Skip to main content

Chromosomal and Genetic Aberrations in Transgenic Soybean

  • Chapter
Testing for Genetic Manipulation in Plants

Part of the book series: Molecular Methods of Plant Analysis ((MOLMETHPLANT,volume 22))

  • 334 Accesses

Abstract

The soybean [Glycine max (L.) Merr.] is an economically important leguminous crop for oil, feed, and soy food products. It contains about 40% protein and 20% oil in the seed. In the international trade markets, soybean is ranked number one in oil production (48%) among major oil seed crops (Singh and Hymowitz 1999). Despite its economic importance, the genetic base of soybean public cultivars is narrow (Delannay et al. 1983; Gizlice et al. 1993, 1994, 1996; Salado-Navarro et al. 1993; Sneller 1994; Cui et al. 2000). Soybean breeders have not yet exploited the wealth of genetic diversity from exotic germplasm, such as the soybean’s ancestor G. soja Sieb. and Zucc. or 18 wild perennial species of the subgenus Glycine Willd. Induced-mutation breeding in soybeans has been used to improve oil quality, tolerance for sulfonylurea herbicides, nitrate-tolerant symbiotic mutants, and to break the linkage between two closely linked genes (Singh and Hymowitz 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AragĂŁo FJL, Barros LMG, Brasileiro ACM, Ribeiro SG, Smith FD, Sanford JC, Faria JC, Rech EL (1996) Inheritance of foreign genes in transgenic bean (Phaseolus vulgaris L.). Co-transformed via particle bombardment. Theor Appl Genet 93: 142–150

    Article  Google Scholar 

  • AragĂŁo FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max ( L.) Merril] plants at a high frequency. Theor Appl Genet 101: 1–6

    Article  Google Scholar 

  • Armstrong CL (1999) The first decade of maize transformation: a review and future perspective. Maydica 44: 101–109

    Google Scholar 

  • Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85: 381–393

    Article  CAS  Google Scholar 

  • Bailey MA, Boerma HR, Parrott WA (1993) Genotype–specific optimization of plant regeneration from somatic embryos of soybean. Plant Sci 93: 117–120

    Article  CAS  Google Scholar 

  • Barwale UB, Meyer MM Jr, Widholm JM (1986) Screening of Glycine max and Glycine soja genotypes for multiple shoot formation at the cotyledonary node. Theor Appl Genet 72: 423–428

    Article  CAS  Google Scholar 

  • Brandie JE, McHugh SG, James L, LabbĂ© H, Miki BL (1995) Instability of transgene expression in field grown tobacco carrying the csr1–1 gene for sulfonylurea herbicide resistance. Bio/Technology 13: 994–998

    Article  Google Scholar 

  • Casas AM, Kononowicz AK, Bressan RA, Hasegawa PM (1995) Cereal transformation through particle bombardment. Plant Breed Rev 13: 235–264

    PubMed  CAS  Google Scholar 

  • Choi HW, Lemaux PG, Cho MJ (2000) Increased chromosomal variation in transgenic versus nontransgenic barley (Hordeum vulgare L.) plants. Crop Sci 40: 524–533

    Article  Google Scholar 

  • Christey MC, Sinclair BK (1992) Regeneration of transgenic kale (Brassica oleracea var. acephala), rape (B. napus) and turnip (B. campestris var. rapifera) plants via Agrobacterium rhizogenes mediated transformation. Plant Sci 87: 161–169

    Article  CAS  Google Scholar 

  • Christianson ML, Warnick DA, Carlson PS (1983) A morphogenetically competent soybean suspension culture. Science 222: 632–634

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1994) The biotechnology of crop legumes. Euphytica 74: 165–185

    Article  Google Scholar 

  • Christou P (1997) Biotechnology applied to grain legumes. Field Crops Res 53: 83–97

    Article  Google Scholar 

  • Chupeau M, Bellini C, Guerche P, Maisonneuve B, Vastra G, Chupeau Y (1989) Transgenic plants of lettuce (Lactuca sativa) obtained through electroporation of protoplasts. Bio/Technology 7: 503–508

    Article  Google Scholar 

  • Clemente TE, LaVallee BJ, Howe AR, Conner-Ward D, Rozman RJ, Hunter PE, Broyles DL, Kasten DS, Hinchee MA (2000) Progeny analysis of glyphosate selected transgenic soybeans derived from Agrobacterium-mediated transformation. Crop Sci 40: 797–803

    Article  CAS  Google Scholar 

  • Conner AJ, Williams MK, Abernethy DJ, Fletcher PJ, Genet RA (1994) Field performance of trans-genic potatoes. N Z J Crop Hortic Sci 22: 361–371

    Article  Google Scholar 

  • Cui Z, Carter TE Jr, Burton JW (2000) Genetic base of 651 Chinese soybean cultivars released during 1923 to 1995. Crop Sci 40: 1470–1481

    Article  Google Scholar 

  • D’Amato F (1995) Aneusomaty in vivo and in vitro in higher plants. Caryologia 48: 85–103

    Google Scholar 

  • Delannay X, Rodgers DM, Palmer RG (1983) Relative genetic contributions among ancestral lines to North American soybean cultivars. Crop Sci 23: 944–949

    Article  Google Scholar 

  • Dunwell JM (2000) Transgenic approaches to crop improvement. J Exp Bot 51: 487–496

    Article  PubMed  CAS  Google Scholar 

  • El-Kharbotly A, Jacobsen E, Stiekema WJ, Pereira A (1995) Genetic localisation of transformation competence in diploid potato. Theor Appl Genet 91: 557–562

    Article  Google Scholar 

  • Finer JJ, McMullen MD (1991) Transformation of soybean via particle bombardment of embryo-genic suspension culture tissue. In Vitro Cell Dev Biol 27P: 175–182

    Google Scholar 

  • Finer JJ, Nagasawa A (1988) Development of an embryogenic suspension culture of soybean (Glycine max Merrill). Plant Cell Tissue Organ Cult 15: 125–136

    Article  CAS  Google Scholar 

  • Finer JJ, Cheng T-S, Verma DPS (1996) Soybean transformation: technologies and progress. In: Verma DPS, Shoemaker RC (eds) Soybean genetics, molecular biology and biotechnology. CAB International, Wallingford, UK, pp 249–262

    Google Scholar 

  • Fisk HJ, Dandekar AM (1993) The introduction and expression of transgenes in plants. Sci Hortic 55: 5–36

    Article  CAS  Google Scholar 

  • Fromm ME, Morrish F, Armstrong C, Williams R, Thomas J, Klein TM (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839

    Article  PubMed  CAS  Google Scholar 

  • FĂĽtterer J, Potrykus I (1995) Transformation of Poaceae and gene expression in transgenic plants. Agronomie 15: 309–319

    Article  Google Scholar 

  • Ghosh Biswas GC, Iglesias VA, Datta SK, Potrykus I (1994) Transgenic Indica rice (Oryza sativa L.) plants obtained by direct gene transfer to protoplasts. J Biotechnol 32: 1–10

    Article  CAS  Google Scholar 

  • Gizlice Z, Carter TE Jr, Burton JW (1993) Genetic diversity in North American soybean: I. Multivariate analysis of founding stock and relation to coefficient of parentage. Crop Sci 33: 614–620

    Article  Google Scholar 

  • Gizlice Z, Carter TE Jr, Burton JW (1994) Genetic basis for North American public soybean cultivars released between 1947 and 1988. Crop Sci 34: 1143–1151

    Article  Google Scholar 

  • Gizlice Z, Carter TE Jr, Gerig TM, Burton JW (1996) Genetic diversity patterns in North American public soybean cultivars based on coefficient of parentage. Crop Sci 36: 753–765

    Article  Google Scholar 

  • Graybosch RA, Edge ME, Delannay X (1987) Somaclonal variation in soybean plants regenerated from the cotyledonary node tissue culture system. Crop Sci 27: 803–806

    Article  Google Scholar 

  • Hadi MZ, McMullen MD, Finer JJ (1996) Transformation of 12 different plasmids into soybean via particle bombardment. Plant Cell Rep 15: 500–505

    Article  CAS  Google Scholar 

  • Hall RD, Riksen-Bruinsma T, Weyens GJ, Rosquin IJ, Denys PN, Evans IJ, Lathouwers JE, Lefebvre MP, Dunwell JM, van Tunen A, Krens FA (1996) A high frequency technique for the generation of transgenic sugar beets from stomatal guard cells. Nat Biotechnol 14: 1133–1138

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20: 509–517

    Article  Google Scholar 

  • Hazel CB, Klein TM, Anis M, Wilde HD, Parrott WA (1998) Growth characteristics and transformability of soybean embryogenic cultures. Plant Cell Rep 17: 765–772

    Article  CAS  Google Scholar 

  • Hawbaker MS, Fehr WR, Mansur LM, Shoemaker RC, Palmer RG (1993) Genetic variation for quantitative traits in soybean lines derived from tissue culture. Theor Appl Genet 87: 49–53

    Article  Google Scholar 

  • Hermsen JGTH (1994) Introgression of genes from wild species, including molecular and cellular approaches. In: Bradshaw JE, MacKay GR (eds) Potato genetics. CAB International, Wallingford, UK, pp 515–538

    Google Scholar 

  • Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Bio/Technology 6: 915–922

    Article  CAS  Google Scholar 

  • Iglesias VA, Mo scone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AIM (1997) Molecular and cytogenetic analysis of stably and unstably expressed transgene loci in tobacco. Plant Cell 9: 1251–1264

    PubMed  CAS  Google Scholar 

  • Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14: 745–750

    Article  PubMed  CAS  Google Scholar 

  • Jouanin L, BondĂ©-Bottino M, Girard C, Morrot G, Giband M (1998) Transgenic plants for insect resistance. Plant Sci 131: 1–11

    Article  CAS  Google Scholar 

  • Kinney AJ (1996) Development of genetically engineered soybean oils for food applications. J Food Lipids 3: 273–292

    Article  CAS  Google Scholar 

  • Klein TM, Zhang W (1994) Progress in the genetic transformation of recalcitrant crop species. Aspects Appl Biol 39: 35–44

    Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 327: 70–73

    Article  CAS  Google Scholar 

  • Kooter JM, Matzke MA, Meyer P (1999) Listening to the silent genes: transgene silencing, gene regulation and pathogen control. Trends Plant Sci 9: 340–347

    Article  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Collins GB (1987a) Soybean somatic embryogenesis: effects of hormones and culture manipulations. Plant Cell Tissue Organ Cult 10: 197–208

    Article  CAS  Google Scholar 

  • Lazzeri PA, Hildebrand DF, Collins GB (1987b) Soybean somatic embryogenesis: effects of nutritional, physical and chemical factors. Plant Cell Tissue Organ Cult 10: 209–220

    Article  CAS  Google Scholar 

  • Lin W, Anuratha CS, Datta K, Potrykus I, Muthukrishnan S, Datta SK (1995) Genetic engineering of rice for resistance to sheath blight. Bio/Technology 13: 686–691

    Article  CAS  Google Scholar 

  • Liu W, Torisky RS, McAllister KP, Avdiushko S, Hildebrand D, Collins GB (1996) Somatic embryo cycling: evaluation of a novel transformation and assay system for seed-specific gene expression in soybean. Plant Cell Tissue Organ Cult 47: 33–42

    Article  CAS  Google Scholar 

  • Lynch PT, Jones J, Blackhall NW, Davey MR, Power JB, Cocking EC, Nelson MR, Bigelow DM, Orum TV, Orth CE, Schuh W (1995) The phenotypic characterisation of R2 generation transgenic rice plants under field and glasshouse conditions. Euphytica 85: 395–401

    Article  Google Scholar 

  • Maessen GDF (1997) Genomic stability and stability of expression in genetically modified plants. Acta Bot Neerl 46: 3–24

    CAS  Google Scholar 

  • Manner löf M, Tuvesson S, Steen P, Tenning P (1997) Transgenic sugar beet tolerant to glyphosate. Euphytica 94: 83–91

    Article  Google Scholar 

  • Matzke AJ, Matzke MA (1995) Trans-inactivation of homologous sequences in Nicotiana tabacum. Current Top Microbiol Immunol 197: 1–14

    Article  CAS  Google Scholar 

  • Matzke MA, Moscone EA, Park Y-D, Papp I, Oberkofler H, Neuhuber F, Matzke AJM (1994) Inheritance and expression of a transgene insert in an aneuploid tobacco line. Mol Gen Genet 245: 471–485

    Article  PubMed  CAS  Google Scholar 

  • Matzke MA, Mette MF, Kunz C, Jakowitsch J, Matzke AJM (2000) Homology-dependent gene silencing in transgenic plants: links to cellular defense responses and genome evolution. In: Gustafson JP (ed) Genomes. Kluwer/Plenum, New York, pp 141–162

    Chapter  Google Scholar 

  • Maughan PJ, Philip R, Cho MJ, Widholm JM, Vodkin LO (1999) Biolistic transformation, expression, and inheritance of bovine [3-casein in soybean (Glycine max). In Vitro Cell Dev BiolPlant 35: 344–349

    Article  CAS  Google Scholar 

  • McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Bio/Technology 6: 923–926

    Article  Google Scholar 

  • Meyer P (1995) Variation of transgene expression in plants. Euphytica 85: 359–366

    Article  CAS  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, La Vallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of glyphosate-tolerant soybean line. Crop Sci 35: 1451–1461

    Article  CAS  Google Scholar 

  • Palmer RG, Kilen TC (1987) Qualitative genetics and cytogenetics. In: Wilcox JR (ed) Soybeans: improvement, production, and uses, 2nd edn. Agronomy Monogr No 16, ASA-CSSA-SSSA, Madison, WI, pp 135–209

    Google Scholar 

  • Parrott WA, Hoffman LM, Hildebrand DF, Williams EG, Collins GB (1989) Recovery of primary transformants of soybean. Plant Cell Rep 7: 615–617

    CAS  Google Scholar 

  • Poulsen GB (1996) Genetic transformation of Brassica. Plant Breed 115: 209–225

    Article  CAS  Google Scholar 

  • Puddephat IJ, Riggs TJ, Fenning TM (1996) Transformation of Brassica oleracea L.: a critical review. Mol Breed 2: 185–210

    Article  Google Scholar 

  • Salado-Navarro LR, Sinclair TR, Hinson K (1993) Changes in yield and seed growth traits in soybean cultivars released in the southern USA from 1945 to 1983. Crop Sci 33: 1204–1209

    Article  Google Scholar 

  • SantarĂ©m ER, Finer JJ (1999) Transformation of soybean [Glycine max (L.) Merrill] using proliferative embryogenic tissue maintained on semi-solid medium. In vitro Cell Dev Biol-Plant 35: 451–455

    Article  Google Scholar 

  • SantarĂ©m ER, Trick HN, Essig JS, Finer JJ (1998) Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: Optimization of transient expression. Plant Cell Rep 17: 752–759

    Article  Google Scholar 

  • Schulze J, Balko C, Zellner B, Koprek T, Hänsch R, Nerlich A, Mendel RR (1995) Biolistic transformation of cucumber using embryogenic suspension cultures: long-term expression of reporter genes. Plant Sci 112: 197–206

    Article  CAS  Google Scholar 

  • Senior IJ (1998) Uses of plant gene silencing. Bio/Technol Genet Eng Rev 15: 79–119

    CAS  Google Scholar 

  • Shewry PR, Tatham AS, Barro F, Barcelo P, Lazzeri P (1995) Biotechnology of breadmaking: unraveling and manipulating the multi-protein gluten complex. Bio/Technology 13: 1185–1190

    Article  CAS  Google Scholar 

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 337: 274–276

    Article  Google Scholar 

  • Shoemaker RC, Amberger LA, Palmer RG, Oglesby L, Ranch JP (1991) Effect of 2,4-dichlorophenoxyacetic acid concentration on somatic embryogenesis and heritable variation in soybean [Glycine max ( L.) Merr.]. In vitro Cell Dev Biol 27P: 84–88

    Google Scholar 

  • Simmonds DH, Donaldson PA (2000) Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Rep 19: 485–490

    Article  CAS  Google Scholar 

  • Singh RJ (1993) Plant cytogenetics. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Singh RJ, Hymowitz T (1988) The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet 76: 705–711

    Article  Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42: 605–616

    Article  CAS  Google Scholar 

  • Singh RI, Klein TM, Mauvais CI, Knowlton S, Hymowitz T, Kostow CM (1998) Cytological characterization of transgenic soybean. Theor Appl Genet 96: 319–324

    Article  Google Scholar 

  • Sneller CH (1994) Pedigree analysis of elite soybean lines. Crop Sci 34: 1515–1522

    Article  Google Scholar 

  • Somers DA, Torbert KA, Pawlowski WP, Rines HW (1994) Genetic engineering of oat. In: Henry RJ, Ronalds JA (eds) Improvement of cereal quality by genetic engineering. Plenum Press, New York, pp 37–46

    Chapter  Google Scholar 

  • Songstad DD, Somers DA, Griesbach RJ (1995) Advances in alternative DNA delivery techniques. Plant Cell Tissue Organ Cult 40: 1–15

    Article  CAS  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) The silence of genes in transgenic plants. Ann Bot 79: 3–12

    Article  CAS  Google Scholar 

  • Stewart CN Jr, Adang MJ, All JN, Boerma HR, Cardineau G, Tucker D, Parrott WA (1996) Genetic transformation, recovery, and characterization of fertile soybean transgenic for a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol 112: 121–129

    Article  PubMed  CAS  Google Scholar 

  • Toriyama K, Arimoto Y, Uchimiya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6: 1072–1074

    Article  CAS  Google Scholar 

  • Vasil IK (1994) Molecular improvement of cereals. Plant Mol Biol 25: 925–937

    Article  PubMed  CAS  Google Scholar 

  • Widholm JM (1993) Notice of retraction. Plant Physiol 102: 331

    PubMed  Google Scholar 

  • Widholm JM (1996) In vitro selection and culture-induced variation in soybean. In: Verma DPS, Shoemaker RC (eds) Soybean genetics, molecular biology and biotechnology. CAB International, Wallingford, UK, pp 107–126

    Google Scholar 

  • Wright MS, Ward DV, Hinchee MA, Carnes MG, Kaufman RJ (1987) Regeneration of soybean (Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Rep 6: 83–89

    CAS  Google Scholar 

  • Xu X, Li B (1994) Fertile transgenic India rice obtained by electroporation of the seed embryo cells. Plant Cell Rep 13: 237–242

    Article  CAS  Google Scholar 

  • Yan B, Srinivasa Reddy MS, Collins GB, Dinkins RD (2000) Agrobacterium tumefaciens - mediated transformation of soybean [Glycine max ( L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Rep 19: 1090–1097

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, R.J. (2002). Chromosomal and Genetic Aberrations in Transgenic Soybean. In: Jackson, J.F., Linskens, H.F. (eds) Testing for Genetic Manipulation in Plants. Molecular Methods of Plant Analysis, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04904-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04904-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07730-2

  • Online ISBN: 978-3-662-04904-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics