Skip to main content

Cell Culture Methods

  • Chapter
  • First Online:
Bio-orthopaedics

Abstract

The restoration of osteochondral defects presents great challenges that have not been fully solved by the current therapies. Therefore, this field continues to expand, bridging the gap between palliative care and defects reconstruction. In the last few years, tissue engineering and regenerative medicine have been offering advanced strategies and some of which have successfully reached clinical application and the market. Beyond the origin and source of cells, the development of culture conditions remains an important step to further clinical applications. Several approaches have been focused on good manufacturing practice (GMP) conditions. The aim is the creation of advanced therapy medicinal products (ATMPs). The up-to-date state of the culture protocols for osteochondral tissue engineering with respect to different cells, growth factors, and biomaterial scaffolds, as well as the strategies employed in clinical trials for the restoration and repair of osteochondral defects, will be the focus of this book chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aoyama T, Goto K, Kakinoki R, Ikeguchi R, Ueda M, Kasai Y, et al. An exploratory clinical trial for idiopathic osteonecrosis of femoral head by cultured autologous multipotent mesenchymal stromal cells augmented with vascularized bone grafts. Tissue Eng Part B Rev. 2014;20(4):233–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao D, Liu B, Wang B, Yang L, Xie H, Huang S, et al. Autologous bone marrow mesenchymal stem cells associated with tantalum rod implantation and vascularized iliac grafting for the treatment of end-stage osteonecrosis of the femoral head. Biomed Res Int. 2015;2015:9.

    Google Scholar 

  3. Hernigou P, Pariat J, Queinnec S, Homma Y, Flouzat Lachaniette CH, Chevallier N, et al. Supercharging irradiated allografts with mesenchymal stem cells improves acetabular bone grafting in revision arthroplasty. Int Orthop. 2014;38(9):1913–21.

    Article  PubMed  Google Scholar 

  4. Kuroda R, Matsumoto T, Niikura T, Kawakami Y, Fukui T, Lee SY, et al. Local transplantation of granulocyte colony stimulating factor-mobilized CD34+ cells for patients with femoral and tibial nonunion: pilot clinical trial. Stem Cells Transl Med. 2014;3(1):128–34.

    Article  CAS  PubMed  Google Scholar 

  5. Saris D, Price A, Widuchowski W, Bertrand-Marchand M, Caron J, Drogset JO, et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med. 2014;42(6):1384–94.

    Article  PubMed  Google Scholar 

  6. Macmull S, Jaiswal PK, Bentley G, Skinner JA, Carrington RW, Briggs TW. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. Int Orthop. 2012;36(7):1371–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meyerkort D, Ebert JR, Ackland TR, Robertson WB, Fallon M, Zheng MH, et al. Matrix-induced autologous chondrocyte implantation (MACI) for chondral defects in the patellofemoral joint. Knee Surg Sports Traumatol Arthrosc. 2014;22(10):2522–30.

    Article  PubMed  Google Scholar 

  8. Dhollander AA, Verdonk PC, Lambrecht S, Verdonk R, Elewaut D, Verbruggen G, et al. Short-term outcome of the second generation characterized chondrocyte implantation for the treatment of cartilage lesions in the knee. Knee Surg Sports Traumatol Arthrosc. 2012;20(6):1118–27.

    Article  CAS  PubMed  Google Scholar 

  9. Cadossi M, Buda RE, Ramponi L, Sambri A, Natali S, Giannini S. Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study. Foot Ankle Int. 2014;35(10):981–7.

    Article  PubMed  Google Scholar 

  10. Filardo G, Kon E, Andriolo L, Vannini F, Buda R, Ferruzzi A, et al. Does patient sex influence cartilage surgery outcome? Analysis of results at 5-year follow-up in a large cohort of patients treated with Matrix-assisted autologous chondrocyte transplantation. Am J Sports Med. 2013;41(8):1827–34.

    Article  PubMed  Google Scholar 

  11. Vangsness Jr CT, Farr 2nd J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96(2):90–8.

    Article  PubMed  Google Scholar 

  12. Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy. 2016;32(1):97–109.

    Article  PubMed  Google Scholar 

  13. Liebergall M, Schroeder J, Mosheiff R, Gazit Z, Yoram Z, Rasooly L, et al. Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther. 2013;21(8):1631–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yano K, Watanabe N, Tsuyuki K, Ikawa T, Kasanuki H, Yamato M. Regulatory approval for autologous human cells and tissue products in the United States, the European Union, and Japan. Regen Ther. 2015;1:45–56.

    Article  Google Scholar 

  15. Bode G, Schmal H, Pestka JM, Ogon P, Sudkamp NP, Niemeyer P. A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5 degrees. Arch Orthop Trauma Surg. 2013;133(1):43–9.

    Article  PubMed  Google Scholar 

  16. Akgun I, Unlu MC, Erdal OA, Ogut T, Erturk M, Ovali E, et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg. 2015;135(2):251–63.

    Article  PubMed  Google Scholar 

  17. Sekiya I, Muneta T, Horie M, Koga H. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015;473(7):2316–26.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fernandez-Moure JS, Corradetti B, Chan P, Van Eps JL, Janecek T, Rameshwar P, et al. Enhanced osteogenic potential of mesenchymal stem cells from cortical bone: a comparative analysis. Stem Cell Res Ther. 2015;6:203.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Somoza RA, Welter JF, Correa D, Caplan AI. Chondrogenic differentiation of mesenchymal stem cells: challenges and unfulfilled expectations. Tissue Eng Part B Rev. 2014;20(6):596–608.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Liao HT, Chen CT. Osteogenic potential: comparison between bone marrow and adipose-derived mesenchymal stem cells. World J Stem Cells. 2014;6(3):288–95.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li Y, Tang J, Hu Y, Peng YH, Wang JW. A study of autologous stem cells therapy assisted regeneration of cartilage in avascular bone necrosis. Eur Rev Med Pharmacol Sci. 2015;19(20):3833–7.

    CAS  PubMed  Google Scholar 

  22. Tabatabaee RM, Saberi S, Parvizi J, Mortazavi SM, Farzan M. Combining concentrated autologous bone marrow stem cells injection with core decompression improves outcome for patients with early-stage osteonecrosis of the femoral head: a comparative study. J Arthroplasty. 2015;30(9 Suppl):11–5.

    Article  PubMed  Google Scholar 

  23. Perdisa F, Gostynska N, Roffi A, Filardo G, Marcacci M, Kon E. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells Int. 2015;2015:597652.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pers YM, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5(7):847–56.

    Article  PubMed  Google Scholar 

  25. Freitag J, Ford J, Bates D, Boyd R, Hahne A, Wang Y, et al. Adipose derived mesenchymal stem cell therapy in the treatment of isolated knee chondral lesions: design of a randomised controlled pilot study comparing arthroscopic microfracture versus arthroscopic microfracture combined with postoperative mesenchymal stem cell injections. BMJ Open. 2015;5(12):e009332.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wang SJ, Yin MH, Jiang D, Zhang ZZ, Qi YS, Wang HJ, et al. The chondrogenic potential of progenitor cells derived from peripheral blood: a systematic review. Stem Cells Dev. 2016;25(16):1195–207.

    Article  CAS  PubMed  Google Scholar 

  27. Xu L, Li G. Circulating mesenchymal stem cells and their clinical implications. J Orthop Trauma. 2014;2(1):1–7.

    Google Scholar 

  28. Nuti N, Corallo C, Chan BM, Ferrari M, Gerami-Naini B. Multipotent differentiation of human dental pulp stem cells: a literature review. Stem Cell Rev. 2016;12(5):511–23.

    Article  CAS  PubMed  Google Scholar 

  29. Potdar PD, Jethmalani YD. Human dental pulp stem cells: applications in future regenerative medicine. World J Stem Cells. 2015;7(5):839–51.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Al-Salahat N. Pre-SVF arthroscopy: a case report of new concept of meniscus and cartilage regeneration using arthroscopy followed by intra-articular injection of adipose-derived stromal vascular fraction. Stem Cell Biol Res. 2016;3(1):2.

    Article  Google Scholar 

  31. Prins HJ, Schulten EA, Ten Bruggenkate CM, Klein-Nulend J, Helder MN. Bone regeneration using the freshly isolated autologous stromal vascular fraction of adipose tissue in combination with calcium phosphate ceramics. Stem Cells Transl Med. 2016;5(10):1362–74.

    Article  PubMed  Google Scholar 

  32. Michalek J, Moster R, Lukac L, Proefrock K, Petrasovic M, Rybar J, et al. Autologous adipose tissue-derived stromal vascular fraction cells application in patients with osteoarthritis. Cell Transplant. 2015 (1555-3892 (Electronic)).

    Google Scholar 

  33. Fisher MC. The potential of human embryonic stem cells for articular cartilage repair and osteoarthritis treatment. Rheumatol Curr Res. 2012;s3(01).

    Google Scholar 

  34. Ha C-W, Cho JJ, Elmallah RK, Cherian JJ, Kim TW, Lee M-C, et al. A multicenter, single-blind, phase IIa clinical trial to evaluate the efficacy and safety of a cell-mediated gene therapy in degenerative knee arthritis patients. Hum Gene Ther Clin Dev. 2015;26(2):125–30.

    Article  CAS  PubMed  Google Scholar 

  35. Lee MC, Ha CW, Elmallah RK, Cherian JJ, Cho JJ, Kim TW, et al. A placebo-controlled randomised trial to assess the effect of TGF-ss1-expressing chondrocytes in patients with arthritis of the knee. Bone Joint J. 2015;97-B(7):924–32.

    Article  PubMed  Google Scholar 

  36. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: their advantages and potential clinical utility. World J Stem Cells. 2014;6(2):195–202.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arufe MC, De la Fuente A, Fuentes I, Toro FJ, Blanco FJ. Umbilical cord as a mesenchymal stem cell source for treating joint pathologies. World J Orthod. 2011;2(6):43–50.

    Article  Google Scholar 

  38. Kang R, Zhou Y, Tan S, Zhou G, Aagaard L, Xie L, et al. Mesenchymal stem cells derived from human induced pluripotent stem cells retain adequate osteogenicity and chondrogenicity but less adipogenicity. Stem Cell Res Ther. 2015;6:144.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sheyn D, Ben-David S, Shapiro G, De Mel S, Bez M, Ornelas L, et al. Human iPSCs differentiate into functional MSCs and repair bone defects. Stem Cells Transl Med. 2016;5(11):1447–60.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zuk P. Adipose-derived stem cells in tissue regeneration: a review. ISRN Stem Cells. 2013;2013:1–35.

    Article  Google Scholar 

  41. Forcales SV. Potential of adipose-derived stem cells in muscular regenerative therapies. Front Aging Neurosci. 2015;7:123.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wankhade UD, Shen M, Kolhe R, Fulzele S. Advances in adipose-derived stem cells isolation, characterization, and application in regenerative tissue engineering. Stem Cells Int. 2016;2016:3206807.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Carvalho PP, Leonor IB, Smith BJ, Dias IR, Reis RL, Gimble JM, et al. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study. J Biomed Mater Res A. 2014;102(9):3102–11.

    Article  PubMed  Google Scholar 

  44. Mihaila SM, Frias AM, Pirraco RP, Rada T, Reis RL, Gomes ME, et al. Human adipose tissue-derived SSEA-4 subpopulation multi-differentiation potential towards the endothelial and osteogenic lineages. Tissue Eng Part A. 2013;19(1–2):235–46.

    Article  CAS  PubMed  Google Scholar 

  45. Yong KW, Pingguan-Murphy B, Xu F, Abas WA, Choi JR, Omar SZ, et al. Phenotypic and functional characterization of long-term cryopreserved human adipose-derived stem cells. Sci Rep. 2015;5:9596.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rada T, Reis RL, Gomes ME. Distinct stem cells subpopulations isolated from human adipose tissue exhibit different chondrogenic and osteogenic differentiation potential. Stem Cell Rev. 2011;7(1):64–76.

    Article  CAS  PubMed  Google Scholar 

  47. Hamid AA, Idrus RBH, Saim AB, Sathappan S, Chua KH. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation. Clinics. 2012;67(2):99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Oberbauer E, Steffenhagen C, Wurzer C, Gabriel C, Redl H, Wolbank S. Enzymatic and non-enzymatic isolation systems for adipose tissue-derived cells: current state of the art. Cell Regen. 2015;4:7.

    Article  Google Scholar 

  49. Al-Saqi SH, Saliem M, Asikainen S, Quezada HC, Ekblad Å, Hovatta O, et al. Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells. Cytotherapy. 2014;16(7):915–26.

    Google Scholar 

  50. Willits K, Kaniki N, Bryant D. The use of platelet-rich plasma in orthopedic injuries. Sports Med Arthrosc Rev. 2013;21:225–30.

    Article  Google Scholar 

  51. Kobayashi E, Fluckiger L, Fujioka-Kobayashi M, Sawada K, Sculean A, Schaller B, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig. 2016;20(9):2353–60.

    Article  PubMed  Google Scholar 

  52. Xu F-T, Li H-M, Yin Q-S, Liang Z-J, Huang M-H, Chi G-Y, et al. Effect of activated autologous platelet-rich plasma on proliferation and osteogenic differentiation of human adipose-derived stem cells in vitro. Am J Transl Res. 2015;7(2):257–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Van Pham P, Bui KH-T, Ngo DQ, Vu NB, Truong NH, Lu-Chinh Phan NL-C, et al. Activated platelet-rich plasma improves adipose-derived stem cell transplantation efficiency in injured articular cartilage. Stem Cell Res Ther. 2013;4(4):91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schippinger G, Pruller F, Divjak M, Mahla E, Fankhauser F, Rackemann S, et al. Autologous platelet-rich plasma preparations: influence of nonsteroidal anti-inflammatory drugs on platelet function. Orthop J Sports Med. 2015;3(6):2325967115588896.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Atashi F, Jaconi ME, Pittet-Cuenod B, Modarressi A. Autologous platelet-rich plasma: a biological supplement to enhance adipose-derived mesenchymal stem cell expansion. Tissue Eng Part C Methods. 2015;21(3):253–62.

    Article  CAS  PubMed  Google Scholar 

  56. Kawase T. Platelet-rich plasma and its derivatives as promising bioactive materials for regenerative medicine: basic principles and concepts underlying recent advances. Odontology. 2015;103(2):126–35.

    Article  CAS  PubMed  Google Scholar 

  57. Kocaoemer A, Kern S, Kluter H, Bieback K. Human AB serum and thrombin-activated platelet-rich plasma are suitable alternatives to fetal calf serum for the expansion of mesenchymal stem cells from adipose tissue. Stem Cells. 2007;25(5):1270–8.

    Article  CAS  PubMed  Google Scholar 

  58. Dahl JA, Duggal S, Coulston N, Millar D, Melki J, Shahdadfar A, et al. Genetic and epigenetic instability of human bone marrow mesenchymal stem cells expanded in autologous serum or fetal bovine serum. Int J Dev Biol. 2008;52(8):1033–42.

    Article  CAS  PubMed  Google Scholar 

  59. Duggal S, Brinchmann JE. Importance of serum source for the in vitro replicative senescence of human bone marrow derived mesenchymal stem cells. J Cell Physiol. 2011;226(11):2908–15.

    Article  CAS  PubMed  Google Scholar 

  60. Shahdadfar A, Frønsdal K, Haug H, Reinholt FP, Brinchmanna JE. In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells. 2005;23:1357–66.

    Article  CAS  PubMed  Google Scholar 

  61. Patrikoski M, Juntunen M, Boucher S, Campbell A, Vemuri MC, Mannerström B, et al. Development of fully defined xeno-free culture system for the preparation and propagation of cell therapy-compliant human adipose stem cells. Stem Cell Res Ther. 2013;4(2):27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gottipamula S, Muttigi MS, Kolkundkar U, Seetharam RN. Serum-free media for the production of human mesenchymal stromal cells: a review. Cell Prolif. 2013;46(6):608–27.

    Article  CAS  PubMed  Google Scholar 

  63. Stromps JP, Paul NE, Rath B, Nourbakhsh M, Bernhagen J, Pallua N. Chondrogenic differentiation of human adipose-derived stem cells: a new path in articular cartilage defect management? Biomed Res Int. 2014;2014:740926.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Yang HJ, Kim KJ, Kim MK, Lee SJ, Ryu YH, Seo BF, et al. The stem cell potential and multipotency of human adipose tissue-derived stem cells vary by cell donor and are different from those of other types of stem cells. Cells Tissues Organs. 2014;199(5–6):373–83.

    PubMed  Google Scholar 

  65. da Silva MA, Oliveira JM, Reis RL. Cartilage tissue engineering and regenerative strategies. In: Oliveira JM, Reis RL, editors. Regenerative strategies for the treatment of knee joint disabilities. Cham: Springer International Publishing; 2017. p. 73–96.

    Google Scholar 

  66. Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–82.

    Article  CAS  PubMed  Google Scholar 

  67. da Silva Morais A, Correia C, Vilela CA, Gertrudes AC, Learmonth D, Oliveira JM, et al. Development & performance assessment of a new ATMP for cartilage tissue engineering. Front Bioeng Biotechnol. 2016.

    Google Scholar 

  68. Yan LP, Silva-Correia J, Correia C, Caridade SG, Fernandes EM, Sousa RA, et al. Bioactive macro/micro porous silk fibroin/nano-sized calcium phosphate scaffolds with potential for bone-tissue-engineering applications. Nanomedicine (Lond). 2013;8(3):359–78.

    Article  CAS  PubMed  Google Scholar 

  69. Yan LP, Silva-Correia J, Oliveira MB, Vilela C, Pereira H, Sousa RA, et al. Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater. 2015;12:227–41.

    Article  CAS  PubMed  Google Scholar 

  70. Yan L-P, Oliveira JM, Oliveira AL, Reis RL. Current concepts and challenges in osteochondral tissue engineering and regenerative medicine. ACS Biomater Sci Eng. 2015;1(4):183–200.

    Article  CAS  Google Scholar 

  71. Hansmann J, Groeber F, Kahlig A, Kleinhans C, Walles H. Bioreactors in tissue engineering—principles, applications and commercial constraints. Biotechnol J. 2013;8:298–307.

    Article  CAS  PubMed  Google Scholar 

  72. Carmelo JG, Fernandes-Platzgummer A, Diogo MM, da Silva CL, Cabral JMS. A xeno-free microcarrier-based stirred culture system for the scalable expansion of human mesenchymal stem/stromal cells isolated from bone marrow and adipose tissue. Biotechnol J. 2015;10(8):1235–47.

    Article  CAS  PubMed  Google Scholar 

  73. Santos FD, Andrade PZ, da Silva CL, Cabral JMS. Scaling-up ex vivo expansion of mesenchymal stem/stromal cells for cellular therapies. In: Chase LG, Vemuri MC, editors. Mesenchymal stem cell therapy. Totowa: Humana Press; 2013. p. 1–14.

    Chapter  Google Scholar 

  74. dos Santos F, Andrade PZ, Abecasis MM, Gimble JM, Chase LG, Campbell AM, et al. Toward a clinical-grade expansion of mesenchymal stem cells from human sources: a microcarrier-based culture system under xeno-free conditions. Tissue Eng Part C Methods. 2011;17(12):1201–10.

    Article  CAS  PubMed Central  Google Scholar 

  75. dos Santos F, Campbell A, Fernandes-Platzgummer A, Andrade PZ, Gimble JM, Wen Y, et al. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells. Biotechnol Bioeng. 2014;111(6):1116–27.

    Article  CAS  PubMed  Google Scholar 

  76. Bernhard JC, Vunjak-Novakovic G. Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? Stem Cell Res Ther. 2016;7(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nigel M, Sandip H, Wasim SK. The role of bioreactors in cartilage tissue engineering. Curr Stem Cell Res Ther. 2012;7(4):287–92.

    Article  Google Scholar 

  78. Oragui E, Nannaparaju M, Khan WS. The role of bioreactors in tissue engineering for musculoskeletal applications. Open Orthop J. 2011;5:267–70.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Chen J, Yuan Z, Liu Y, Zheng R, Dai Y, Tao R, et al. Improvement of in vitro three-dimensional cartilage regeneration by a novel hydrostatic pressure bioreactor. Stem Cells Transl Med. 2016.

    Google Scholar 

  80. Yeatts AB, Fisher JP. Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone. 2011;48(2):171–81.

    Article  CAS  PubMed  Google Scholar 

  81. Rauh J, Milan F, Günther K-P, Stiehler M. Bioreactor systems for bone tissue engineering. Tissue Eng Part B Rev. 2011;17(4):263–80.

    Article  CAS  PubMed  Google Scholar 

  82. Sladkova M, de Peppo G. Bioreactor systems for human bone tissue engineering. Processes. 2014;2(2):494–525.

    Article  Google Scholar 

  83. Marijanovic I, Antunovic M, Matic I, Panek M, Ivkovic A. Bioreactor-based bone tissue engineering. Advanced techniques in bone regeneration. Rijeka: InTech; 2016.

    Google Scholar 

  84. Weel H, Mallee WH, van Dijk CN, Blankevoort L, Goedegebuure S, Goslings JC, et al. The effect of concentrated bone marrow aspirate in operative treatment of fifth metatarsal stress fractures; a double-blind randomized controlled trial. BMC Musculoskelet Disord. 2015;16:211.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Sen RK, Tripathy SK, Aggarwal S, Marwaha N, Sharma RR, Khandelwal N. Early results of core decompression and autologous bone marrow mononuclear cells instillation in femoral head osteonecrosis: a randomized control study. J Arthroplasty. 2012;27(5):679–86.

    Article  PubMed  Google Scholar 

  86. Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29(12):2020–8.

    Article  PubMed  Google Scholar 

  87. Mao Q, Jin H, Liao F, Xiao L, Chen D, Tong P. The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: a five year follow-up study. Bone. 2013;57(2):509–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pettine KA, Murphy MB, Suzuki RK, Sand TT. Percutaneous injection of autologous bone marrow concentrate cells significantly reduces lumbar discogenic pain through 12 months. Stem Cells. 2015;33(1):146–56.

    Article  CAS  PubMed  Google Scholar 

  89. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  90. Silva A, Sampaio R, Fernandes R, Pinto E. Is there a role for adult non-cultivated bone marrow stem cells in ACL reconstruction? Knee Surg Sports Traumatol Arthrosc. 2014;22(1):66–71.

    Article  PubMed  Google Scholar 

  91. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–66.

    Article  CAS  PubMed  Google Scholar 

  92. Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19(6):902–7.

    Article  PubMed  Google Scholar 

  93. Lim HC, Bae JH, Song SH, Park YE, Kim SJ. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res. 2012;470(8):2261–7.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Mochida J, Sakai D, Nakamura Y, Watanabe T, Yamamoto Y, Kato S. Intervertebral disc repair with activated nucleus pulposus cell transplantation: a three-year, prospective clinical study of its safety. Eur Cell Mater. 2015;29:202–12; discussion 12.

    Google Scholar 

  95. Ha CW, Noh MJ, Choi KB, Lee KH. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy. 2012;14(2):247–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cherian JJ, Parvizi J, Bramlet D, Lee KH, Romness DW, Mont MA. Preliminary results of a phase II randomized study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-beta1 in patients with grade 3 chronic degenerative joint disease of the knee. Osteoarthritis Cartilage. 2015;23(12):2109–18.

    Article  CAS  PubMed  Google Scholar 

  97. Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-beta1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther. 2015;15(3):455–64.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alain da Silva Morais or F. Raquel Maia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

da Silva Morais, A., Maia, F.R., Reis, R.L., Oliveira, J.M. (2017). Cell Culture Methods. In: Gobbi, A., Espregueira-Mendes, J., Lane, J., Karahan, M. (eds) Bio-orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54181-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54181-4_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54180-7

  • Online ISBN: 978-3-662-54181-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics