Skip to main content
Log in

Nanostructured Ni-Co alloys with tailorable grain size and twin density

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We present an experimental approach to systematically produce nanostructures with various grain sizes and twin densities in the Ni-Co binary system. Using electrodeposition with various applied current densities and organic additive contents in the deposition bath, we synthesize nanostructured fcc and hcp solid solutions with a range of compositions. Due to the low stacking fault energy (SFE) of these alloys, growth twins are readily formed during deposition, and by adjusting the deposition conditions, a range of twin boundary densities is possible. The resulting nanostructured alloys cannot be described by a single characteristic length scale, but instead must be characterized in terms of (1) a true grain size pertaining to general high-angle grain boundaries and (2) an effective grain size that incorporates twin boundaries. Analysis of Hall-Petch strength scaling for these materials is complicated by their dual length scales, but the hardness trends found in Ni-80Co are found to be roughly in line with those seen in pure nanocrystalline nickel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, and H. Van Swygenhoven: MRS Bull., 1999, vol. 24, pp. 44–50.

    CAS  Google Scholar 

  2. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743–74.

    Article  CAS  Google Scholar 

  3. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: MRS Bull., 1999, vol. 24, pp. 54–58.

    CAS  Google Scholar 

  4. H. Gleiter: Progr. Mater. Sci., 1989, vol. 33, pp. 223–315.

    Article  CAS  Google Scholar 

  5. E.O. Hall: Proc. Phys. Soc., 1951, vol. B64, pp. 747–53.

    CAS  Google Scholar 

  6. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, pp. 25–28.

    CAS  Google Scholar 

  7. T.G. Nieh and J. Wadsworth: Scripta Metall. Mater., 1991, vol. 25, pp. 955–58.

    Article  CAS  Google Scholar 

  8. J. Schiotz, F.D. DiTolla, and K.W. Jacobsen: Nature, 1998, vol. 391, pp. 561–63.

    Article  Google Scholar 

  9. Y. Zhou, U. Erb, K.T. Aust, and G. Palumbo: Scripta Mater., 2003, vol. 48, pp. 825–30.

    Article  CAS  Google Scholar 

  10. A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust: Scripta Metall. Mater., 1992, vol. 27, pp. 1185–88.

    Article  CAS  Google Scholar 

  11. C.A. Schuh, T.G. Nieh, and T. Yamasaki: Scripta Mater., 2002, vol. 46, pp. 735–40.

    Article  CAS  Google Scholar 

  12. C.A. Schuh, T.G. Nieh, and H. Iwasaki: Acta Mater., 2003, vol. 51, pp. 431–43.

    Article  CAS  Google Scholar 

  13. J. Schiotz, T. Vegge, F.D. DiTolla, and K.W. Jacobsen: Phys. Rev., 1999, vol. B60, pp. 11971–11983.

    Google Scholar 

  14. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2002, vol. 50, pp. 61–73.

    Article  CAS  Google Scholar 

  15. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2002, vol. 50, pp. 5005–20.

    Article  CAS  Google Scholar 

  16. V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, and H. Gleiter: Acta Mater., 2001, vol. 49, pp. 2713–22.

    Article  CAS  Google Scholar 

  17. H. Van Swygenhoven and A. Caro: Appl. Phys. Lett., 1997, vol. 71, pp. 1652–54.

    Article  Google Scholar 

  18. H. Van Swygenhoven, A. Caro, and D. Farkas: Scripta Mater., 2001, vol. 44, pp. 1513–16.

    Article  Google Scholar 

  19. H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Phys. Rev., 2002, vol. B66, p. 024101.

    Google Scholar 

  20. H. Van Swygenhoven, M. Spaczer, and A. Caro: Acta Mater., 1999, vol. 47, pp. 3117–26.

    Article  Google Scholar 

  21. H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas: Phys. Rev., 1999, vol. B60, pp. 22–25.

    Google Scholar 

  22. A.C. Lund, T.G. Nieh, and C.A. Schuh: Phys. Rev. B, 2004, vol. 69, 012101.

    Article  Google Scholar 

  23. V. Yamakov, D. Wolf, S.R. Phillpot, and H. Gleiter: Acta Mater., 2003, vol. 51, pp. 4135–47.

    Article  CAS  Google Scholar 

  24. H. Van Swygenhoven, P. Derlet, and A. Froseth: Nature Mater., 2004, vol. 3, p. 399.

    Article  Google Scholar 

  25. A. Froseth, H. Van Swygenhoven, and P. Derlet: Acta Mater., 2004, vol. 52, pp. 2259–68.

    Article  CAS  Google Scholar 

  26. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.

    Article  CAS  Google Scholar 

  27. E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, and K. Lu: Appl. Phys. Lett., 2004, vol. 85, pp. 4932–34.

    Article  CAS  Google Scholar 

  28. M. Chen, E. Ma, K.J. Hemker, H. Sheng, Y. Wang, and X. Cheng: Science, 2003, vol. 300, pp. 1275–77.

    Article  CAS  Google Scholar 

  29. X.Z. Liao, F. Zhou, E.J. Lavernia, D.W. He, and Y.T. Zhu: Appl. Phys. Lett., 2003, vol. 83, pp. 5062–64.

    Article  CAS  Google Scholar 

  30. X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu: Appl. Phys. Lett., 2003, vol. 83, pp. 632–34.

    Article  CAS  Google Scholar 

  31. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, and D.V. Gunderov: Appl. Phys. Lett., 2004, vol. 84, pp. 592–95.

    Article  CAS  Google Scholar 

  32. X. Zhang, A. Misra, H. Wang, T.D. Shen, M. Nastasi, T.E. Mitchell, J.P. Hirth, R.G. Hoagland, and J.D. Embury: Acta Mater., 2004, vol. 52, pp. 995–1002.

    Article  CAS  Google Scholar 

  33. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.

    Article  CAS  Google Scholar 

  34. S.I. Rao and P.M. Hazzledine: Phil. Mag. A, 2000, vol. 80, pp. 2011–40.

    Article  CAS  Google Scholar 

  35. A. Misra, J.P. Hirth, and H. Kung: Phil. Mag. A, 2002, vol. 82, pp. 2935–51.

    Article  CAS  Google Scholar 

  36. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: Phil. Mag. A, 2002, vol. 82, pp. 643–64.

    Article  CAS  Google Scholar 

  37. J.W. Christian and S. Mahajan: Progr. Mater. Sci., 1995, vol. 39, p. 1995.

    Article  Google Scholar 

  38. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Prentice-Hall, Inc., Elmsford, NJ, 1999.

    Google Scholar 

  39. L. Remy: Metall. Trans. A, 1981, vol. 12A, pp. 387–408.

    Google Scholar 

  40. W.J. Babyak and F.N. Rhines: Trans. TMS, 1960, vol. 21.

  41. C.S. Pande, B.B. Rath, and M.A. Imam: Mater. Sci. Eng., 2004, vol. A367, pp. 171–75.

    CAS  Google Scholar 

  42. J.-Q. Su, M. Demura, and T. Hirano: Acta Mater., 2003, vol. 51, pp. 2505–15.

    Article  CAS  Google Scholar 

  43. N.Y.C. Yang, T.J. Headley, J.J. Kelly, and J.M. Hruby: Scripta Mater., 2004, vol. 51, pp. 761–66.

    Article  Google Scholar 

  44. F. Ebrahimi, Z. Ahmed, and H. Li: Appl. Phys. Lett., 2004, vol. 85, pp. 3749–51.

    Article  CAS  Google Scholar 

  45. Modern Electroplating, M. Schlesinger and M. Paunovic, eds., John Wiley & Sons, New York, NY, 2000.

    Google Scholar 

  46. B. Wu: Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, 2004.

    Google Scholar 

  47. Z. Zhang, F. Zhou, and E.J. Lavernia: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1349–55.

    CAS  Google Scholar 

  48. A. Brenner: Electrodeposition of Alloys—Principles and Practice, Academic Press, New York, NY.

  49. C. Fan and D.L. Piron: Electrochimica Acta, 1996, vol. 41, pp. 1713–19.

    Article  CAS  Google Scholar 

  50. F. DallaTorre, H. Van Swygenhoven, and M. Victoria: Acta Mater., 2002, vol. 50, pp. 3957–70.

    Article  CAS  Google Scholar 

  51. S. Van Petegem, F. Dalla Torre, D. Segers, and H. Van Swygenhoven: Scripta Mater., 2003, vol. 48, pp. 17–22.

    Article  Google Scholar 

  52. A.M. El-Sherik and U. Erb: J. Mater. Sci., 1995, vol. 30, pp. 5743–49.

    Article  CAS  Google Scholar 

  53. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Acta Mater., 2003, vol. 51, pp. 387–405.

    Article  CAS  Google Scholar 

  54. J.K. Dennis and J.J. Fuggle: Electroplat. Met. Fin., 1967, vol. 30, p. 370.

    Google Scholar 

  55. A.M. El-Sherik: Ph.D. Thesis, Queen’s University, Kingston, Canada, 1993.

    Google Scholar 

  56. R. Wei and H.C. Cook: Plat. Surf. Fin., 1962, vol. 109, p. 295.

    Google Scholar 

  57. A.A. Karimpoor, U. Erb, K.T. Aust, and G. Palumbo: Scripta Mater., 2003, vol. 49, pp. 651–56.

    Article  CAS  Google Scholar 

  58. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.

    Article  CAS  Google Scholar 

  59. D. Witkin, Z. Lee, R. Rodriguez, S. Nutt, and E.J. Lavernia: Scripta Mater., 2003, vol. 49, pp. 297–302.

    Article  CAS  Google Scholar 

  60. G. He, J. Eckert, W. Loser, and L. Schultz: Nature Mater., 2003, vol. 2, pp. 33–37.

    Article  CAS  Google Scholar 

  61. U. Erb: Nanostr. Mater., 1995, vol. 6, pp. 533–38.

    Article  Google Scholar 

  62. F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews: Nanostr. Mater., 1999, vol. 11, pp. 343–50.

    Article  CAS  Google Scholar 

  63. G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong: Scripta Metall., 1986, vol. 20, pp. 93–97.

    Article  CAS  Google Scholar 

  64. R.G. Hoagland and R.J. Kurtz: Phil. Mag. A, 2002, vol. 82, pp. 1073–92.

    Article  CAS  Google Scholar 

  65. H. Kokawa, T. Watanabe, and S. Karashima: Phil. Mag., 1981, vol. A44, pp. 1239–54.

    Google Scholar 

  66. T. Watanabe: Metall. Trans. A, 1983, vol. 14A, pp. 531–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B.Y.C., Schuh, C.A. & Ferreira, P.J. Nanostructured Ni-Co alloys with tailorable grain size and twin density. Metall Mater Trans A 36, 1927–1936 (2005). https://doi.org/10.1007/s11661-005-0056-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0056-9

Keywords

Navigation