Skip to main content

Dispositivi e protocolli per la riduzione della dose in tomografia computerizzata

  • Chapter
La dose al paziente in diagnostica per immagini

Part of the book series: Imaging & Formazione ((IMAG))

  • 731 Accesses

Riassunto

L’utilizzo della tomografia computerizzata ha registrato negli ultimi anni un forte incremento, motivato dalla sua grande capacità di fornire una diagnosi rapida e accurata in un numero sempre più elevato di patologie, sostituendo altre tecniche diagnostiche in numerose indagini cliniche [1, 2]. Tale situazione ha determinato un progressivo e sostanziale aumento del numero de gli esami eseguiti (con un incremento annuo di oltre il 10%), portando la tomografia computerizzata a rappresentare la principale fonte di radiazioni per il paziente che si sottopone a procedure di diagnostica per immagini, con esami che possono erogare livelli di radiazioni tutt’altro che trascurabili [3, 4]. Recentemente, sia nella comunità scientifica che tra i mezzi di comunicazione di massa è cresciuta una particolare preoccupazione per i possibili danni provocati ai pazienti proprio in conseguenza del crescente ricorso alla TC, spingendo gli operatori sanitari verso una maggiore attenzione e consape- volezza nella valutazione dei rischi connessi, spesso sottostimati se non addirittura misconosciuti [5, 6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. Gottlieb RH, La TC, Erturk EN et al (2002) CT in detecting urinary tract calculi: influence on patient imaging and clinical outcomes. Radiology 225:441–449

    Article  PubMed  Google Scholar 

  2. Ost D, Khanna D, Shah R et al (2004) Impact of spiral computed tomography on the diagnosis of pulmonary embolism in a community hospital setting. Respiration 71:450–457

    Article  PubMed  Google Scholar 

  3. Lauer MS (2009) Elements of danger — The case of medical imaging. New Eng J Med 361:841–843

    Article  PubMed  CAS  Google Scholar 

  4. Mettler FA, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine. Radiology 248:254–263

    Article  PubMed  Google Scholar 

  5. Smith-Bindman R (2010) Is computed tomography safe? New Eng J Med 363:1–4

    Article  PubMed  CAS  Google Scholar 

  6. Berrington de Gonzalez A, Mahesh M, Kim KP et al (2009) Projected cancer risks from computed tomographyc scans performed in the United States in 2007. Arch Intern Med 22:2071–2077

    Article  Google Scholar 

  7. Gunn MLD, Kohr JR (2010) State of the art: technologies for computed radiography dose reduction. Emerg Radiol 17:209–218

    Article  PubMed  Google Scholar 

  8. Dougeni E, Faulkner K, Panayiotakis G (2012) A review of patient dose and optimization methods in adult and pediatric CT scanning. Eur J Radiol 81:e685–683

    Article  Google Scholar 

  9. Kalender WA, Buchenau S, Deak P et al (2008) Technical approaches to the optimization of CT. Phys Med 24:71–79

    Article  PubMed  Google Scholar 

  10. Furlow B (2010) Radiation dose in computed tomography. Radiol Technol 81: 437–450

    PubMed  Google Scholar 

  11. Lee TY, Chhem RK (2010) Impact of new technologies on dose reduction in CT. Eur J Radiol 76:28–35

    Article  PubMed  Google Scholar 

  12. McCollough CH, Bruesewitz MR, Kofler JM (2006) CT dose reduction and management tools: overview of available options. Radiographics 26: 503–512

    Article  PubMed  Google Scholar 

  13. Habibzadeh MA, Ay MR, Asl AR et al (2011) Impact of miscentering on patient dose and image noise in x-ray CT imaging: phantom and clinical studies. Phys Meddoi 10.1016/j.ejmp. 2011.06.002

    Google Scholar 

  14. Toth TL, Ge Z, Daly MP (2007) The influence on patient centering on CT dose and image noise. Med Phys 34:3093–3191

    Article  PubMed  Google Scholar 

  15. Kalender WA (2006) Computed tomography: fundamentals, systems technology, image quality, Applications. Ed Publics MCD, Munich

    Google Scholar 

  16. Van der Molen AJ Geleijns J 2007 Overranging in multisection CT Quantification and relative contribuition to dose — Comparison of four 16-Section CT Scanners. Radiology 242208–216

    Article  PubMed  Google Scholar 

  17. Mazonakis M, Tzedakis A, Damilakis J, Gourtsoyiannis N (2007) Thyroid dose from common head and neck CT examinations in children: is there an excess risk for thyroid cancer induction? Eur Radiol 17:1352–1357

    Article  PubMed  Google Scholar 

  18. Christner JA, Zavaletta VA, Eusemann CD et al (2010) Dose reduction in helical CT: dynamically adjustable z-axis X-ray beam collimation. Am J Roentgenol 194:W49–55

    Article  Google Scholar 

  19. Groat G, Huda W, Lavallee R, Ogden K (2006) Do lead aprons reduce patient CT doses? Med Phys 33:2004–2006

    Article  Google Scholar 

  20. Kennedy EV, Iball GR, Brettle DS (2007) Investigation into the effects of lead shielding for fetal dose reduction in CT pulmonary angiography. Br J Radiol 80:631–638

    Article  PubMed  CAS  Google Scholar 

  21. McLaughlin DJ, Mooney RB (2004) Dose reduction to radiosensitive tissue in CT. Do commercially available shields meet the users’ needs? Clin Radiol 59:446–450

    Article  PubMed  CAS  Google Scholar 

  22. Hurwitz LM, Yoshizumi TT, Goodman PC et al (2009) Radiation dose savings for adult pulmonary embolus 64-MDCT using bismuth breast shields, lower peak kilovoltage, and automatic tube current modulation. AJR 192:244–253

    Article  PubMed  Google Scholar 

  23. Vollmar SV, Kalender WA (2008) Reduction of dose to the female breast in thoracic CT: a comparison of standard-protocol, bismuth shielded, partial and tube-current-modulated CT examinations. Eur Radiol 18:1674–1682

    Article  PubMed  Google Scholar 

  24. Silva AC, Lawder HJ, Hara A et al (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR 194:191–199

    Article  PubMed  Google Scholar 

  25. Sodickson A, Baeyens PF, Andriole KP et al (2009) Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology 251:175–184

    Article  PubMed  Google Scholar 

  26. NEMA XR 25 Computed tomography dose check. Association of electrical and medical imaging equipment manufacturers. http://www.nema.org/stds/xr25.cfm. Ultimo accesso 7 aprile 2012

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Italia

About this chapter

Cite this chapter

Paolicchi, F., Negri, J., Faggioni, L. (2012). Dispositivi e protocolli per la riduzione della dose in tomografia computerizzata. In: Caramella, D., Paolicchi, F., Faggioni, L. (eds) La dose al paziente in diagnostica per immagini. Imaging & Formazione. Springer, Milano. https://doi.org/10.1007/978-88-470-2649-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2649-0_5

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-2648-3

  • Online ISBN: 978-88-470-2649-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics