Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

An overview is provided of nanostructured alloy materials as both isolated particles with nanoscale diameter (nanoalloys) and bulk materials with nanoscale structure. The methods for preparing and characterizing these systems from both experimental and theoretical modeling points of view are presented, and the basic knowledge on their structural, catalytic, mechanical, optical, and magnetic properties is reviewed. It is shown that, due to the increased freedom associated with composition and chemical ordering, new physical phenomena appear in metal multicomponent nanosystems, as well as novel or profoundly modified properties: For example, new structural motifs can arise depending on the structural and energetic characteristics of the metal components, and the size of the system. Hence, the catalytic activity, mechanical strength, plasmonic and nonlinear optical, as well as magnetic responses exhibit features in multicomponent nanostructured systems which are different and can in principle be finely tuned with respect to their pure counterparts. The challenges associated with full exploitation of these possibilities are outlined.

The chapter starts by defining some concepts and principles specific to the field of nanoalloys which are then used in the next sections (Sect. 11.1). A brief overview of the methods for preparing (Sect. 11.2) and characterizing (Sect. 11.3) nanostructured alloys then follows. The core of the chapter (Sect. 11.4) presents a discussion of the properties of these materials, distinguished into: structural, catalytic, optical, and magnetic. Section 11.5 is devoted to nanostructured bulk alloys. A brief section on applications (Sect. 11.6) and an outlook (Sect. 11.7) conclude the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

0-D:

zero-dimensional

1-D:

one-dimensional

2-D:

two-dimensional

3-D:

three-dimensional

AFM:

atomic force microscopy

APPES:

ambient pressure photoelectron spectroscopy

APS:

3-aminopropyltrimethoxysilane

APT:

atom probe tomography

BEP:

Brønsted–Evans–Polanyi relations

BF:

bright field

CALPHAD:

calculation of phase diagrams

CBEV:

coordination-dependent bond-energy variation

CCDB:

Cambridge crystallographic data base

CO:

cuboctahedron

COST:

Cooperation in Science and Technology

CPS:

collected photo signal

CS:

cross section

CVD:

chemical vapor deposition

DDA:

discrete dipole approximation

DFT:

density functional theory

DNA:

deoxyribonucleic acid

DT:

decanethiol

ECELL:

environmental cell

EPR:

electron paramagnetic resonance

ETEM:

environmental TEM

EXAFS:

extended x-ray absorption fine structure

FFT:

fast Fourier transform

HAADF:

high-angle annular dark field

HP:

Hall–Petch

HRTEM:

high-resolution transmission electron microscopy

INCO:

International Nickel Company

IR:

infrared

Ih:

icosahedron

LB94:

van Leeuwen–Baerends

LDA:

local density approximation

LMP:

Larson–Miller plot

LSPR:

localized surface plasmon resonance

MA:

mechanical alloying

MAE:

magnetic anisotropy energy

MD:

molecular dynamics

ML:

monolayer

MR:

magnetic resonance

MRI:

magnetic resonance imaging

NC:

nanocrystalline

NF:

nanofeatures

NFA:

nanostructured ferritic alloy

NTS:

nanostructured transformable steel

ODS:

oxide dispersion strengthened

Oh:

octahedron

PDOS:

phonon density of states

PES:

potential energy surface

PM:

dipropylene glycol monomethylether

PSD:

photo signal detector

PVD:

physical vapor deposition

QEXAFS:

quick EXAFS

SANS:

small -angle neutron scattering

SEIRA:

surface-enhanced infrared absorption

SEM:

scanning electron microscopy

SERS:

surface-enhanced Raman scattering

SFG:

sum-frequency generation

SFM:

scanning force microscopy

SPR:

surface plasmon resonance

STEM:

scanning transmission electron microscopy

STM:

scanning tunneling microscopy

SXRD:

surface x-ray diffraction

TDDFT:

time-dependent density-functional-theory

TEM:

transmission electron microscopy

TO:

truncated octahedron

UHV:

ultrahigh vacuum

UV:

ultraviolet

VSFG:

vibrational sum-frequency generation

Van:

vancomycin

XANES:

x-ray absorption near-edge spectroscopy

XAS:

x-ray absorption spectroscopy

XPS:

x-ray photoelectron spectroscopy

XRD:

x-ray diffraction

YAM:

Y4Al2O9

bcc:

body-centered cubic

cp:

close packed

dpa:

displacements per atom

fcc:

face-centered cubic

fct:

face-centered tetragonal

hcp:

hexagonal close packed

nc-AFM:

noncontact AFM

pIh:

polyicosahedron

xc:

exchange–correlation

References

  1. L.N. Lewis: Chemical catalysis by colloids and clusters, Chem. Rev. 93, 2693–2730 (1993)

    Article  CAS  Google Scholar 

  2. G. Ertl, H. Knotziger, F. Schuth, J. Weitkamp (Eds.): Handbook of Heterogeneous Catalysis, 2nd edn. (Wiley, New York 2008)

    Google Scholar 

  3. K. Kreibig, M. Vollmer: Optical Properties of Metal Clusters (Springer, New York 1995)

    Book  Google Scholar 

  4. C. Burda, X. Chen, R. Narayanan, M.A. El-Sayed: Chemistry and properties of nanocristals of different shake, Chem. Rev. 105, 1025–1102 (2005)

    Article  CAS  Google Scholar 

  5. N.J. Halas, S. Lal, W.-S. Chang, S. Link, P. Nordlander: Plasmons in strongly coupled metallic nanostructures, Chem. Rev. 111, 3913–3961 (2011)

    Article  CAS  Google Scholar 

  6. S.M. Morton, D.W. Silverstein, L. Jensen: Theoretical studies of plasmonics using electronic structure methods, Chem. Rev. 111, 3962–3994 (2011)

    Article  CAS  Google Scholar 

  7. M.-C. Daniel, D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104, 293–346 (2004)

    Article  CAS  Google Scholar 

  8. M. Faraday: The Bakerian Lecture: Experimental relations of gold (and other metals) to light, Philos. Trans. R. Soc. Lond. 147, 145–181 (1857)

    Article  Google Scholar 

  9. Y. Ma, W.Y. Li, E.C. Cho, Z.Y. Li, T.K. Yu, J. Zeng, Z.X. Xie, Y.N. Xia: AuAg core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties, ACS Nano 4, 6725–6734 (2010)

    Article  CAS  Google Scholar 

  10. N. Del Fatti, D. Christofilos, F. Vallée: Optical response of a single gold nanoparticle, Gold Bull. 41, 147–158 (2008)

    Article  Google Scholar 

  11. F.P. Netzer: Small and beautiful – The novel structures and phases of nano-oxides, Surf. Sci. 604, 485–489 (2010)

    Article  CAS  Google Scholar 

  12. M.P. Pileni: The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals, Nat. Mater. 2, 145–150 (2003)

    Article  CAS  Google Scholar 

  13. K. Judai, S. Abbet, A.S. Worz, U. Heiz, C.R. Henry: Low-temperature cluster catalysis, J. Am. Chem. Soc. 126, 2732–2737 (2004)

    Article  CAS  Google Scholar 

  14. P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune: Giant magnetic anisotropy of single cobalt atoms and nanoparticles, Science 300, 1130–1133 (2003)

    Article  CAS  Google Scholar 

  15. H. Ebert: Magneto-optical effects in transition metal systems, Rep. Prog. Phys. 59, 1665–1735 (1996)

    Article  CAS  Google Scholar 

  16. A. Caro: The computational modeling of alloys: From ab initio calculations and thermodynamics to heterogeneous precipiation. In: Materials Issues for Generation IV Systems, ed. by V. Ghetta, D. Gorse, D. Mazière, V. Pontikis (Springer, Berlin 2008)

    Google Scholar 

  17. H. Chen, J.M. McMahon, M.A. Ratner, G.C. Schatz: Classical electrodynamics coupled to quantum mechanics for calculation of molecular optical properties: A RT-TDDFT/FDTD approach, J. Phys. Chem. C 114, 14384–14392 (2010)

    Article  CAS  Google Scholar 

  18. B.E. Zhu, Z.Y. Pan, M. Hou, D. Cheng, Y.X. Wang: Melting behaviour of gold nanowires in carbon nanotubes, Mol. Phys. 109, 527–533 (2011)

    Article  CAS  Google Scholar 

  19. R. McWeeny: Coulsonʼs Valence, 3rd edn. (Oxford Univ., Oxford 1980)

    Google Scholar 

  20. L. Pauling: The Nature of the Chemical Bond (Cornell Univ., New York 1960)

    Google Scholar 

  21. G.L. Timp (Ed.): Nanotechnology (Springer, New York 1999)

    Google Scholar 

  22. J.H. Sinfelt: Catalysis by alloys and bimetallic clusters, Acc. Chem. Res. 10, 15–20 (1977)

    Article  CAS  Google Scholar 

  23. J. Jellinek, E.B. Krissinel: Ni n Al m alloy clusters: Analysis of structural forms and their energy ordering, Chem. Phys. Lett. 258, 283–329 (1996)

    Article  CAS  Google Scholar 

  24. A. Fortunelli, A.M. Velasco: Structural and electronic properties of Pt/Fe nanoclusters from EHT calculations, J. Mol. Struct. (Theochem) 487, 251–266 (1999)

    Article  CAS  Google Scholar 

  25. R. Ferrando, J. Jellinek, R.L. Johnston: Nanoalloys: From theory to applications of alloy clusters and nanoparticles, Chem. Rev. 108, 845–910 (2008)

    Article  CAS  Google Scholar 

  26. J. Libuda, H.-J. Freund: Molecular beam experiments on model catalysts, Surf. Sci. Rep. 57, 157–298 (2005)

    Article  CAS  Google Scholar 

  27. G. Renaud, R. Lazzari, C. Revenant, A. Barbier, M. Noblet, O. Ulrich, F. Leroy, J. Jupille, Y. Borensztein, C.R. Henry, J.P. Deville, F. Scheurer, J. Mane-Mane, O. Fruchart: Real-time monitoring of growing nanoparticles, Science 300, 1416–1419 (2003)

    Article  CAS  Google Scholar 

  28. J. Yacaman, J.A. Ascencio, S. Tehuacanero, M. Marin: Modem applications of electron microscopy to catalysis, Top. Catal. 18, 167–173 (2002)

    Article  CAS  Google Scholar 

  29. B. Pauwels, G.V. Tendeloo, W. Bouwen, L.T. Kuhn, P. Lievens, H. Lei, M. Hou: Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations, Phys. Rev. B 62, 10383–10393 (2000)

    Article  CAS  Google Scholar 

  30. M. Broyer, E. Cottancin, J. Lermé, M. Pellarin, N. Del Fatti, F. Valle, J. Burgin, C. Guillon, P. Langot: Optical properties and relaxation processes at femtosecond scale of bimetallic clusters, Faraday Discuss. 138, 137–145 (2008)

    Article  CAS  Google Scholar 

  31. A. Biswas, D. Siegel, D.N. Seidman: Simultaneous segregation at coherent and semicoherent heterophase interfaces, Phys. Rev. Lett. 105, 076102 (2010)

    Article  CAS  Google Scholar 

  32. F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. Liu, J.Y. Chung, B.S. Mun, M. Salmeron, G.A. Somorjai: Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles, Science 322, 932–934 (2008)

    Article  CAS  Google Scholar 

  33. R. Ferrando, A. Fortunelli, G. Rossi: Quantum effects on the structure of pure and binary metallic nanoclusters, Phys. Rev. B 72, 085449 (2005)

    Article  CAS  Google Scholar 

  34. I.S. Atanasov, M. Hou: A multi-range order parameter for binary alloy bulk materials and nanoparticles, Eur. Phys. J. D 52, 51–54 (2009)

    CAS  Google Scholar 

  35. I.S. Atanasov, M. Hou: Equilibrium ordering properties of Au-Pd alloys and nanoalloys, Surf. Sci. 603, 2639–2651 (2009)

    Article  CAS  Google Scholar 

  36. G. Barcaro, A. Fortunelli, M. Polak, L. Rubinovich: Patchy multishell segregation in Pd-Pt alloy nanoparticles, NanoLett. 11, 1766–1769 (2011)

    Article  CAS  Google Scholar 

  37. L.O. Paz-Borbon, T.V. Mortimer-Jones, R.L. Johnston, A. Posada-Amarillas, G. Barcaro, A. Fortunelli: Structures and energetics of 98 atom Pd-Pt nanoalloys: Potential stability of the Leary tetrahedron for bimetallic nanoparticles, Phys. Chem. Chem. Phys. 9, 5202–5208 (2007)

    Article  CAS  Google Scholar 

  38. L. Molina, B. Hammer: Theoretical study of CO oxidation on Au nanoparticles supported by MgO(100), Phys. Rev. B 69, 155424 (2004)

    Article  CAS  Google Scholar 

  39. G. Barcaro, L. Sementa, F.R. Negreiros, R. Ferrando, A. Fortunelli: Interface effects on the magnetism of CoPt-supported nanostructures, Nano Lett. 11, 5542–5547 (2011)

    Article  CAS  Google Scholar 

  40. Y. Yin, A.P. Alivisatos: Colloidal nanocrystal synthesis and the organic-inorganic interface, Nature 437, 664–670 (2005)

    Article  CAS  Google Scholar 

  41. P.D. Cozzoli, T. Pellegrino, L. Manna: Synthesis, properties and perspectives of hybrid nanocrystal structures, Chem. Soc. Rev. 35, 1195–1208 (2006)

    Article  CAS  Google Scholar 

  42. J. Park, J. Joo, S.G. Kwon, Y. Jang, T. Hyeon: Synthesis of monodisperse spherical nanocrystals, Angew. Chem. Int. Ed. 46, 4630–4660 (2007)

    Article  CAS  Google Scholar 

  43. M. Rycenga, C.M. Cobley, J. Zeng, W. Li, C.H. Moran, Q. Zhang, D. Qin, Y. Xia: Controlling the synthesis and assembly of silver nanostructures for plasmonic applications, Chem. Rev. 111, 3669–3712 (2011)

    Article  CAS  Google Scholar 

  44. M.B. Cortie, A.M. McDonagh: Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles, Chem. Rev. 111, 3713–3735 (2011)

    Article  CAS  Google Scholar 

  45. M.R. Jones, K.D. Osberg, R.J. Macfarlane, M.R. Langille, C.A. Mirkin: Templated techniques for the synthesis and assembly of plasmonic nanostructures, Chem. Rev. 111, 3736–3827 (2011)

    Article  CAS  Google Scholar 

  46. M. Brust, J. Fink, D. Bethell, D.J. Schiffrin, C.J. Kiely: Synthesis and reactions of functionalised gold nanoparticles, J. Chem. Soc. Chem. Commun., 1655–1656 (1995)

    Google Scholar 

  47. X. Peng, J. Wickham, A.P. Alivisatos: Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: "Focusing" of size distributions, J. Am. Chem. Soc. 120, 5343–5344 (1998)

    Article  CAS  Google Scholar 

  48. Y. Xia, Y. Xiong, B. Lim, S.E. Skrabalak: Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?, Angew. Chem. Int. Ed. 48, 60–103 (2009)

    Article  CAS  Google Scholar 

  49. Q. Zhang, W. Li, C. Moran, J. Chen, L.P. Wen, Y. Xia: Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties, J. Am. Chem. Soc. 132, 11372–11378 (2010)

    Article  CAS  Google Scholar 

  50. N.R. Jana, L. Gearheart, C.J. Murphy: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 13, 1389–1393 (2001)

    Article  CAS  Google Scholar 

  51. B. Pietrobon, M. McEachran, V. Kitaev: Synthesis of size-controlled faceted pentagonal silver nanorrods with tunable plasmonic properties and self-assembly of these nanorods, ACS Nano 3, 21–26 (2009)

    Article  CAS  Google Scholar 

  52. Y. Sun, Y. Yin, B.T. Mayers, T. Herricks, Y. Xia: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone), Chem. Mater. 14, 4736–4745 (2002)

    Article  CAS  Google Scholar 

  53. B. Nikoobakht, M.A. El-Sayed: Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method, Chem. Mater. 15, 1957–1962 (2003)

    Article  CAS  Google Scholar 

  54. G. Schmid: Large clusters and colloids – Metals in the embryonic state, Chem. Rev. 92, 1709–1727 (1992)

    Article  CAS  Google Scholar 

  55. O. Lopez-Acevedo, J. Akola, R.L. Whetten, H. Grönbeck, H. Häkkinen: Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60, J. Phys. Chem. C 113, 5035–5038 (2009)

    Article  CAS  Google Scholar 

  56. H. Qian, R. Jin: Controlling nanoparticles with atomic precision: The case of Au144(SCH2CH2Ph)60, Nano Lett. 9, 4083–4087 (2009)

    Article  CAS  Google Scholar 

  57. G. Periyasamy, F. Remacle: Ligand and solvation effects on the electronic properties of Au55 clusters: A density functional theory study, Nano Lett. 9, 3007–3011 (2009)

    Article  CAS  Google Scholar 

  58. M. Walter, J. Akola, O. Lopez-Acevedo, P.D. Jadzinsky, G. Calero, C.J. Ackerson, R.L. Whetten, H. Grönbeck, H. Häkkinen: A unified view of ligand-protected gold clusters as superatom complexes, Proc. Natl. Acad. Sci. USA 105, 9157–9162 (2008)

    Article  CAS  Google Scholar 

  59. J. Akola, M. Walter, R.L. Whetten, H. Hakkinen, H. Grönbeck: On the structure of thiolate-protected Au-25, J. Am. Chem. Soc. 130, 3756 (2008)

    Article  CAS  Google Scholar 

  60. M.L. Personick, M.R. Langille, J. Zhang, C.A. Mirkin: Shape control of gold nanoparticles by silver underpotential deposition, Nano Lett. 11, 3394–3398 (2011)

    Article  CAS  Google Scholar 

  61. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser: Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices, Science 287, 1989–1992 (2000)

    Article  CAS  Google Scholar 

  62. M.P. Mallin, C.J. Murphy: Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles, Nano Lett. 2, 1235–1237 (2002)

    Article  CAS  Google Scholar 

  63. S. Link, Z.L. Wang, M.A. El-Sayed: Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition, J. Phys. Chem. B 103, 3529 (1999)

    Article  CAS  Google Scholar 

  64. R. Costi, A.E. Saunders, U. Banin: Colloidal hybrid nanostructures: A new type of functional materials, Angew. Chem. Int. Ed. 49, 4878–4897 (2010)

    Article  CAS  Google Scholar 

  65. H. Zeng, S. Sun: Syntheses, properties and potential applications of multicomponent magnetic nanoparticles, Adv. Funct. Mater. 18, 391–400 (2008)

    Article  CAS  Google Scholar 

  66. R.P. Sear: Heterogeneous and homogeneous nucleation compared: Rapid nucleation on microscopic impurities, J. Phys. Chem. B 110, 4985–4989 (2006)

    Article  CAS  Google Scholar 

  67. S.E. Habas, J. Lee, V. Radmilovic, G.A. Somorjai, P. Yang: Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater. 6, 692–697 (2007)

    Article  CAS  Google Scholar 

  68. R. Jin, Y.W. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng: Photoinduced conversion of silver nanospheres to nanoprisms, Science 294, 1901–1903 (2001)

    Article  CAS  Google Scholar 

  69. Y. Sun, B.T. Mayers, Y. Xia: Template-engaged replacement reaction: A one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors, Nano Lett. 2, 481–485 (2002)

    Article  CAS  Google Scholar 

  70. Y. Sun, Y. Xia: Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium, J. Am. Chem. Soc. 126, 3892–3901 (2004)

    Article  CAS  Google Scholar 

  71. Y. Xia, W. Li, C.M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. Chul Cho, P.K. Brown: Gold nanocages: From synthesis to theranostic applications, Acc. Chem. Res. 44, 914–924 (2011)

    Article  CAS  Google Scholar 

  72. J. Chen, B. Wiley, J. McLellan, Y. Xiong, Z.Y. Li, Y. Xia: Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions, Nano Lett. 5, 2058–2062 (2005)

    Article  CAS  Google Scholar 

  73. X. Lu, L. Au, J. McLellan, Z.Y. Li, M. Marquez, Y. Xia: Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH, Nano Lett. 7, 1764–1769 (2007)

    Article  CAS  Google Scholar 

  74. Y.S. Shon, G.B. Dawson, M. Porter, R.W. Murray: Monolayer-protected bimetal cluster synthesis by core metal galvanic exchange reaction, Langmuir 18, 3880–3885 (2002)

    Article  CAS  Google Scholar 

  75. T. Huang, R.W. Murray: Luminescence of tiopronin monolayer-protected silver clusters changes to that of gold clusters upon galvanic core metal exchange, J. Phys. Chem. B 107, 7434–7440 (2003)

    Article  CAS  Google Scholar 

  76. Q. Zhang, J. Xie, J. Liang, J.Y. Lee: Synthesis of Monodisperse Ag-Au Alloy Nanoparticles with Independently Tunable Morphology, Composition, Size, and Surface Chemistry and Their 3-D Superlattices, Adv. Funct. Mater. 19, 1387–1398 (2009)

    Article  CAS  Google Scholar 

  77. Y. Sun, B. Wiley, Z.Y. Li, Y. Xia: Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys, J. Am. Chem. Soc. 126, 9399–9406 (2004)

    Article  CAS  Google Scholar 

  78. M. Harada, K. Asakura, N. Toshima: Catalytic activity and structural-analysis of polymer-protected Au/Pd bimetallic clusters prepared by the successive reduction of HAuCl4 and PdCl2, J. Phys. Chem. 97, 5103–5114 (1993)

    Article  CAS  Google Scholar 

  79. N. Toshima, T. Yonezawa: Bimetallic nanoparticles – Novel materials for chemical and physical applications, N. J. Chem. 22, 1179–1201 (1998)

    CAS  Google Scholar 

  80. C.J. Kiely, J. Fink, M. Brust, D. Bethell, D.J. Schiffrin: Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters, Nature 396, 444–446 (1998)

    Article  CAS  Google Scholar 

  81. M.P. Pileni: 2D superlattices and 3D supracrystals of metal nanocrystals: A new scientific adventure, J. Mater. Chem. 21, 16748–16758 (2011)

    Article  CAS  Google Scholar 

  82. C.J. Kiely, J. Fink, J.G. Zheng, M. Brust, D. Bethell, D.J. Schiffrin: Ordered colloidal nanoalloys, Adv. Mater. 12, 640–643 (2000)

    Article  CAS  Google Scholar 

  83. G.C. Bond: Heterogeneous Catalysis, 3rd edn. (Oxford Univ., Oxford 1987)

    Google Scholar 

  84. J.M. Thomas, W.J. Thomas: Principle and practice of heterogeneous catalysis (VCH, Weinheim 1997)

    Google Scholar 

  85. G. Ertl, H.J. Freund: Catalysis and surface science, Phys. Today 52, 32–38 (1999)

    Article  CAS  Google Scholar 

  86. D.W. Goodman: Model studies in catalysis using surface science probes, Chem. Rev. 95, 523–536 (1995)

    Article  CAS  Google Scholar 

  87. P.L.J. Gunter, G. Somorjai: Surface science approach to modeling supported catalysts, Catal. Rev. 39, 77–168 (1997)

    Article  CAS  Google Scholar 

  88. R. Imbihl, G. Ertl: Oscillatory kinetics in heterogeneous catalysis, Chem. Rev. 95, 697–733 (1995)

    Article  CAS  Google Scholar 

  89. C.R. Henry: Surface studies of supported model catalysts, Surf. Sci. Rep. 31, 235–325 (1998)

    Article  Google Scholar 

  90. H.J. Freund: Clusters and islands on oxides: From catalysis via electronics and magnetism to optics, Surf. Sci. 500, 271–299 (2002)

    Article  CAS  Google Scholar 

  91. C.R. Henry: Morphology of supported nanoparticles, Prog. Surf. Sci. 80, 92–116 (2005)

    Article  CAS  Google Scholar 

  92. M. Sterrer, E. Fischbach, T. Risse, H.J. Freund: Geometric characterization of a singly charged oxygen vacancy on a single-crystalline MgO(001) film by electron paramagnetic resonance spectroscopy, Phys. Rev. Lett., 94, 186101 (2005)

    Article  CAS  Google Scholar 

  93. H. Brune, M. Giovannini, K. Bromann, K. Kern: Self-organized growth of nanostructure arrays on strain-relief patterns, Nature 394, 451–453 (1998)

    Article  CAS  Google Scholar 

  94. H. Brune: Microscopic view of epitaxial metal growth: Nucleation and aggregation, Surf. Sci. Rep. 31, 121–229 (1998)

    CAS  Google Scholar 

  95. L. Gavioli, E. Cavaliere, S. Agnoli, G. Barcaro, A. Fortunelli, G. Granozzi: Template-assisted assembly of transition metal nanoparticles on oxide ultrathin films, Prog. Surf. Sci., 86, 59–81 (2011)

    Article  CAS  Google Scholar 

  96. R. Imbihl, R.J. Behm, R. Schlogl: Bridging the pressure and material gap in heterogeneous catalysis, Phys. Chem. Chem. Phys. 9, 3459 (2007)

    Article  CAS  Google Scholar 

  97. G.A. Somorjai, R.L. York, D. Butcher, J.Y. Park: The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (< 10−3 Torr) to high pressure (> 10−3 Torr) to liquid interfaces, Phys. Chem. Chem. Phys. 9, 3500–3513 (2007)

    Article  CAS  Google Scholar 

  98. G.A. Somorjai, G. Rupprechter: Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible sum frequency generation (SFG) surface vibrational spectroscopy, J. Phys. Chem. B 103, 1623–1638 (1999)

    Article  CAS  Google Scholar 

  99. T. Dellwig, G. Rupprechter, H. Unterhalt, H.J. Freund: Bridging the pressure and materials gaps: High pressure sum frequency generation study on supported Pd nanoparticles, Phys. Rev. Lett. 85, 776–779 (2000)

    Article  CAS  Google Scholar 

  100. S. Giorgio, S.S. Joao, S. Nitsche, D. Chaudanson, G. Sitja, C.R. Henry: Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows, Ultramicroscopy 106, 503–507 (2006)

    Article  CAS  Google Scholar 

  101. C. Barth, A.S. Foster, C.R. Henry, A.L. Shluger: Recent trends in surface characterization and chemistry with high-resolution scanning force methods, Adv. Mater. 23, 477–501 (2011)

    Article  CAS  Google Scholar 

  102. O.H. Pakarinen, C. Barth, A.S. Foster, N.M. Nieminen, C.R. Henry: High-resolution scanning force microscopy of gold nanoclusters on the KBr(001) surface, Phys. Rev. B 73, 235428 (2006)

    Article  CAS  Google Scholar 

  103. J. Evans, A. Puig-Molina, M. Tromp: In situ EXAFS characterization of nanoparticulate catalysts, MRS Bull. 32, 1038–1043 (2007)

    Article  CAS  Google Scholar 

  104. O. Ducreux, B. Rebours, J. Lynch, M. Roy-Auberger, D. Bazin: Microstructure of supported cobalt Fischer–Tropsch Catalysts, Oil Gas Sci. Technol. 64, 49–62 (2009)

    Article  CAS  Google Scholar 

  105. J.D. Grunwaldt, B.S. Clausen: Combining XRD and EXAFS with on-line catalytic studies for in situ characterization of catalysts, Top. Catal. 18, 37–43 (2002)

    Article  CAS  Google Scholar 

  106. N.A. Khan, A. Uhl, S. Shaikhutdinov, H.J. Freund: Alumina supported model Pd–Ag catalysts: A combined STM, XPS, TPD and IRAS study, Surf. Sci. 600, 1849–1853 (2006)

    Article  CAS  Google Scholar 

  107. B.J. McIntyre, M. Salmeron, G.A. Somorjai: A variable pressure/temperature scanning tunneling microscope for surface science and catalysis studies, Rev. Sci. Instrum. 64, 687–691 (1993)

    Article  CAS  Google Scholar 

  108. L. Guczi, D. Bazin, I. Kovacs, L. Borko, Z. Schay, J. Lynch, P. Parent, C. Lafon, G. Stefler, Z. Koppany, I. Sajo: Structure of Pt–Co/Al2O3 and Pt–Co/NaY bimetallic catalysts: Characterization by in situ EXAFS, TPR, XPS and by activity in Co (carbon monoxide) hydrogenation, Top. Catal. 20, 129–139 (2002)

    Article  CAS  Google Scholar 

  109. M. Salmeron, R. Schlögl: Ambient pressure photoelectron spectroscopy: A new tool for surface science and nanotechnology, Surf. Sci. Rep. 63, 169–199 (2008)

    Article  CAS  Google Scholar 

  110. S. Agnoli, G. Barcaro, A. Barolo, A. Fortunelli, M. Sambi, F. Sedona, M. Marino, T. Di Skala, G. Granozzi: Interplay between layer-resolved chemical composition and electronic structure in a Sn/Pt(110) surface alloy, J. Phys. Chem. C 115, 14264–14269 (2011)

    Article  CAS  Google Scholar 

  111. P. Nolte, A. Stierle, O. Balmes, V. Srot, P.A. van Aken, L.P.H. Jeurgens, H. Dosch: Carbon incorporation and deactivation of MgO(001) supported Pd nanoparticles during CO oxidation, Catal. Today 145, 243–250 (2009)

    Article  CAS  Google Scholar 

  112. P.L. Gai, E.D. Boyes, S. Helveg, P.L. Hansen, S. Giorgio, C.R. Henry: Atomic-resolution environmental transmission electron microscopy for probing gas–solid reactions in heterogeneous catalysis, MRS Bull. 32, 1044–1050 (2007)

    Article  CAS  Google Scholar 

  113. Z.Y. Li, J.P. Wilcoxon, F. Yin, Y. Chen, R.E. Palmer, R.L. Johnston: Structures and optical properties of 4–5 nm bimetallic AgAu nanoparticles, Faraday Discuss. 138, 363–373 (2008)

    Article  CAS  Google Scholar 

  114. B.A. Korgel, D.C. Lee, T. Hanrath, M. José-Yacaman, A. Thesen, M. Matijevic, R. Kilaas, C. Kisielowski, A.C. Diebold: Application of aberration-corrected TEM and image simulation to nanoelectronics and nanotechnology, IEEE Trans. Semicond. Manuf. 19, 391–396 (2006)

    Article  Google Scholar 

  115. Z.Y. Li, N.P. Young, M. Di Vece, S. Palomba, R.E. Palmer, A.L. Bleloch, B.C. Curley, R.L. Johnston, J. Jiang, J. Yuan: Three-dimensional atomic-scale structure of size-selected gold nanoclusters, Nature 451, 46–48 (2008)

    Article  CAS  Google Scholar 

  116. P.L.B. Hansen, J. Wagner, S. Helveg, J.R. Rostrup-Nielsen, B.S. Clausen, H. Topsoe: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals, Science 295, 2053–2055 (2002)

    Article  CAS  Google Scholar 

  117. G. Rupprechter: Sum frequency laser spectroscopy during chemical reactions on surfaces, MRS Bull. 32, 1031–1037 (2007)

    Article  CAS  Google Scholar 

  118. D. Belic, R.L. Chantry, Z.Y. Li, S.A. Brown: Ag-Au nanoclusters: Structure and phase segregation, App. Phys. Lett. 99, 171914 (2011)

    Article  CAS  Google Scholar 

  119. M. Baumer, J. Libuda, K.M. Neyman, N. Rosch, G. Rupprechter, H.J. Freund: Adsorption and reaction of methanol on supported palladium catalysts: Microscopic-level studies from ultrahigh vacuum to ambient pressure conditions, Phys. Chem. Chem. Phys. 9, 3541–3548 (2007)

    Article  CAS  Google Scholar 

  120. O. Seiferth, K. Wolter, B. Dillmann, G. Klivenyi, H.J. Freund, D. Scarano, A. Zecchina: IR investigations of CO2 adsorption on chromia surfaces: Cr2O3 (0001)/Cr(110) versus polycrystalline α-Cr2O3, Surf. Sci. 421, 176–190 (1999)

    Article  CAS  Google Scholar 

  121. M. Yulikov, M. Sterrer, T. Risse, H.J. Freund: Gold atoms and clusters on MgO(100) films; an EPR and IRAS study, Surf. Sci. 603, 1622–1628 (2009)

    Article  CAS  Google Scholar 

  122. F. Baletto, R. Ferrando: Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys. 77, 371–423 (2005)

    Article  CAS  Google Scholar 

  123. L.D. Marks: Experimental studies of small particle structures, Rep. Prog. Phys. 57, 603–649 (1994)

    Article  CAS  Google Scholar 

  124. G. Wulff: On the question of speed of growth and dissolution of crystal surfaces, Z. Krystallogr. 34, 449–530 (1901)

    CAS  Google Scholar 

  125. R. Ferrando, G. Rossi, F. Nita, G. Barcaro, A. Fortunelli: Interface-stabilized phases of metal-on-oxide nanodots, ACS Nano 2, 1849–1856 (2008)

    Article  CAS  Google Scholar 

  126. F. Baletto, R. Ferrando, A. Fortunelli, F. Montalenti, C. Mottet: Crossover among structural motifs in transition and noble-metal clusters, J. Chem. Phys. 116, 3856–3863 (2002)

    Article  CAS  Google Scholar 

  127. D.J. Wales, J.P.K. Doye, A. Dullweber, M.P. Hodges, F.Y. Naumkin, F. Calvo, J. Hernandez-Rojas, T.F. Middleton: The Cambridge Cluster Database, http://www-wales.ch.cam.ac.uk/CCD.html

  128. G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, R. Ferrando: Magic polyicosahedral core-shell clusters, Phys. Rev. Lett. 93, 105503 (2004)

    Article  CAS  Google Scholar 

  129. J.P.K.L. Doye Meyer: Mapping the magic numbers in binary Lennard-Jones clusters, Phys. Rev. Lett. 95, 063401 (2005)

    Article  CAS  Google Scholar 

  130. S.M. Ghazi, S. Zorriasatein, D.G. Kanhere: Building clusters atom-by-Atom: From local order to global order, J. Phys. Chem. A 113, 2659–2662 (2009)

    Article  CAS  Google Scholar 

  131. A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. Curley, L. Lloyd, G. Tarbuck, R. Johnston: Global optimization of bimetallic cluster structures. I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems, J. Chem. Phys. 122, 194308 (2005)

    Article  CAS  Google Scholar 

  132. G. Rossi, R. Ferrando, A. Rapallo, A. Fortunelli, B. Curley, L. Lloyd, R. Johnston: Global optimization of bimetallic cluster structures. II. Size-matched Ag-Pd, Ag-Au, and Pd-Pt systems, J. Chem. Phys. 122, 194309 (2005)

    Article  CAS  Google Scholar 

  133. F.C. Frank, J.S. Kasper: Complex alloy structures regarded as sphere packing 1: Definitions and basic principles, Acta Cryst. 11, 184–190 (1958)

    Article  CAS  Google Scholar 

  134. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn: Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett. 53, 1951–1953 (1984)

    Article  CAS  Google Scholar 

  135. B. Dubost, J.M. Lang, M. Tanaka, P. Sainfort, M. Audier: Large AlCuLi single quasicrystals with triacontahedral solidification morphology, Nature 324, 48–50 (1986)

    Article  CAS  Google Scholar 

  136. R.H. Doye, J.P.K. Doye: Tetrahedral global minimum for the 98-atom Lennard-Jones cluster, Phys. Rev. E 60, R6320–R6322 (1999)

    Article  Google Scholar 

  137. L.O. Paz-Borbon, R.L. Johnston, G. Barcaro, A. Fortunelli: Structural motifs, mixing, and segregation effects in 38-atom binary clusters, J. Chem. Phys. 128, 134517 (2008)

    Article  CAS  Google Scholar 

  138. L.O. Paz-Borbon, R.L. Johnston, G. Barcaro, A. Fortunelli: A mixed structural motif in 34-atom Pd-Pt clusters, J. Phys. Chem. C 111, 2936–2941 (2007)

    Article  CAS  Google Scholar 

  139. H. Häkkinen, M. Moseler, U. Landman: Bonding in Cu, Ag, and Au clusters: Relativistic effects, trends, and surprises, Phys. Rev. Lett. 89, 033401 (2002)

    Article  CAS  Google Scholar 

  140. J.H. Sinfelt: Structure of metal catalysts, Rev. Mod. Phys. 51, 569–589 (1979)

    Article  CAS  Google Scholar 

  141. S. Bulusu, X. Li, L.S. Wang, X.C. Zeng: Evidence of hollow golden cages, Proc. Natl. Acad. Sci. USA 103, 8326–8330 (2006)

    Article  CAS  Google Scholar 

  142. N. Veldeman, E. Janssens, K. Hansen, J. De Haeck, R.E. Silverans, P. Lievens: Stability and dissociation pathways of doped Au n X+ clusters (X = Y, Er, Nb), Faraday Discuss. 138, 147–162 (2008)

    Article  CAS  Google Scholar 

  143. R. Ferrando, G. Rossi, A.C. Levi, Z. Kuntová, F. Nita, G. Barcaro, A. Fortunelli, A. Jelea, C. Mottet, J. Goniakowski: Structures of metal nanoparticles adsorbed on MgO(001). I. Ag and Au, J. Chem. Phys. 130, 174702 (2009)

    Article  CAS  Google Scholar 

  144. J. Goniakowski, A. Jelea, C. Mottet, G. Barcaro, A. Fortunelli, Z. Kuntová, F. Nita, A.C. Levi, G. Rossi, R. Ferrando: Structures of metal nanoparticles adsorbed on MgO(001). II. Pt and Pd, J. Chem. Phys. 130, 174703 (2009)

    Article  CAS  Google Scholar 

  145. O. Robach, G. Renaud, A. Barbier: Structure and morphology of the Ag/MgO(001) interface during in situ growth at room temperature, Phys. Rev. B 60, 5858–5871 (1998)

    Article  Google Scholar 

  146. C. Revenant, G. Renaud, R. Lazzari, J. Jupille: Growth of Ag on MgO(001) studied in situ by grazing incidence small angle X-ray scattering, Nucl. Instrum. Methods B 246, 112–117 (2006)

    Article  CAS  Google Scholar 

  147. K. Højrup Hansen, T. Worren, S. Stempel, E. Lægsgaard, M. Bäumer, H.J. Freund, F. Besenbacher, I. Stensgaard: Palladium nanocrystals on Al2O3: Structure and adhesion energy, Phys. Rev. Lett. 83, 4120–4123 (1999)

    Article  Google Scholar 

  148. J. Olander, R. Lazzari, J. Jupille, B. Mangili, J. Goniakowski, G. Renaud: Size- and temperature-dependent epitaxy for a strong film-substrate mismatch: The case of Pt/MgO(001), Phys. Rev. B 76, 075409 (2007)

    Article  CAS  Google Scholar 

  149. W. Tian, H.P. Sun, X.Q. Pan, J.H. Yu, M. Yeadon, C.B. Boothroyd, Y.P. Feng, R.A. Lukaszew, R. Clarke: Hexagonal close-packed Ni nanostructures grown on the (001) surface of MgO, Appl. Phys. Lett. 86, 131915 (2005)

    Article  CAS  Google Scholar 

  150. G. Barcaro, A. Fortunelli, G. Rossi, F. Nita, R. Ferrando: Epitaxy, truncations, and overhangs in palladium nanoclusters adsorbed on MgO(001), Phys. Rev. Lett. 98, 156101 (2007)

    Article  CAS  Google Scholar 

  151. R. Ferrando, G. Barcaro, A. Fortunelli: Surface-supported gold cages, Phys. Rev. Lett. 102, 216102 (2009)

    Article  CAS  Google Scholar 

  152. G. Barcaro, R. Ferrando, A. Fortunelli, G. Rossi: Exotic supported CoPt nanostructures: From clusters to wires, J. Phys. Chem. Lett. 1, 111–115 (2010)

    Article  CAS  Google Scholar 

  153. L. Favre, V. Dupuis, E. Bernstein, P. Melinon, A. Perez: Structural and magnetic properties of CoPt mixed clusters, Phys. Rev. B 74, 014439 (2006)

    Article  CAS  Google Scholar 

  154. Y. Gauthier, M. Schmid, S. Padovani, E. Lundgren, V. Bus, G. Kresse, J. Redinger, P. Varga: Adsorption sites and ligand effect for CO on an alloy surface: A direct view, Phys. Rev. Lett. 87, 036103 (2001)

    Article  CAS  Google Scholar 

  155. E. Aprà , F. Baletto, R. Ferrando, A. Fortunelli: Amorphization mechanism of icosahedral metal nanoclusters, Phys. Rev. Lett. 93, 065502 (2004)

    Article  CAS  Google Scholar 

  156. M.E. Gruner, G. Rollmann, P. Entel, M. Farle: Multiply twinned morphologies of FePt and CoPt nanoparticles, Phys. Rev. Lett. 100, 087203 (2008)

    Article  CAS  Google Scholar 

  157. G. Rossi, R. Ferrando, C. Mottet: Structure and chemical ordering in CoPt nanoalloys, Faraday Discuss. 138, 193–210 (2008)

    Article  CAS  Google Scholar 

  158. J. Penuelas, P. Andreazza, C. Andreazza-Vignolle, H.C.N. Tolentino, M. De Santis, C. Mottet: Controlling structure and morphology of CoPt nanoparticles through dynamical or static coalescence effects, Phys. Rev. Lett. 100, 115502 (2008)

    Article  CAS  Google Scholar 

  159. D. Ferrer, A. Torres-Castro, X. Gao, S. Sepúlveda-Guzmán, U. Ortiz-Méndez, M. José-Yacamán: Three-layer core/shell structure in Au-Pd bimetallic nanoparticles, Nano Lett. 7, 1701–1705 (2007)

    Article  CAS  Google Scholar 

  160. L. Rubinovich, M. Polak: Prediction of distinct surface segregation effects due to coordination-dependent bond-energy variations in alloy nanoclusters, Phys. Rev. B 80, 045404 (2009)

    Article  CAS  Google Scholar 

  161. H.J. Freund: Model studies in heterogeneous catalysis, Chem. Eur. J. 16, 9384–9397 (2010)

    Article  CAS  Google Scholar 

  162. M. Sahimi, H. Hamzehpour: Efficient computational strategies for solving global optimization problems, Comput. Sci. Eng. 12, 74–82 (2010)

    Article  Google Scholar 

  163. R. Ferrando, A. Fortunelli, R.L. Johnston: Searching for the optimum structures of alloy nanoclusters, Phys. Chem. Chem. Phys. 10, 640–649 (2008)

    Article  CAS  Google Scholar 

  164. E. Aprá, R. Ferrando, A. Fortunelli: Density-functional global optimization of gold nanoclusters, Phys. Rev. B 73, 205414 (2006)

    Article  CAS  Google Scholar 

  165. G. Barcaro, E. Aprà , A. Fortunelli: Structure of Ag clusters grown on Fs-defect sites of an MgO(100) surface, Chem. Eur. J. 13, 6408–6418 (2007)

    Article  CAS  Google Scholar 

  166. G. Barcaro, A. Fortunelli: A magic Pd-Ag binary cluster on the Fs-Defected MgO(100) surface, J. Phys. Chem. C 111, 11384–11389 (2007)

    Article  CAS  Google Scholar 

  167. G. Barcaro, A. Fortunelli: A study of bimetallic Cu-Ag, Au-Ag and Pd-Ag clusters adsorbed on a double-vacancy-defected MgO(100) terrace, Faraday Disc. 138, 37–47 (2008)

    Article  CAS  Google Scholar 

  168. I.V. Yudanov, R. Sahnoun, K.M. Neyman, N. Rösch: Metal nanoparticles as models of single crystal surfaces and supported catalysts: Density functional study of size effects for CO/Pd(111), J. Chem. Phys. 117, 9887–9896 (2002)

    Article  CAS  Google Scholar 

  169. F.R. Negreiros, Z. Kuntová, G. Barcaro, G. Rossi, R. Ferrando, A. Fortunelli: Structures of gas-phase Ag-Pd nanoclusters: A computational study, J. Chem. Phys. 132, 234703 (2010)

    Article  CAS  Google Scholar 

  170. N. Toshima, Y. Shiraishi, T. Teranishi, M. Miyake, T. Tominaga, H. Watanabe, W. Brijoux, H. Bönnemann, G. Schmid: Various ligand-stabilized metal nanoclusters as homogeneous and heterogeneous catalysts in the liquid phase, Appl. Organomet. Chem. 15, 178–196 (2001)

    Article  CAS  Google Scholar 

  171. L. Vattuone, L. Savio, F. Pirani, D. Cappelletti, M. Okada, M. Rocca: Interaction of rotationally aligned and of oriented molecules in gas phase and at surfaces, Prog. Surf. Sci. 85, 92–160 (2010)

    Article  CAS  Google Scholar 

  172. S. Guerin, B.E. Hayden, C.E. Lee, C. Mormiche, J.R. Owen, A.E. Russell: Combinatorial electrochemical screening of fuel cell electrocatalysts, J. Comb. Chem. 6, 149–158 (2004)

    Article  CAS  Google Scholar 

  173. S. Guerin, B.E. Hayden, C.E. Lee, C. Mormiche, A.E. Russell: High-throughput synthesis and screening of ternary metal alloys for electrocatalysis, J. Phys. Chem. B 110, 14355–14362 (2006)

    Article  CAS  Google Scholar 

  174. J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen: Towards the computational design of solid catalysts, Nat. Chem. 1, 37–46 (2009)

    Article  CAS  Google Scholar 

  175. J.K. Nørskov, T. Bligaard, A. Logadottir, S. Bahn, L.B. Hansen, M. Bollinger, H. Bengaard, B. Hammer, Z. Sljivancanin, M. Mavrikakis, Y. Xu, S. Dahl, C.J.H. Jacobsen: Universality in heterogeneous catalysis, J. Catal. 209, 275–278 (2002)

    Article  CAS  Google Scholar 

  176. B. Hammer, J.K. Norskov: Theoretical surface science and catalysis – Calculations and concepts, Adv. Catal. 45, 71–129 (2000)

    Article  CAS  Google Scholar 

  177. P. Sabatier: Hydrogénations et déshydrogénations par catalyse, Ber. Deutsch. Chem. Gesellschaft 44, 1984–2001 (1911)

    Article  CAS  Google Scholar 

  178. M.P. Andersson, T. Bligaard, A. Kustov, K.E. Larsen, J. Greeley, T. Johannessen, C.H. Christensen, J.K. Nørskov: Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts, J. Catal. 239, 501–506 (2006)

    Article  CAS  Google Scholar 

  179. K.M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G.A. Somorjai: Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett. 7, 3097–3101 (2007)

    Article  CAS  Google Scholar 

  180. U. Heiz, F. Vanolli, A. Sanchez, W.D. Schneider: Size-dependent molecular dissociation on mass-selected, supported metal clusters, J. Am. Chem. Soc. 120, 9668–9671 (1998)

    Article  CAS  Google Scholar 

  181. L.M. Molina, S. Lee, K. Sell, G. Barcaro, A. Fortunelli, B. Lee, S. Seifert, R.E. Winans, J.W. Elam, M.J. Pellin, I. Barke, V. von Oeynhausen, Y. Lei, R.J. Meyer, J.A. Alonso, A.F. Rodriguez, A. Kleibert, S. Giorgio, C.R. Henry, K.H. Meiwes-Broer, S. Vajda: Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: A joint experimental and theoretical study, Catal. Today 160, 116–130 (2011)

    Article  CAS  Google Scholar 

  182. R.A. Van Santen: Complementary structure sensitive and insensitive catalytic relationships, Acc. Chem. Res. 42, 57–66 (2009)

    Article  CAS  Google Scholar 

  183. N. Nilius, T. Risse, S. Schauermann, S. Shaikhutdinov, M. Sterrer, H.J. Freund: Model studies in catalysis, Top. Catal. 54, 4–12 (2011)

    Article  CAS  Google Scholar 

  184. L. Vattuone, L. Savio, M. Rocca: Bridging the structure gap: Chemistry of nanostructured surfaces at well-defined defects, Surf. Sci. Rep. 63, 101–168 (2008)

    Article  CAS  Google Scholar 

  185. B.L. Kniep, T. Ressler, A. Rabis, F. Girgsdies, M. Baenitz, F. Steglich, R. Schlögl: Rational design of nanostructured copper–zinc oxide catalysts for the steam reforming of methanol, Angew. Chem. Int. Ed. 43, 112–115 (2004)

    Article  CAS  Google Scholar 

  186. T. Ressler, B.L. Kniep, I. Kasatkin, R. Schlögl: The microstructure of copper zinc oxide catalysts: Bridging the materials gap, Angew. Chem. Int. Ed. 44, 4704–4707 (2005)

    Article  CAS  Google Scholar 

  187. V. Johanek, M. Laurin, A.W. Grant, B. Kasemo, C.R. Henry, J. Libuda: Fluctuations and bistabilities on catalyst nanoparticles, Science 304, 1639–1644 (2004)

    Article  CAS  Google Scholar 

  188. D. Teschner, J. Borsodi, A. Wootsch, Z. Révay, M. Hävecker, A. Knop-Gericke, S.D. Jackson, R. Schlögl: The roles of subsurface carbon and hydrogen in palladium-catalyzed alkyne hydrogenation, Science 320, 86–89 (2008)

    Article  CAS  Google Scholar 

  189. M. Cabie, S. Giorgio, C.R. Henry, M. Rosa Axet, K. Philippot, B. Chaudret: Direct observation of the reversible changes of the morphology of Pt nanoparticles under gas environment, J. Phys. Chem. C 114, 2160–2163 (2010)

    Article  CAS  Google Scholar 

  190. F. Mittendorfer, N. Seriani, O. Dubay, G. Kresse: Morphology of mesoscopic Rh and Pd nanoparticles under oxidizing conditions, Phys. Rev. B 76, 233413 (2007)

    Article  CAS  Google Scholar 

  191. K. Zorn, S. Giorgio, E. Halwax, C.R. Henry, H. Grönbeck, G. Rupprechter: CO oxidation on technological Pd-Al2O3 catalysts: Oxidation state and activity, J. Phys. Chem. C 115, 1103–1111 (2011)

    Article  CAS  Google Scholar 

  192. M. Haruta: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C, Chem. Lett. 16, 405–409 (1987)

    Article  Google Scholar 

  193. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima: Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal. 115, 301–309 (1989)

    Article  CAS  Google Scholar 

  194. M. Valden, X. Lai, D.W. Goodman: Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281, 1647–1650 (1998)

    Article  CAS  Google Scholar 

  195. A. Stephen, K. Hashmi, G.J. Hutchings: Gold catalysis, Angew. Chem. Int. Ed. 45, 7896–7936 (2006)

    Article  CAS  Google Scholar 

  196. G.J. Hutchings, M. Haruta: A golden age of catalysis: A perspective, Appl. Catal. A 291, 2–5 (2005)

    Article  CAS  Google Scholar 

  197. G.C. Bond, C. Louis, D.T. Thomson: Catalysis by Gold (Imperial College, London 2006)

    Google Scholar 

  198. A.A. Herzing, C.J. Kiely, A.F. Carley, P. Landon, G.J. Hutchings: Identification of active gold nanoclusters on iron oxide supports for CO oxidation, Science 321, 1331–1335 (2008)

    Article  CAS  Google Scholar 

  199. D. Bazin: Bridging nanoscience and surface science to understand heterogeneous catalysis, Macromol. Res. 14, 230–234 (2006)

    Article  CAS  Google Scholar 

  200. Y. Lei, F. Mehmood, S. Lee, J.P. Greeley, B. Lee, S. Seifert, R.E. Winans, J.W. Elam, R.J. Meyer, P.C. Redfern, D. Teschner, R. Schlögl, M.J. Pellin, L.A. Curtiss, S. Vajda: Increased silver activity for direct propylene epoxidation via sub-nanometer size effects, Science 328, 224–228 (2010)

    Article  CAS  Google Scholar 

  201. F.R. Negreiros, E. Aprà , G. Barcaro, L. Sementa, S. Vajda, A. Fortunelli: A first-principles theoretical approach to heterogeneous nanocatalysis, Nanoscale 4, 1208–1219 (2012)

    Article  CAS  Google Scholar 

  202. S. Chretien, S.K. Buratto, H. Metiu: Catalysis by very small Au clusters, Curr. Opin. Solid State Mater. Sci. 11, 62–75 (2007)

    Article  CAS  Google Scholar 

  203. A.J. Dent, J. Evans, S.G. Fiddy, B. Jyoti, M.A. Newton, M. Tromp: Structure–performance relationships of Rh and RhPd alloy supported catalysts using combined EDE/DRIFTS/MS, Faraday Discuss. 138, 287–300 (2008)

    Article  CAS  Google Scholar 

  204. S.C. Parker, C.T. Campbell: Reactivity and sintering kinetics of Au/TiO(2)(110) model catalysts: Particle size effects, Top. Catal. 44, 3–13 (2007)

    Article  CAS  Google Scholar 

  205. M.C. Saint-Lager, I. Laoufi, A. Bailly, O. Robach, S. Garaudee, P. Dolle: Catalytic properties of supported gold nanoparticles: New insights into the size-activity relationship gained from in operando measurements, Faraday Discuss. 152, 253–265 (2011)

    Article  CAS  Google Scholar 

  206. J.K. Edwards, A.F. Carley, A.A. Herzing, C.J. Kiely, G.J. Hutchings: Direct synthesis of hydrogen peroxide from H2 and O2 using supported Au–Pd catalysts, Faraday Discuss. 138, 225–239 (2008)

    Article  CAS  Google Scholar 

  207. P. West, R.L. Johnston, G. Barcaro, A. Fortunelli: The effect of CO and H chemisorption on the chemical ordering of bimetallic clusters, J. Phys. Chem. C 114, 19678–19686 (2010)

    Article  CAS  Google Scholar 

  208. J.H. Sinfelt: Structure of bimetallic clusters, Acc. Chem. Res. 20, 134–139 (1987)

    Article  CAS  Google Scholar 

  209. J.H. Sinfelt: Supported “Bimetallic Cluster” Catalysts, J. Catal. 29, 308–315 (1973)

    Article  CAS  Google Scholar 

  210. J.A. Rodriguez, D.W. Goodman: The nature of the metal-metal bond in bimetallic surfaces, Science 257, 897–903 (1992)

    Article  CAS  Google Scholar 

  211. M. Cerbelaud, R. Ferrando, G. Barcaro, A. Fortunelli: Optimization of chemical ordering in AgAu nanoalloys, Phys. Chem. Chem. Phys. 13, 10232–10240 (2011)

    Article  CAS  Google Scholar 

  212. P.P. Wells, Y. Qian, C.R. King, R.J.K. Wiltshire, E.M. Crabb, L.E. Smart, D. Thompsett, A.E. Russel: To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells, Faraday Discuss. 138, 273–285 (2008)

    Article  CAS  Google Scholar 

  213. M.T.M. Koper, T.E. Shubina, R.A. van Santen: Periodic density functional study of co and oh adsorption on Pt-Ru alloy surfaces: Implications for CO tolerant fuel cell catalysts, J. Phys. Chem. B 106, 686–692 (2002)

    Article  CAS  Google Scholar 

  214. A.C.A. de Vooys, R.A. van Santen, J.A.R. van Veen: Electrocatalytic reduction of NO3 on palladium/copper electrodes, J. Mol. Catal. A – Chem. 154, 203–215 (2000)

    Article  Google Scholar 

  215. M. Chen, D. Kumar, C.-W. Yi, D.W. Goodman: The promotional effect of gold in catalysis by palladium-gold, Science 310, 291–293 (2005)

    Article  CAS  Google Scholar 

  216. D.I. Enache, J.K. Edwards, P. Landon, B. Solsona-Espriu, A.F. Carley, A.A. Herzing, M. Watanabe, C.J. Kiely, D.W. Knight, G.J. Hutchings: Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/ TiO2 catalysts, Science 311, 362–365 (2006)

    Article  CAS  Google Scholar 

  217. A. Sandoval, A. Aguilar, C. Louis, A. Traverse, R. Zanella: Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: High activity and stability in CO oxidation, J. Catal. 281, 40–49 (2011)

    Article  CAS  Google Scholar 

  218. E. Falletta, C. Della Pina, M. Rossi, Q. He, C.J. Kiely, G.J. Hutchings: Enhanced performance of the catalytic conversion of allyl alcohol to 3-hydroxypropionic acid using bimetallic gold catalysts, Faraday Discuss. 152, 367–379 (2011)

    Article  CAS  Google Scholar 

  219. J.M. Thomas, R.D. Adams, E.M. Boswell, B. Captain, H. Gronbeck, R. Raja: Synthesis, characterization, electronic structure and catalytic performance of bimetallic and trimetallic nanoparticles containing tin, Faraday Discuss. 138, 301–315 (2008)

    Article  CAS  Google Scholar 

  220. K.A. Willets, R.P. Van Duyne: Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    Article  CAS  Google Scholar 

  221. W. Goddard III, B. Merinova, A. van Duina, T. Jacoba, M. Blancoa, V. Molineroa, S.S. Janga, Y.H. Janga: Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes, Mol. Simulat. 32, 251–268 (2006)

    Article  CAS  Google Scholar 

  222. K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W.-Q. Deng, W.A. Goddard III: Development of the ReaxFF Reactive Force Field for Describing Transition Metal Catalyzed Reactions, with Application to the Initial Stages of the Catalytic Formation of Carbon Nanotubes, J. Phys. Chem. A 109, 493–499 (2005)

    Article  CAS  Google Scholar 

  223. G. Mie: Contributions to the optics of turbid media, particularly solutions of colloidal metals, Ann. Phys. 25, 377–445 (1908)

    Article  CAS  Google Scholar 

  224. http://pubs.acs.org/toc/chreay/111/6 (last accessed November 2012)

  225. http://pubs.acs.org/page/vi/2011/plasmon_resonances.html (last accessed November 2012)

  226. http://pubs.acs.org/page/ancac3/vi/3 (last accessed November 2012)

  227. G.V. Hartland: Optical studies of dynamics in noble metal nanostructures, Chem. Rev. 111, 3858–3887 (2011)

    Article  CAS  Google Scholar 

  228. J.P. Desclaux, P. Pyykkö: Dirac–Fock one-centre calculations. The molecules CuH, AgH and AuH including p-type symmetry functions, Chem. Phys. Letters 39, 300–303 (1976)

    Article  CAS  Google Scholar 

  229. J. Zhao, A.O. Pinchuk, J.M. McMahon, S. Li, L.K. Ausman, A.L. Atkinson, G.C. Schatz: Methods for describing the electromagnetic properties of silver and gold nanoparticles, Acc. Chem. Res. 41, 1710–1720 (2008)

    Article  CAS  Google Scholar 

  230. B. T. Draine, P. J. Flatau: User Guide to the Discrete Dipole Approximation Code Ddscat 6.1, http://Arxiv.Org/Abs/Astro-Ph/0409262v2 (2004)

  231. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B 107, 668–677 (2003)

    Article  CAS  Google Scholar 

  232. C. Noguez: Surface plasmons on metal nanoparticles: The influence of shape and physical environment, J. Phys. Chem. C 111, 3806–3819 (2007)

    Article  CAS  Google Scholar 

  233. E. Ringe, J.M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G.C. Schatz, L.D. Marks, R.P. Van Duyne: Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: A systematic single-particle approach, J. Phys. Chem. C 114, 12511–12516 (2010)

    Article  CAS  Google Scholar 

  234. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, T. Li: Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications, J. Phys. Chem. B 109, 13857–13870 (2005)

    Article  CAS  Google Scholar 

  235. P.K. Jain, K. Seok Lee, I.H. El-Sayed, M.A. El-Sayed: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine, J. Phys. Chem. B 110, 7238–7248 (2006)

    Article  CAS  Google Scholar 

  236. H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermeì, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée: Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO2 nanoparticles, Nano Lett. 9, 3463–3469 (2009)

    Article  CAS  Google Scholar 

  237. A. Moores, F. Goettmann: The plasmon band in noble metal nanoparticles: An introduction to theory and applications, New J. Chem. 30, 1121–1132 (2006)

    Article  CAS  Google Scholar 

  238. R. Ruppin: Surface modes of two spheres, Phys. Rev. B 26, 3440–3444 (1982)

    Article  CAS  Google Scholar 

  239. A. Zangwill, P. Soven: Density-functional approach to local-field effects in finite systems: Photoabsorption in the rare gases, Phys. Rev. A 21, 1561–1572 (1980)

    Article  CAS  Google Scholar 

  240. M.E. Casida: All-electron local and gradient-corrected density-functional calculations of NA n dipole plorarizabilities for n = 1 − 6. In: Recent Advances in Density-Functional Methods, ed. by D.P. Chong (World Scientific, Singapore 1995)

    Google Scholar 

  241. W. Jacak, J. Krasnyj, J. Jacak, A. Chepok, L. Jacak, W. Donderowicz, D.Z. Hu, D.M. Schaadt: Undamped collective surface plasmon oscillations along metallic nanosphere chains, J. App. Phys. 108, 084304 (2010)

    Article  CAS  Google Scholar 

  242. K. Frey, J.C. Idrobo, M.L. Tiago, F. Reboredo, S. Öğüt: Quasiparticle gaps and exciton Coulomb energies in Si nanoshells: First-principles calculations, Phys. Rev. B 80, 153411 (2009)

    Article  CAS  Google Scholar 

  243. M. Quijada, A.G. Borisov, R. Díez Muiño: Time-dependent density functional calculation of the energy loss of antiprotons colliding with metallic nanoshells, Phys. Status Solidi (a) 205, 1312–1316 (2008)

    Article  CAS  Google Scholar 

  244. V.V. Kulish, P.M. Tomchuk: Optical properties of metal nanotubes and metal nanoshells, Surf. Sci. 602, 1045–1052 (2008)

    Article  CAS  Google Scholar 

  245. M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, C. Félix: Optical absorption of small silver clusters: Ag n (n = 4 − 22), J. Chem. Phys. 129, 194108 (2008)

    Article  CAS  Google Scholar 

  246. O.D. Haberlen, S.C. Chung, M. Stener, N. Rosch: From clusters to bulk: A relativistic density functional investigation on a series of gold clusters Au n , n = 6, ..., 147, J. Chem. Phys. 106, 5189–5201 (1997)

    Article  Google Scholar 

  247. R. Ahlrichs, S.D. Elliott: Clusters of aluminium, a density functional study, Phys. Chem. Chem. Phys. 1, 13–21 (1999)

    Article  CAS  Google Scholar 

  248. C.M. Aikens, S.Z. Li, G.C. Schatz: From discrete electronic states to plasmons: TDDFT optical absorption properties of Ag n (n = 10, 20, 35, 56, 84, 120) tetrahedral clusters, J. Phys. Chem. C 112, 11272–11279 (2008)

    Article  CAS  Google Scholar 

  249. H.E. Johnson, C.M. Aikens: Electronic structure and TDDFT optical absorption spectra of silver nanorods, J. Phys. Chem. A 113, 4445–4450 (2009)

    Article  CAS  Google Scholar 

  250. N. Durante, A. Fortunelli, M. Broyer, M. Stener: Optical properties of Au nanoclusters from TD-DFT calculations, J. Phys. Chem. C 115, 6277–6282 (2011)

    Article  CAS  Google Scholar 

  251. G. Barcaro, M. Broyer, N. Durante, A. Fortunelli, M. Stener: Alloying effects on the optical properties of Ag-Au nanoclusters from TDDFT calculations, J. Phys. Chem. C 115, 24085–24091 (2011)

    Article  CAS  Google Scholar 

  252. E. Cottancin, J. Lermé, M. Gaudry, M. Pellarin, J.-L. Vialle, M. Broyer: Size effects in the optical properties of AunAgnembedded clusters, Phys. Rev. B 62, 5179–5185 (2000)

    Article  CAS  Google Scholar 

  253. M. Broyer, E. Cottancin, J. Lermé, M. Pellarin, N. Del Fatti, F. Vallée, J. Burgin, C. Guillon, P. Langot: Optical properties and relaxation processes at femtosecond scale of bimetallic clusters, Faraday Discuss. 138, 137–145 (2008)

    Article  CAS  Google Scholar 

  254. M. Gaudry, J. Lermé, E. Cottancin, M. Pellarin, J.-L. Vialle, M. Broyer, B. Prével, M. Treilleux, P. Mélinon: Optical properties of (Au x Ag1-x) n clusters embedded in alumina: Evolution with size and stoichiometry, Phys. Rev. B 64, 085407 (2001)

    Article  CAS  Google Scholar 

  255. E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J.R. Huntzinger, J.L. Vialle, M. Broyer: Optical properties of noble metal clusters as a function of the size: Comparison between experiments and a semi-quantal theory, Theor. Chem. Acc. 116, 514–523 (2006)

    Article  CAS  Google Scholar 

  256. C. Noguez, I.L. Garzon: Optically active metal nanoparticles, Chem. Soc. Rev. 38, 757–771 (2009)

    Article  CAS  Google Scholar 

  257. A. Sanchez-Castillo, C. Noguez, I.L. Garzon: On the origin of the optical activity displayed by chiral-ligand-protected metallic nanoclusters, J. Am. Chem. Soc. 132, 1504–1505 (2010)

    Article  CAS  Google Scholar 

  258. S. Zhang, H. Wei, K. Bao, U. Hakanson, N.J. Halas, P. Nordlander, H. Xu: Chiral surface plasmon polaritons on metallic nanowires, Phys. Rev. Lett. 107, 096801 (2011)

    Article  CAS  Google Scholar 

  259. D.I. Garcia-Gutierrez, C.E. Gutierrez-Wing, L. Giovanetti, J.M. Ramallo-López, F.G. Requejo, M. José-Yacaman: Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles, J. Phys. Chem. B 109, 3813–3821 (2005)

    Article  CAS  Google Scholar 

  260. C. de Julian Fernandez, G. Mattei, E. Paz, R.L. Novak, L. Cavigli, L. Bogani, F.J. Palomares, P. Mazzoldi, A. Caneschi: Coupling between magnetic and optical properties of stable Au–Fe solid solution nanoparticles, Nanotechnology 21, 165701 (2010)

    Article  CAS  Google Scholar 

  261. C. Kumara, A. Dass: (AuAg)144(SR)60 alloy nanomolecules, Nanoscale 3, 3064–3067 (2011)

    Article  CAS  Google Scholar 

  262. J. Lermé, H. Baida, C. Bonnet, M. Broyer, E. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, M. Pellarin: Size dependence of the surface plasmon resonance damping in metal nanospheres, J. Phys. Chem. Lett. 1, 2922 (2010)

    Article  CAS  Google Scholar 

  263. C.M. Aikens: Effects of core distances, solvent, ligand, and level of theory on the TDDFT optical absorption spectrum of the thiolate-protected Au25 nanoparticle, J. Phys. Chem. A 113, 10811–10817 (2009)

    Article  CAS  Google Scholar 

  264. P.K. Jain, M.A. El-Sayed: Plasmonic coupling in noble metal nanostructures, Chem. Phys. Lett. 487, 153–164 (2010)

    Article  CAS  Google Scholar 

  265. S.M. Nie, S.R. Emery: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, S. R. Science 275, 1102–1106 (1997)

    CAS  Google Scholar 

  266. C. Maurizio, E. Trave, G. Perotto, V. Bello, D. Pasqualini, P. Mazzoldi, G. Battaglin, T. Cesca, C. Scian, G. Mattei: Enhancement of the Er3+ luminescence in Er-doped silica by few-atom metal aggregates, Phys. Rev. B 83, 195430 (2011)

    Article  CAS  Google Scholar 

  267. E. Trave, G. Mattei, P. Mazzoldi, G. Pellegrini, C. Scian, C. Maurizio, G. Battaglin: Sub-nanometric metallic Au clusters as efficient Er3+ sensitizers in silica, Appl. Phys. Lett. 89, 151121 (2006)

    Article  CAS  Google Scholar 

  268. V. Giannini, A.I. Fernandez-Domínguez, S.C. Heck, S.A. Maier: Plasmonic nanoantennas: Fundamentals and their use in controlling the radiative properties of nanoemitters, Chem. Rev. 111, 3888–3912 (2011)

    Article  CAS  Google Scholar 

  269. M. Lessard-Viger, M. Rioux, L. Rainville, D. Boudreau: FRET enhancement in multilayer core-shell nanoparticles, Nano Lett. 9, 3066–3071 (2009)

    Article  CAS  Google Scholar 

  270. M.A.H. Muhammed, A.K. Shaw, S.K. Pal, T. Pradeep: Quantum clusters of gold exhibiting FRET, J. Phys. Chem. C 112, 14324–14330 (2008)

    Article  CAS  Google Scholar 

  271. M.G. Papadopoulos (Ed.): Non-Linear Optical Properties of Matter: From Molecules to Condensed Phases (Springer, Berlin 2006)

    Google Scholar 

  272. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.F. Brevet: Multipolar second-harmonic generation in noble metal nanoparticles, J. Opt. Soc. Am. B 25, 955–960 (2008)

    Article  CAS  Google Scholar 

  273. M.A. Noginov, G. Zhu, V.I. Gavrilenko: Sensitized nonlinear emission of gold Nanoparticles, Opt. Express 15, 15648–15655 (2007)

    Article  CAS  Google Scholar 

  274. B.H. Sohn, J.M. Choi, S.I. Yoo, S.H. Yun, W.C. Zin, J.C. Jung, M. Kanehara, T. Hirata, T. Teranishi: Directed self-assembly of two kinds of nanoparticles utilizing monolayer films of diblock copolymer micelles, J. Am. Chem. Soc. 125, 6368–6369 (2003)

    Article  CAS  Google Scholar 

  275. G. Armelles, A. Cebollada, A. García-Martín, J.M. García-Martín, M.U. Gonzalez, J.B. Gonzalez-Díaz, E. Ferreiro-Vila, J.F. Torrado: Magnetoplasmonic nanostructures: Systems supporting both plasmonic and magnetic properties, J. Opt. A: Pure Appl. Opt. 11, 114023–114033 (2009)

    Article  CAS  Google Scholar 

  276. C. Wang, C. Xu, H. Zheng, S. Sun: Recent progress in syntheses and applications of Dumbbell-like nanoparticles, Adv. Mater. 21, 3045–3052 (2009)

    Article  CAS  Google Scholar 

  277. V.V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, R. Bratschitsch: Active magneto-plasmonics in hybrid metal-ferromagnet structures, Nat. Photonics 4, 107–111 (2010)

    Article  CAS  Google Scholar 

  278. L. Bogani, L. Cavigli, C. Julián Fernández, P. Mazzoldi, G. Mattei, M. Gurioli, M. Dressel, D. Gatteschi: Photocoercivity of nano-stabilized Au:Fe superparamagnetic nanoparticles, Adv. Mater. 22, 4054–4058 (2010)

    Article  CAS  Google Scholar 

  279. G. Rollmann, M.E. Gruner, A. Hucht, R. Meyer, P. Entel, M.L. Tiago, J.R. Chelikowsky: Shellwise mackay transformation in iron nanoclusters, Phys. Rev. Lett. 99, 083402 (2007)

    Article  CAS  Google Scholar 

  280. A.I. Shapiro, P. Rooney, M. Tran, F. Hellman, K. Ring, K. Kavanagh, B. Rellinghauss, D. Weller: Growth-induced magnetic anisotropy and clustering in vapor-deposited Co-Pt alloy films, Phys. Rev. B 60, 12826–12836 (1999)

    Article  CAS  Google Scholar 

  281. O. Ersen, V. Parasote, V. Pierron-Bohnes, N.C. Cadeville, C. Ulhaq-Bouillet: Growth conditions to optimize chemical order and magnetic properties in molecular-beam-epitaxy-grown CoPt/MgO(001) thin films, J. Appl. Phys. 93, 2987–2995 (2003)

    Article  CAS  Google Scholar 

  282. J.J. Fisher: Dispersion strengthened ferritic alloy for use in liquid-metal fast breeder reactors, US Patent 4075010 (1978)

    Google Scholar 

  283. M.L. Hamilton, D.S. Gelles, R.J. Lobsinger, G.D. Johnson, W.F. Brown, M.M. Paxton, R.J. Puigh, C.R. Eiholzer, C. Martinez, M.A. Blotter: Fabrication technological development of the oxide dispersion strengthened alloy MA957 for fast reactor applications. PNL-13168 (Pac. Northwest Lab, Richland, 2000)

    Google Scholar 

  284. A. Kimura, H.S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata: High burnup fuel cladding materials R&D for advanced nuclear systems: Nano-sized oxide dispersion strengthening steels, J. Nucl. Sci. Technol. 44, 323–328 (2007)

    Article  CAS  Google Scholar 

  285. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer: Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys, J. Nucl. Mater. 341, 103 (2005)

    Article  CAS  Google Scholar 

  286. M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. Kempe, R. Lindau, H. Zimmermann: Eurofer97 tensile, charpy, creep, and structural tests, Forsch. Karlsruhe FZKA6911 (2003)

    Google Scholar 

  287. M.K. Miller, E.A. Kenik, K.F. Russell, L. Heatherley, D.T. Hoelzer, P.J. Maziasz: Atom probe tomography of nanoscale particles in ODS ferritic alloys, Mater. Sci. Eng. A353, 140 (2003)

    CAS  Google Scholar 

  288. M.J. Alinger: On the formation and stability of nanometer scale precipitates in ferritic alloys during processing and high temperature service. Ph.D. Thesis (Univ. Calif., Santa Barbara 2004)

    Google Scholar 

  289. M.J. Alinger, G.R. Odette, D.T. Hoelzer: On the role of alloy composition and processing variables in nanofeature formation and dispersion strengthening in nanostructured ferritic alloys. Fusion Mater. Semiannual Prog. Rep. DOE-ER-0313/43 (DOE, Oak Ridge, 2008)

    Google Scholar 

  290. S. Ukai, S. Ohtsuka: Nano-mesoscopic structure control in 9Cr-ODS ferritic steels, Energy Mater. 2, 26 (2007)

    Article  CAS  Google Scholar 

  291. N. Akasaka, S. Yamashita, T. Yoshitake, S. Ukai, A. Kimura: Microstructural changes of neutron irradiated ODS ferritic and martensitic steels, J. Nucl. Mater. 329–333, 1053 (2004)

    Article  CAS  Google Scholar 

  292. S. Yamashita, N. Akasaka, S. Ukai, S. Ohnuki: Microstructural development of a heavily neutronirradiated ODS ferritic steel (MA957) at elevated temperature, J. Nucl. Mater. 367–370, 202 (2007)

    Article  CAS  Google Scholar 

  293. H. Kishimoto, K. Yutani, R. Kasada, O. Hashitomi, A. Kimura: Heavy-ion irradiation effects on the morphology of complex oxide particles in oxide dispersion strengthened ferritic steels, J. Nucl. Mater. 367–370, 179 (2007)

    Article  CAS  Google Scholar 

  294. H.S. Cho, R. Kasada, A. Kimura: Effects of neutron irradiation on the tensile properties of high-Cr oxide dispersion strengthened ferritic steels, J. Nucl. Mater. 367–370, 239 (2007)

    Article  CAS  Google Scholar 

  295. K. Yutani, H. Kishimoto, R. Kasada, A. Kimura: Evaluation of helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation, J. Nucl. Mater. 367–370, 423 (2007)

    Article  CAS  Google Scholar 

  296. A. Alamo, V. Lambard, X. Averty, M.H. Mathon: Assessment of ODS-14 %Cr ferritic alloy for high temperature applications, J. Nucl. Mater. 329–333, 333 (2004)

    Article  CAS  Google Scholar 

  297. A. Alamo, J.L. Bertin, V.K. Shamardin, P. Wident: Mechanical properties of 9Cr martensitic steels and ODS-FeCr alloys after neutron irradiation at 325 °C up to 42 dpa, J. Nucl. Mater. 367–370, 54 (2007)

    Article  CAS  Google Scholar 

  298. B. Wilshire, T.D. Lieu: Deformation and damage processes during creep of Incoloy MA957, Mater. Sci. Eng. A386, 81 (2004)

    CAS  Google Scholar 

  299. Z. Oksiuta, N. Baluc: Microstructure and Charpy impact properties of 12–14Cr oxide-dispersion strengthened steels, J. Nucl. Mater. 374, 178 (2008)

    Article  CAS  Google Scholar 

  300. M. Klimiankou, R. Lindau, A. Moslang: Direct correlation between morphology of (Fe,Cr)23C6 precipitates and impact behavior of ODS steels, J. Nucl. Mater. 367–370, 173 (2007)

    Article  CAS  Google Scholar 

  301. R.L. Klueh, A.T. Nelson: Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371, 37 (2007)

    Article  CAS  Google Scholar 

  302. R.L. Klueh, N. Hashimoto, P.J. Maziasz: New nano-particle strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment, J. Nucl. Mater. 367–370, 48 (2007)

    Article  CAS  Google Scholar 

  303. M.J. Alinger, G.R. Odette, D.T. Hoezler: The development and stability of Y-Ti-O nanoclusters in mechanically alloyed Fe-Cr based ferritic alloys, J. Nucl. Mater. 329–333, 382 (2004)

    Article  CAS  Google Scholar 

  304. M.J. Demkowicz, A. Misra, A.J. Caro: The role of interface structure in controlling high helium concentrations, Curr. Opin. Solid State Mater. Sci. 16, 101–108 (2012)

    Article  CAS  Google Scholar 

  305. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherley, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, K. Miyahara: Tensile and creep properties of an oxide dispersion-strengthened ferritic steel, J. Nucl. Mater. 307–311, 773 (2002)

    Article  Google Scholar 

  306. L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, A. Kimura: Formation mechanism and the role of nanoparticles in Fe-Cr ODS steels developed for radiation tolerance, Phys. Rev. B82, 184103 (2010)

    Google Scholar 

  307. L. Hsiung, M.J. Fluss, A. Kimura: Structure of oxide nanoparticles in Fe–16Cr MA/ODS ferritic steel, Mater. Lett. 64, 1782 (2010)

    Article  CAS  Google Scholar 

  308. L. Hsiung, M. Fluss, S. Tumey, J. Kuntz, B. El-Dasher, M. Wall, B. Choi, A. Kimura, F. Willaime, Y. Serruys: HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance, J. Nucl. Mater. 409, 72 (2011)

    Article  CAS  Google Scholar 

  309. C. Fazio: Innovative materials for Gen IV systems and transmutation facilities: The crosscutting research project GETMAT, Nucl. Eng. and Des. 241, 3514 (2011)

    Article  CAS  Google Scholar 

  310. D. Kaoumi, A. Motta, M. Kirk: Characterization and in-situ ion-irradiation of MA957 ODS steel, Trans. Am. Nucl. Soc. 98, 1113 (2008)

    Google Scholar 

  311. G.R. Odette, D.T. Hoelzer: Irradiation-tolerant nanostructured ferritic alloys: Transforming He from a liability to an asset, J. Met. 62, 84–92 (2010)

    CAS  Google Scholar 

  312. K.S. Kumar, H. Van Swygenhoven, S. Suresh: Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51, 5743 (2003)

    Article  CAS  Google Scholar 

  313. M.A. Meyers, A. Mishra, D.J. Benson: Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51, 427 (2006)

    Article  CAS  Google Scholar 

  314. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, P. Wang: Deformation of electrodeposited nanocrystalline nickel, Acta Mater. 51, 387 (2003)

    Article  CAS  Google Scholar 

  315. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel, Acta Mater. 51, 5159 (2003)

    Article  CAS  Google Scholar 

  316. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter: Deformation mechanism crossover and mechanical behaviour in nanocrystalline materials, Philos. Mag. Lett. 83, 385 (2003)

    Article  CAS  Google Scholar 

  317. A.C. Lund, C.A. Schuh: Strength asymmetry in nanocrystalline metals under multiaxial loading, Acta Mater. 53, 3193 (2005)

    Article  CAS  Google Scholar 

  318. J. Schiotz, K.W. Jacobsen: A maximum in the strength of nanocrystalline copper, Science 301, 1357 (2003)

    Article  CAS  Google Scholar 

  319. H. Van Swygenhoven, P.M. Derlet: Grain-boundary sliding in nanocrystalline fcc metals, Phys. Rev. B64, 224105 (2001)

    Google Scholar 

  320. L. Lu, Y.F.H. Shen, X. Chen, L.H. Qian: Ultrahigh strength and high electrical conductivity in copper, Science 304, 422 (2004)

    Article  CAS  Google Scholar 

  321. C.W. Nan, A. Tschope, S. Holten, H. Kliem, R. Birringer: Grain size-dependent electrical properties of nanocrystalline ZnO, J. Appl. Phys. 85, 7735 (1999)

    Article  CAS  Google Scholar 

  322. T. Suzuki, I. Kosacki, H.U. Anderson: Microstructure-electrical conductivity relationships in nanocrystalline ceria thin films, Solid State Ion. 151, 111 (2002)

    Article  CAS  Google Scholar 

  323. G.J. Herzer: Anisotropies in soft magnetic nanocrystalline alloys, Magn. Magn. Mater. 294, 99 (2005)

    Article  CAS  Google Scholar 

  324. M.E. McHenry, M.A. Willard, D.E. Laughlin: Amorphous and nanocrystalline materials for applications as soft magnets, Prog. Mater. Sci. 44, 291 (1999)

    Article  CAS  Google Scholar 

  325. D.C. Jiles: Recent advances and future directions in magnetic materials, Acta Mater. 51, 5907 (2003)

    Article  CAS  Google Scholar 

  326. G. Herzer: Nanocrystalline soft-magnetic materials, Phys. Scr. T49A, 307 (1993)

    Article  CAS  Google Scholar 

  327. M.J. Aus, B. Szpunar, A.M. El-Sherik, U. Erb, G. Palumbo, K.T. Aust: Magnetic properties of bulk nanocrystalline Ni, Scr. Mater. 27, 1639 (1992)

    Article  CAS  Google Scholar 

  328. R. Grossinger, R. Sato, D. Holzer, M. Dahlgren: Properties, benefits and application of nanocrystalline structures in magnetic materials, Adv. Eng. Mater. 5, 285 (2003)

    Article  CAS  Google Scholar 

  329. L. Wang, J. Zhang, Y. Gao, L. Hu, T. Xu: Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution, Scr. Mater. 55, 657 (2006)

    Article  CAS  Google Scholar 

  330. S.H. Kim, K.T. Aust, F. Gonzalez, G. Palumbo: The corrosion behavior of nanocrystalline electrodeposits, Plat. Surf. Fin. 91, 68 (2004)

    Google Scholar 

  331. K.M.S. Youssef, C.C. Koch, P.S. Fedkiw: Improved corrosion behavior of nanocrystalline zinc produced by pulse-current electrodeposition, Corros. Sci. 46, 51 (2004)

    Article  CAS  Google Scholar 

  332. E.O. Hall: The deformation and ageing of mild steels 2. Characteristics of the Luder deformation, Proc. R. Soc. B 64, 742 (1951)

    Google Scholar 

  333. N.Q. Vo, R.S. Averback, P. Bellon, A. Caro: Limits of hardness at the nanoscale: Molecular dynamics simulations, Phys. Rev. B 78, 241402 (2008)

    Article  CAS  Google Scholar 

  334. A.H. Chokshi, A. Rosen, J. Karch, H. Gleiter: On the validity of the Hall–Petch relationship in nanocrystalline materials, Scr. Metall. 23, 1679 (1989)

    Article  CAS  Google Scholar 

  335. H. Gleiter: Nanocrystalline materials, Prog. Mater. Sci. 33, 223 (1989)

    Article  CAS  Google Scholar 

  336. H. Van Swygenhoven, M. Spaczer, A. Caro: Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni, Acta Mater. 47, 3117 (1999)

    Article  Google Scholar 

  337. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals, Acta Mater. 55, 4041 (2007)

    Article  CAS  Google Scholar 

  338. J. Chen, L. Lu, K. Lu: Hardness and strain rate sensitivity of nanocrystalline Cu, Scr. Mater. 54, 1913 (2006)

    Article  CAS  Google Scholar 

  339. G.W. Nieman, J.R. Weertman, R.W. Siegel: Microhardness of nanocrystalline Palladium and Copper produced by inert-gas condensation, Scr. Metall. 23, 2013 (1989)

    Article  CAS  Google Scholar 

  340. H. Chang, C.J. Altsetter, R.S. Averback: Characteristics of nanophase TiAl produced by inert gas condensation, J. Mater. Res. 7, 2962 (1992)

    Article  CAS  Google Scholar 

  341. P.G. Sanders, J.A. Eastman, J.R. Weertman: Elastic and tensile behavior of nanocrystalline copper and palladium, Acta Mater. 45, 4019 (1997)

    Article  CAS  Google Scholar 

  342. C.C. Koch, J. Narayan: Structure and mechanical properties of nanophase materials-theory and computer simulations vs. experiment, MRS Symp. Proc. No. 634 (Materials Research Society, Pittsburgh 2000), B5.1.1

    Google Scholar 

  343. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter: Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation, Acta Mater. 49, 2713 (2001)

    Article  CAS  Google Scholar 

  344. R.A. Lebensohn, E.M. Bringa, A. Caro: A viscoplastic micromechanical model for the yield strength of nanocrystalline materials, Acta Mater. 55, 261 (2007)

    Article  CAS  Google Scholar 

  345. N.Q. Vo, R.S. Averback, P. Bellon, S. Odunuga, A. Caro: Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding, Phys. Rev. B 77, 134108 (2008)

    Article  CAS  Google Scholar 

  346. J.R. Trelewicz, C.A. Schuh: The Hall–Petch breakdown in nanocrystalline metals: A crossover to glass-like deformation, Acta Mater. 55, 5948 (2007)

    Article  CAS  Google Scholar 

  347. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45, 103 (2000)

    Article  CAS  Google Scholar 

  348. G. Wilde, G.P. Dinda, H. Rosner: Synthesis of bulk nanocrystalline materials by repeated cold rolling, Adv. Eng. Mater. 7, 11 (2005)

    Article  CAS  Google Scholar 

  349. F.H. Froes, O.N. Senkov, E.G. Baburaj: Synthesis of nanocrystalline materials – An overview, Mater. Sci. Eng. A301, 44 (2001)

    CAS  Google Scholar 

  350. R. Birringer: Nanocrystalline materials, Mater. Sci. Eng. 117, 33 (1998)

    Google Scholar 

  351. B. Gunther, A. Kumpmann, H.D. Kunze: Secondary recrystallization effects in nanostructured elemental metals, Scr. Mater. 27, 833 (1992)

    Article  Google Scholar 

  352. T.R. Malow, C.C. Koch: Thermal stability of nanocrystalline materials, Mater. Sci. Forum 225–227, 595 (1996)

    Article  Google Scholar 

  353. T. Yamasaki, P. Schlossmacher, K. Ehrlich, Y. Ogino: Formation of amorphous electrodeposited Ni-W alloys and their nanocrystallization, Nanostruct. Mater. 10, 375 (1998)

    Article  CAS  Google Scholar 

  354. C.E. Krill, H. Ehrhardt, R. Birringer: Thermodynamic stabilization of nanocrystallinity, Z. Metallkd. 96, 1134 (2005)

    CAS  Google Scholar 

  355. F. Ebrahimi, H.Q. Li: Grain growth in electrodeposited nanocrystalline fcc Ni-Fe alloys, Scr. Mater. 55, 263 (2006)

    Article  CAS  Google Scholar 

  356. A.A. Talin, E.A. Marquis, S.H. Goods, J.J. Kelly, M.K. Miller: Thermal stability of Ni-Mn electrodeposits, Acta Mater. 54, 1935 (2006)

    Article  CAS  Google Scholar 

  357. K.W. Liu, F. Muecklich: Thermal stability of nano-RuAl produced by mechanical alloying, Acta Mater. 49, 395 (2001)

    Article  CAS  Google Scholar 

  358. A. Caro, D. Farkas, E.M. Bringa, G.H. Gilmer, L.A. Zepeda-Ruiz: Effects of microalloying on the mobility and mechanical response of interfaces in nanocrystalline Cu, Mater. Sci. Forum 633/634, 21 (2010)

    Article  CAS  Google Scholar 

  359. E. Chassaing, M.P. Roumegas, M.F. Trichet: Electrodeposition of NiMo alloys with pulse reverse potentials, J. Appl. Electrochem. 25, 667 (1995)

    Article  CAS  Google Scholar 

  360. A.O. Aning, A. Wang, T.H. Courtney: Tungsten solution kinetics and amorphization of Ni in mechanically alloyed Ni-W alloys, Acta Mater. 41, 165 (1993)

    Article  CAS  Google Scholar 

  361. B.Y.C. Wu, P.J. Ferreira, C.A. Schuh: Nanostructured Ni-Co alloys with tailorable grain size and twin density, Met. Mater. Trans. 36A, 1927 (2005)

    Article  CAS  Google Scholar 

  362. F. Ebrahimi, H.Q. Li: Structure and properties of electrodeposited nanocrystalline fcc Ni-Fe alloy, Rev. Adv. Mater. Sci. 5, 134 (2003)

    CAS  Google Scholar 

  363. T. Yamasaki, R. Tomohira, Y. Ogino, P. Schlossmacher, K. Ehrlich: Formation of ductile amorphous and nanocrystalline Ni-W alloys by electrodeposition, Plat. Surf. Finish. 87, 148 (2000)

    CAS  Google Scholar 

  364. A.J. Detor, C.A. Schuh: Tailoring and patterning the grain size of nanocrystalline alloys, Acta Mater. 55, 371–379 (2007)

    Article  CAS  Google Scholar 

  365. N.Q. Vo, J. Schafer, R.S. Averback, K. Albe, Y. Ashkenazya, P. Bellon: Reaching theoretical strengths in nanocrystalline Cu by grain boundary doping, Scr. Mater. 65, 660 (2011)

    Article  CAS  Google Scholar 

  366. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, 1st edn. (Pergamon, Tarrytown 1995)

    Google Scholar 

  367. R. Kirchheim: Grain coarsening inhibited by solute segregation, Acta Mater. 50, 413 (2002)

    Article  CAS  Google Scholar 

  368. F. Liu, R. Kirchheim: Nano-scale grain growth inhibited by reducing grain boundary energy through solute segregation, J. Cryst. Growth 264, 385 (2004)

    Article  CAS  Google Scholar 

  369. D. Gupta: Influence of solute segregation on grain-boundary energy and selfdiffusion, Metall. Trans. 8A, 1431 (1977)

    CAS  Google Scholar 

  370. J. Weissmuller: Alloy effects in nanostructures, Nanostruct. Mater. 3, 261 (1993)

    Article  Google Scholar 

  371. A.J. Detor, M.K. Miller, C.A. Schuh: Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography, Philos. Mag. 86, 4459 (2006)

    Article  CAS  Google Scholar 

  372. C.E. Krill, R. Klein, S. Janes, R. Birringer: Thermodynamic stabilization of grain boundaries in nanocrystalline alloys, Mater. Sci. Forum 179–181, 443 (1995)

    Article  Google Scholar 

  373. D.L. Beke, C. Cserhati, I.A. Szabo: Segregation inhibited grain coarsening in nanocrystalline alloys, J. Appl. Phys. 95, 4996 (2004)

    Article  CAS  Google Scholar 

  374. H. Arakawa, M. Aresta, J.N. Armor, M.A. Barteau, E.J. Beckman, A.T. Bell, J.E. Bercaw, C. Creutz, E. Dinjus, D.A. Dixon, K. Domen, D.L. DuBois, J. Eckert, E. Fujita, D.H. Gibson, W.A. Goddard, D.W. Goodman, J. Keller, G.J. Kubas, H.H. Kung, J.E. Lyons, L.E. Manzer, T.J. Marks, K. Morokuma, K.M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W.M.H. Sachtler, L.D. Schmidt, A. Sen, G.A. Somorjai, P.C. Stair, B.R. Stults, W. Tumas: Catalysis research of relevance to carbon management: Progress, challenges, and opportunities, Chem. Rev. 101, 953–996 (2001)

    Article  CAS  Google Scholar 

  375. X. Chen, S.S. Gambhir, J. Cheon: Theranostic nanomedicine, Acc. Chem. Res. 44, 841 (2011)

    Article  CAS  Google Scholar 

  376. T.W. Odom, C.L. Nehl: How gold nanoparticles have stayed in the light: The 3Mʼs principle, ACS Nano 2, 612–616 (2008)

    Article  CAS  Google Scholar 

  377. N. Erathodiyil, J.Y. Ying: Functionalization of inorganic nanoparticles for bioimaging applications, Acc. Chem. Res. 44, 925–935 (2011)

    Article  CAS  Google Scholar 

  378. H. Gu, P.-L. Ho, K.W.T. Tsang, L. Wang, B. Xu: Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration, J. Am. Chem. Soc. 125, 15702–15703 (2003)

    Article  CAS  Google Scholar 

  379. Y. Jun, J. Choi, J. Cheon: Heterostructured magnetic nanoparticles: Their versatility and high performance capabilities, Chem. Commun., 1203–1214 (2007)

    Google Scholar 

  380. D. Ho, X. Sun, S. Sun: Monodisperse magnetic nanoparticles for theranostic applications, Acc. Chem. Res. 44, 875–882 (2011)

    Article  CAS  Google Scholar 

  381. M.P. Melancon, M. Zhou, C. Li: Cancer theranostics with near-infrared light-activatable multimodal nanoparticles, Acc. Chem. Res. 44, 947–956 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giovanni Barcaro , Alfredo Caro or Alessandro Fortunelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag

About this chapter

Cite this chapter

Barcaro, G., Caro, A., Fortunelli, A. (2013). Alloys on the Nanoscale. In: Vajtai, R. (eds) Springer Handbook of Nanomaterials. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20595-8_11

Download citation

Publish with us

Policies and ethics