Skip to main content
Log in

Thyroid hormone regulation of Na,K-ATPase subunit-mRNA expression in neonatal rat myocardium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Regulation of Na,K-ATPase mRNAα isoform and mRNAβ expression by thyroid hormone (T3) in neonatal rat myocardium was examined. In euthyroid neonates between ages of 2 and 5 days, mRNAα1, mRNAα3, and mRNAβ1 abundances were nearly constant while mRNAα2 was undetectable. During the interval between postnatal days 5 and 15, mRNAα3 decreased to negligible levels and mRNAα2 became expressed and increased in abundance to account for ∼20% of the mRNAα pool by the 15th postnatal day. To examine the effect of T3 on this developmental program, neonates were injected with 75 μg T3/100 g body weight or diluent alone on the second and third postnatal days and myocardial Na,K-ATPase subunit-mRNA abundances were determined on the third and fourth postnatal days. Because T3 treatment increased the RNA/DNA ratios of myocardial tissue, the subunit-mRNA abundances were normalized per unit DNA. Following 24 and 48 hr of T3 treatment, the abundances of mRNAα1, mRNAα3, and mRNAβ1 increased, while mRNAα2 continued to remain undetectable during the 2-day interval between the second to fourth postnatal days. It is concluded that T3 augments the abundance of Na,K-ATPase subunit mRNAs that are already being expressed in the neonatal rat myocardium. The results further suggest that T3 does not act as a “molecular switch” in the developmental expression of the mRNAα isoforms in rat myocardium during the first four postnatal days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Charlemagne, D., Mayoux, E., Poyard, M., Oliviero, P., Geering, K. 1987. Identification of two isoforms of the catalytic subunit of Na,K-ATPase in myocytes isolated from adult rat heart.J. Biol. Chem. 262:8941–8943

    Google Scholar 

  2. Chaudhury, S., Ismail-Beigi, F., Gick, G.G., Levenson, R., Edelman, I.S. 1987. Effect of thyroid hormone on the abundance of Na,K-adenosine triphosphatase α-subunit messenger ribonucleic acid.Mol. Endocrinol. 1:83–89

    Google Scholar 

  3. Chirgwin, J.M., Przbyla, A.E., MacDonald, R.J., Rutter, W.J. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.Biochemistry 18:5294–5299

    Google Scholar 

  4. Curfman, G.D., Crowley, T.J., Smith, T.W. 1977. Thyroid induced alterations in myocardial sodium-and potassium-activated adenosine triphosphatase, monovalent cation active transport, and cardiac glycoside binding.J. Clin. Invest. 59:586–590

    Google Scholar 

  5. Drugge, E.D., Rosen, M.R., Robinson, R.B. 1985. Neuronal regulation of the development of the α-adrenergic chronotropic response in the rat heart.Circ. Res. 57:415–423

    Google Scholar 

  6. Dubois, J.D., Dussault, J.H. 1977. Ontogenesis of thyroid function in the neonatal rat. Thyroxine (T4) and triiodothyronine (T3) production rates.Endocrinology 101:435441

    Google Scholar 

  7. Dussault, J.H., Labrie, F. 1975. Development of hypothalamic-pituitary-thyroid axis in the neonatal rat.Endocrinology 97:1321–1324

    Google Scholar 

  8. Emanuel, J.R., Garetz, S., Stone, L., Levenson, R. 1987. Differential expression of Na,K-ATPase α and β subunit mRNA's in rat tissues and cell lines.Proc. Natl. Acad. Sci. USA 84:9030–9034

    Google Scholar 

  9. Gick, G.G., Ismail-Beigi, F. 1990. Thyroid hormone induction of Na,K-ATPase and its mRNAs in a rat liver cell line.Am. J. Physiol. 258:C544-C551

    Google Scholar 

  10. Gick, G.G., Ismail-Beigi, F., Edelman, I.S. 1988. Thyroidal regulation of rat renal and hepatic Na,K-ATPase gene expression.J. Biol. Chem. 263:16610–16618

    Google Scholar 

  11. Gick, G.G., Melikian, J., Ismail-Beigi, F. 1990. Thyroidal enhancement of rat myocardial Na,K-ATPase: Preferential expression of α2 activity and mRNA abundance.J. Membrane Biol. 115:273–282

    Google Scholar 

  12. Gustafson, T.A., Bahl, J.J., Markham, B.E., Roeske, W.R., Morkin, E. 1987. Hormonal regulation of myosin heavy chain and α-actin gene expression in cultured fetal rat heart myocytes.J. Biol. Chem. 262:13316–13322

    Google Scholar 

  13. Gustafson, T.A., Markham, B.E., Bahl, J.J., Morkin, E. 1987. Thyroid hormone regulates expression of a transfected α-myosin heavy chain fusion gene in fetal heart cells.Proc. Natl. Acad. Sci. USA 84:3122–3126

    Google Scholar 

  14. Haber, R.S., Loeb, J.N. 1988. Selective induction of high ouabain-affinity isoform of Na+−K+-ATPase by thyroid hormone.Am. J. Physiol. 255:E912-E919

    Google Scholar 

  15. Hara, Y., Nikamato, A., Kojima, T., Matsumoto, A., Nakao, M. 1988. Expression of sodium pump activities in BALB/c 3T3 cells transfected with cDNA encoding the α3-subunits of rat brain Na+, K+-ATPase.FEBS Lett. 238:27–30

    Google Scholar 

  16. Hubert, J.J., Schenk, D.B., Skelly, H., Leffert, H.L. 1986. Rat hepatic (Na+,K+)-ATPase α-subunit isolation by immunoaffinity chromatography and structural analysis by peptide mapping.Biochemistry 25:4156–4163

    Google Scholar 

  17. Ismail-Beigi, F., Edelman, I.S. 1971. The mechanism of the calorigenic action of thyroid hormone.J. Gen. Physiol. 57:710–722

    Google Scholar 

  18. Ismail-Beigi, F., Edelman, I.S., Gick, G.G. 1988. Greater induction of Na,K-ATPase alpha-2versus alpha-1 mRNA abundance by thyroid hormone in rat skeletal muscle and ventricular myocardium.Clin. Res.,36:542 (Abstr.)

    Google Scholar 

  19. Izumo, S., Mahdavi, V. 1988. Thyroid hormone receptor α isoforms generated by alternative splicing differentially activate myosin HC gene transcription.Nature (London) 334:539–542

    Google Scholar 

  20. Izumo, S., Nadal-Ginard, B., Mahdavi, V. 1986. All members of the myosin heavy chain multi-gene family respond to thyroid hormone in a highly tissue specific manner.Science 231:597–600

    Google Scholar 

  21. Jorgensen, P.L. 1982. Mechanism of the Na+,K+ pump. Protein structure and conformations of the pure (Na++K+)-ATPase.Biochim. Biophys. Acta 694:27–68

    Google Scholar 

  22. Lin, M.H., Akera, T. 1978. Increased (Na++K+)-ATPase concentrations in various tissues of rats caused by thyroid hormone treatment.J. Biol. Chem. 253:723–726

    Google Scholar 

  23. Lo, C.-S., Edelman, I.S. 1976. The effect of triiodothyronine on the synthesis and degradation of renal cortical (Na++K+)-adenosine triphosphatase.J. Biol. Chem. 251:7834–7840

    Google Scholar 

  24. Lo, C.-S., Lo, T.N. 1980. Effect of triiodothyronine on the synthesis and degradation of the small subunit of renal cortical (Na++K+)-adenosine triphosphatase.J. Biol. Chem. 225:2131–2136

    Google Scholar 

  25. Lytton, J., Lin, J.C., Guidotti, G. 1985. Identification of two molecular forms of (Na+,K+)-ATPase in rat adipocytes.J. Biol. Chem. 260:1177–1184

    Google Scholar 

  26. Martin-Vasallo, P., Dackowski, W., Emanuel, J.R., Levenson, R. 1989. Identification of a putative isoform of the Na,K-ATPase β subunit. Primary structure and tissue-specific expression.J. Biol. Chem. 264:4613–4618

    Google Scholar 

  27. McDonough, A.A., Brown, T.A., Horowitz, B., Chiu, R., Schlotterbeck, J., Bowen, J., Schmitt, C.A. 1988. Thyroid hormone coordinately regulates Na+−K+-ATPase α- and β-subunit mRNA levels in the kidney.Am. J. Physiol. 254:C323-C329

    Google Scholar 

  28. Oppenheimer, H.H. 1983. The nuclear receptor-triiodothyronine complex: Relationship to thyroid hormone distribution, metabolism, and biological action.In: Molecular Basis of Thyroid Hormone Action. J.H. Oppenheimer and H.H. Samuels, editors. pp. 1–34. Academic, New York

    Google Scholar 

  29. Orlowski, J., Lingrel, J.B. 1988. Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic α isoform and β subunit mRNAs.J. Biol. Chem. 263:10436–10442

    Google Scholar 

  30. Orlowski, J., Lingrel, J.B. 1990. Thyroid and glucocorticoid hormone regulate the expression of multiple Na,K-ATPase gene in cultured neonatal rat cardiac myocyte.J. Biol. Chem. 265:3462–3470

    Google Scholar 

  31. Pappano, A.J. 1977. Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts.Pharmacol. Rev. 29:3–33

    Google Scholar 

  32. Philipson, K.D., Edelman, I.S. 1977. Thyroid hormone control of Na++K+-ATPase and K+-dependent phosphatase.Am. J. Physiol. 232:C196-C201

    Google Scholar 

  33. Russell, S.D., Cambon, N., Nadal-Ginard, B., Whalen, R.G. 1988. Thyroid hormone induces a nerve-independent precocious expression of fast myosin heavy chain mRNA in rat hindlimb skeletal muscle.J. Biol. Chem. 263:6370–6374

    Google Scholar 

  34. Schneider, J.W., Mercer, R.W., Gilmore-Herbert, M., Utset, M.F., Lai, C., Greene, A., Benz, E.D., Jr. 1988. Tissue specificity, localization in brain, and cell-free translation of mRNA encoding the A3 isoform of Na+,K+-ATPase.Proc. Natl. Acad. Sci. USA 85:284–288

    Google Scholar 

  35. Shull, G.E., Greeb, J., Lingrel, J.B. 1986. Molecular cloning of three distinct forms of the Na+,K+-ATPase α-subunit form from brain.Biochemistry 25:8125–8132

    Google Scholar 

  36. Shull, G.E., Lane, L.K., Lingrel, J.B. 1986. Amino-acid sequence of the β subunit of the (Na++K+)ATPase deduced from a cDNA.Nature (London) 321:429–431

    Google Scholar 

  37. Shull, M.M., Pugh, D.G., Lingrel, J. 1989. Characterization of the human Na,K-ATPase α2 gene and identification of intragenic restriction fragment length polymorphism.J. Biol. Chem. 264:17535–17543

    Google Scholar 

  38. Shyjan, A.W., Gottardi, C., Levenson, R. 1990. The Na,K-ATPase β2 subunit is expressed in rat brain and copurifies with Na,K-ATPase activity.J. Biol. Chem. 265:5166–5169

    Google Scholar 

  39. Snedecor, G.W., Cochran, W.G. 1976. Statistical Methods. Iowa University Press. Ames (IA)

    Google Scholar 

  40. Sweadner, K.J. 1979. Two molecular forms of (Na++K+)-stimulated ATPase in brain.J. Biol. Chem. 254:6060–6067

    Google Scholar 

  41. Sweadner, K.J., Farshi, S.K. 1987. Rat cardiac ventricle has two Na+,K+-ATPases with different affinities for ouabain: Developmental changes in immunologically different catalytic subunits.Proc. Natl. Acad. Sci. USA 84:8404–8407

    Google Scholar 

  42. Thomas, P.S. 1980. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose.Proc. Natl. Acad. Sci. USA 77:5201–5205

    Google Scholar 

  43. Urayama, O., Shutt, H., Sweadner, K.J. 1989. Identification of three isozyme proteins of the catalytic subunit of the Na,K-ATPase in rat brain.J. Biol. Chem. 264:8271–8280

    Google Scholar 

  44. Urayama, O., Sweadner, K.J. 1988. Ouabain sensitivity of alpha 3 isozyme of rat Na,K-ATPase.Biochem. Biophys. Res. Commun. 156:796–800

    Google Scholar 

  45. Young, R.A., Meyers, B., Alex, S., Fang, S., Braverman, L.E. 1988. Thyroxine binding to serum thyronine-binding globulin in thyroidectomized adult and normal neonatal rats.Endocrinology 122:2318–2323

    Google Scholar 

  46. Young, R.M., Lingrel, J.B. 1987. Tissue distribution of mRNAs encoding the alpha isoforms and beta subunit of rat Na+,K+ ATPase.Biochem. Biophys. Res. Commun. 145:52–58

    Google Scholar 

  47. Yuh, Y.-S., Thompson, E.B. 1989. Glucocorticoid effect on oncogene/growth gene expression in human T lymphoblastic leukemic cell line CCRF-CEM. Specific c-myc mRNA suppression by dexamethasone.J. Biol. Chem. 264:10904–10910

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melikian, J., Ismail-Beigi, F. Thyroid hormone regulation of Na,K-ATPase subunit-mRNA expression in neonatal rat myocardium. J. Membrain Biol. 119, 171–177 (1991). https://doi.org/10.1007/BF01871416

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871416

Key Words

Navigation