  CAS  PubMed  Google Scholar 

  131. Kansra V, Hussain T, Lokhandwala MF (1997) Alterations in dopamine DA1 receptor and G proteins in renal proximal tubules of old rats. Am J Physiol Renal Physiol 273:F53–F59

    CAS  Google Scholar 

  132. Chen C, Beach RE, Lokhandwala MF (1993) Dopamine fails to inhibit renal tubular sodium pump in hypertensive rats. Hypertension 21:364–372

    Article  CAS  PubMed  Google Scholar 

  133. Aizman O, Brisman H, Uhlen P et al (2000) Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 3:226–230

    Article  CAS  PubMed  Google Scholar 

  134. Hussain T, Abdul-Wahab R, Lokhandwala MF (1997) Bromocriptine stimulates Na+, K+-ATPase in renal proximal tubules via the cAMP pathway. Eur J Pharmacol 321:259–263

    Article  CAS  PubMed  Google Scholar 

  135. Wang Y, Gao J, Mathias RT et al (1998) alpha-Adrenergic effects on Na+-K+ pump current in guinea-pig ventricular myocytes. J Physiol (Lond) 509:117–128

    Article  CAS  Google Scholar 

  136. Clausen T, Nielsen OB (1994) The Na+, K+-pump and muscle contractility. Acta Physiol Scand 152:365–373

    Article  CAS  PubMed  Google Scholar 

  137. Hawker K, Lang AE (1990) Hypoxic-ischemic damage of the basal ganglia. Case reports and a review of the literature. Mov Disord 5:219–224

    Article  CAS  PubMed  Google Scholar 

  138. Inserte J, Garcia-Dorado D, Hernando V, Soler-Soler J (2005) Calpain-mediated impairment of Na+/K+–ATPase activity during early reperfusion contributes to cell death after myocardial ischemia. Circ Res 97:465–473

    Article  CAS  PubMed  Google Scholar 

  139. Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia reoxygenation injury. Am J Physiol 282:C227–C241

    Article  CAS  Google Scholar 

  140. Jamme I, Petit E, Gerbi A, Maixent JM et al (1997) Changes in ouabain affinity of Na+/K+-ATPase during focal cerebral ischaemia in the mouse. Brain Res 774:123–130

    Article  CAS  PubMed  Google Scholar 

  141. Tavalin SJ, Ellis EF, Satin LS (1997) Inhibition of the electrogenic Na+ pump underlies delayed depolarization of cortical neurons after mechanical injury or glutamate. J Neurophysiol 77:632–638

    CAS  PubMed  Google Scholar 

  142. Lees GJ (1991) Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Brain Res Rev 16:283–300

    Article  CAS  PubMed  Google Scholar 

  143. Chauhan NB, Lee JM, Siegel GJ (1997) Na-K-ATPase mRNA levels and plaque load in Alzheimer’s disease. J Mol Neurosci 9:151–166

    Article  CAS  PubMed  Google Scholar 

  144. Karaki H, Ozaki H, Hori M et al (1997) Calcium movements, distribution, and functions in smooth muscle. Pharmacol Rev 49:157–230

    CAS  PubMed  Google Scholar 

  145. Shimoda LA, Sham JS, Shimoda TH, Sylvester JT (2000) L-type Ca2+ channels, resting [Ca2+]i, and ET-1-induced responses in chronically hypoxic pulmonary myocytes. Am J Physiol Lung Cell Mol Physiol 279:L884–L894

    CAS  PubMed  Google Scholar 

  146. Nelson MT, Patlak JB, Worley JF, Standen NB (1990) Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 259:C3–C18

    CAS  PubMed  Google Scholar 

  147. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    CAS  PubMed  Google Scholar 

  148. Sakuma T, Pittet JF, Jayr C, Matthay MA (1993) Alveolar liquid and protein clearance in the absence of blood flow or ventilation in sheep. J Appl Physiol 74:176–185

    CAS  PubMed  Google Scholar 

  149. Azzam ZS, Saldias FJ, Comellas A et al (2001) Catecholamines increase lung edema clearance in rats with increased left atrial pressure. J Appl Physiol 90:1088–1094

    CAS  PubMed  Google Scholar 

  150. Wodopia R, Ko HS, Billian J, Wiesner R et al (2000) Hypoxia decreases proteins involved in epithelial electrolyte transport in A549 cells and rat lung. Am J Physiol Lung Cell Mol Physiol 279:L1110–L1119

    CAS  PubMed  Google Scholar 

  151. Dada LA, Chandel NS, Ridge KM et al (2003) Hypoxia-induced endocytosis of Na, K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta. J Clin Invest 111:1057–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  CAS  PubMed  Google Scholar 

  153. Yu SP, Choi DW (2000) Ions, cell volume, and apoptosis. Proc Natl Acad Sci U S A 97:9360–9362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Xiao AY, Wei L, Xia S, Rothman S, Yu SP (2002) Ionic mechanism of ouabain-induced concurrent apoptosis and necrosis in individual cultured cortical neurons. J Neurosci 22:1350–1362

    CAS  PubMed  Google Scholar 

  155. Dallaporta B, Hirsch T, Susin SA, Zamzami N et al (1998) Potassium leakage during the apoptotic degradation phase. J Immunol 160:5605–5615

    CAS  PubMed  Google Scholar 

  156. Bortner CD, Cidlowski JA (1998) A necessary role for cell shrinkage in apoptosis. Biochem Pharmacol 56:1549–1559

    Article  CAS  PubMed  Google Scholar 

  157. Jonas D, Walev I, Berger T et al (1994) Novel path to apoptosis: small transmembrane pores created by staphylococcal alpha-toxin in T lymphocytes evoke internucleosomal DNA degradation. Infect Immun 62:1304–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Penning LC, Denecker G, Vercammen D, Declercq W, Schipper RG, Vandenabeele P (2000) A role for potassium in TNF-induced apoptosis and gene-induction in human and rodent tumour cell lines. Cytokine 12:747–750

    Article  CAS  PubMed  Google Scholar 

  159. Markund L, Bechnnan MP, Henrikson R, Grankvist K (2001) Bumentamides annihilation of amphotericin B induced apoptosis and cytotoxicity is due to its effects on cellular Ca2+ flux. J Antimicrob Chemother 48:781–786

    Article  Google Scholar 

  160. Jordan C, Puschel B, Koob R, Drenckhahn D (1995) Identification of a binding motif for ankyrin on the alpha-subunit of Na+, K+-ATPase. J Biol Chem 270:29971–29975

    Article  CAS  PubMed  Google Scholar 

  161. Rubtsov AM, Lopina OD (2000) Ankyrins. FEBS Lett 482:1–5

    Article  CAS  PubMed  Google Scholar 

  162. Mohler PJ, Schott JJ, Gramolini AO et al (2003) Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature 421:634–639

    Article  CAS  PubMed  Google Scholar 

  163. Woroniecki R, Ferdinand JR, Morrow JS, Devarajan P (2003) Dissociation of spectrin-ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia. Am J Physiol 284:F358–F364

    CAS  Google Scholar 

  164. Yoshida K (2000) Myocardial ischemia-reperfusion injury and proteolyisis of fodrin, ankyrin, and calpastatin. Methods Mol Biol 144:267–275

    CAS  PubMed  Google Scholar 

  165. Inserte J, Garcia-Dorado D, Ruiz-Meana M et al (2004) Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res 64:105–114

    Article  CAS  PubMed  Google Scholar 

  166. Schafer C, Ladilov Y, Inserte J et al (2001) Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovasc Res 51:241–250

    Article  CAS  PubMed  Google Scholar 

  167. Imahashi K, Kusuoka H, Hashimoto K et al (1999) Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 84:1401–1406

    Article  CAS  PubMed  Google Scholar 

  168. Koksoy AA, Abramowitz J, Allen JC (2001) Ouabain induced signalling and vascular smooth muscle cell proliferation. J Biol Chem 276:46605–46611

    Article  CAS  Google Scholar 

  169. Lombart A, Frelin C, Renaud JF, Lazdunski M (1982) Na+ channels with binding sites of high and low affinity for tetrodotoxin in different excitable and nonexcitable cells. Eur J Biochem 124:199–203

    Article  Google Scholar 

  170. Animova O, Tremblay J, Hamet P et al (2006) The Na+/K+ sensor: role in cardiovascular disease pathogenesis and augmented production of endogeneous cardiotonic steroids. Pathophysiology 13:209–216

    Article  CAS  Google Scholar 

  171. Liu B, Jie L, Liu J et al (2006) Involvement of Na+/K+-ATPase in hydrogen peroxide induced hypertrophy in cardiac myocytes. Free Radic Biol Med 4:1548–1556

    Article  CAS  Google Scholar 

  172. Kassardjian A, Dakroub Z, Zein DE, Kreydiyych SJ (2010) Signaling pathway underlying the upregulatory effect of TNF-α on the Na+/K+-ATPase in Hep G2 cells. Cytokine 49:312–318

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

Financial assistance from the Council of Scientific and Industrial Research, New Delhi, and the DST-Purse Programme of the University of Kalyani is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajal Chakraborti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chakraborti, S. et al. (2016). Na+/K+-ATPase: A Perspective. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_1

Download citation

Publish with us

Policies and ethics