Skip to main content

Cryopreservation of Somatic Embryos from Aesculus hippocastanum L. (Horse Chestnut)

  • Chapter
Cryopreservation of Plant Germplasm II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 50))

  • 367 Accesses

Abstract

Horse chestnut is the common name for Aesculus hippocastanum. The family Hippocastanaceae contains about 15 species in two genera, Aesculus and Billia, and occurs in the North Temperate Zone. Of the 15 species, one is European, and the others are native to Eurasia and North America. The trees are dicots, characterized by large winter buds covered with resinous, sticky scales; opposite, palmately compound, 10–25 cm long leaves with 5–7 obovate leaflets; large clusters of attractive yellow, red or whitish irregular flowers of four or five petals; and bark that exfoliates in gray plates to show orange-brown inner bark. The fruits are leathery, three-valved capsules containing large, brown seeds (Fig. 1). Many members of the genus Aesculus,commonly called buckeyes, are popular ornamental and shade trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdelnour-Esquivel A, Mora A, Villalobos V (1992a) Cryopreservation of zygotic embryos of Musa acuminata (AA) and M. balbisiana ( BB ). Cryo Lett 13: 159–164

    Google Scholar 

  • Abdelnour-Esquivel A, Villalobos V, Engelmann F (1992b) Cryopreservation of zygotic embryos of Coffea spp. Cryo Lett 13: 297–302

    Google Scholar 

  • Andarajah K, Kott K, Beversdorf WD, McKersie BD (1991) Induction of desiccation tolerance in microspore-derived embryos of Brassica napus L. by thermal stress. Plant Sci 77: 119–123

    Article  Google Scholar 

  • Assy-Bah B, Engelmann F (1992) Cryopreservation of mature embryos of coconut (Cocus nucifera L.) and subsequent regeneration of plantlets. Cryo Lett 13: 117–126

    Google Scholar 

  • Bajaj YPS (1995) Cryopreservation of plant cell, tissue and organ culture for the conservation of germplasm and biodiversity. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 32. Cryopreservation of plant germplasm I. Springer, Berlin Heidelberg New York, pp 3–18

    Google Scholar 

  • Brearley J, Henshaw GG, Davey C, Taylor NJ, Blakesley D (1995) Cryopreservation of Fraxinus excelsior L. zygotic embryos. Cryo Lett 16: 215–218

    Google Scholar 

  • Collins GG, Nie X, Saltveit ME (1993) Heat shock increases chilling tolerance of mung bean hypocotyl tissue. Physiol Plant 89: 117–124

    Article  CAS  Google Scholar 

  • Dumet D, Engelmann F, Chabrillange N, Duval Y (1993) Cryopreservation of oil palm (Elaeis guineensis Jack.) somatic embryos involving a desiccation step. Plant Cell Rep 12: 352–355

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Davies BP, Stahlhut RW (1983) Cell division and differentiation in protoplasts from cell cultures of Glycine species and leaf tissues of soybean. Plant Cell Rep 2: 213–215

    Article  Google Scholar 

  • Gonzalez-Benito ME, Perez C (1994) Cryopreservation of embryonic axes of two cultivars of hazelnut (Corylus avellana L). Cryo Lett 15: 41–46

    Google Scholar 

  • Harrington HM, Alm DM (1988) Interaction of heat and salt stress in cultured tobacco cells. Plant Physiol 88: 618–625

    Article  PubMed  CAS  Google Scholar 

  • Hatanaka T, Yasuda T, Tamaguchi T, Sakai A (1994) Direct regrowth of encapsulated somatic embryos of coffee (Coffea canephora) after cooling in liquid nitrogen. Cryo Lett 15: 47–52

    Google Scholar 

  • Jennings P, Saltveit ME (1994) Temperature and chemical shocks induce chilling tolerance in germinating Cucumis sativus (Cv. Poinsett 76) seeds. Physiol Plant 91: 703–707

    Article  CAS  Google Scholar 

  • Jorgensen J (1990) Conservation of valuable gene resources by cryopreservation in some forest tree species. Plant Physiol 136: 373–376

    Article  Google Scholar 

  • Kaul SC, Obuchi K, Iwahashi H, Komatsu Y (1992) Cryoprotection provided by heat shock treatment in Saccharomyces cerevisiae. Cell Mol Biol 38: 135–143

    PubMed  CAS  Google Scholar 

  • Kendall EJ, Kartha KK, Qureshi JA, Chermak P (1993) Cryopreservation of immature spring wheat zygotic embryos using an abscisic acid pretreatment. Plant Cell Rep 12: 89–94

    Article  CAS  Google Scholar 

  • Kiss J, Heszky LE, Kiss E, Gyulai G (1992) High efficiency adventive embryogenesis on somatic embryos of anther, filament and immature proembryo origin in horse-chestnut (Aesculus hippocastanum L.) tissue culture. Plant Cell Tissue Org Cult 30: 59–64

    Article  CAS  Google Scholar 

  • Marin ML, Duran-Vila N (1988) Survival of somatic embryos and recovery of plants of sweet orange (Citrus sinensis L.) after immersion in liquid nitrogen. Plant Cell Tissue Org Cult 14: 51–57

    Article  Google Scholar 

  • Normah MN, Vengadasalam M (1992) Effects of moisture content on cryopreservation of Coffea and Vigna seeds and embryos. Cryo Lett 13: 199–208

    Google Scholar 

  • Pence VC (1991) Cryopreservation of immature embryos of Theobroma cacao. Plant Cell Rep 10: 144–147

    Article  Google Scholar 

  • Reed BM (1993) Responses to ABA and cold acclimation are genotype dependent for cryopreserved blackberry and raspberry meristems. Cryobiology 30: 179–184

    Article  Google Scholar 

  • Reinhoud PJ, Schrijnemakers WM, van Iren F, Kijne W (1995) Vitrification and heat shock treatment improve cryopreservation of tobacco cell suspension compared to two step freezing. Plant Cell Tissue Org Cult 42: 261–267

    Article  Google Scholar 

  • Skowyra D, Georgopoulos C, Zylicz M (1990) The E. coli dnaK product, the hps homolog, can reactivate heat inactivated RNA polymerase in ATP hydrolysis manner. Cell 62: 939–944

    Article  PubMed  CAS  Google Scholar 

  • Uragami A (1991) Cryopreservation of asparagus (Asparagus officinalis L.) cultured in vitro. Res Bull Hokkaido Natl Agric Exp Stn 156: 1–37

    Google Scholar 

  • Wright JW (1976) Introduction to forest genetics. Academic Press, New York, 335 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jekkel, Z., Kiss, J., Gyulai, G., Kiss, E., Heszky, L.E. (2002). Cryopreservation of Somatic Embryos from Aesculus hippocastanum L. (Horse Chestnut). In: Towill, L.E., Bajaj, Y.P.S. (eds) Cryopreservation of Plant Germplasm II. Biotechnology in Agriculture and Forestry, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04674-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04674-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07502-5

  • Online ISBN: 978-3-662-04674-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics