Skip to main content

Animal Models: An Overview

  • Living reference work entry
  • First Online:
Handbook of the Cerebellum and Cerebellar Disorders
  • 145 Accesses

Abstract

Animal studies are indispensable for studying the organization, structure, and function of specific organs and their integrative functions including those of the cerebellum. Animal studies are classified into several categories. First, they are used to clarify the mechanisms that induce specific anatomical, physiological, or behavioral phenotypes (phenotype-oriented). Second, they can be designed to analyze the roles of specific endogenous molecules/genes/proteins in cellular, organ, and behavioral functions (molecule-oriented). Third, they are used to examine the effects of exogenous chemicals (xenobiotics), such as pharmaceuticals, cosmetics, and industrial and environmental chemicals. Lastly, animal models that mimic human diseases can be used to better understand the pathophysiology of these diseases. Recent developments in molecular biology have enabled to generate a large number of gene-modified animals for such purposes. Such animal models have contributed greatly to increase knowledge of gene–phenotype and gene–disease interactions. However, it is clear that multiple genes are often involved in morphological, physiological, and behavioral phenotypes; as such, many neurological disorders are caused by polygenic abnormalities. Thus, studying naturally occurring mutant animals, and injury- or drug-induced animal models, remains very important. Owing to the large numbers that have been reported, it is beyond the scope of this chapter to discuss all the existing animal models for cerebellar research. Thus, this chapter primarily discusses representative naturally occurring mutant animal models that are used to study cerebellar functions and diseases. Before providing detailed descriptions of each animal model, general concepts, and classifications of animal models used for cerebellar research are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akita K, Arai S (2009) The ataxic Syrian hamster: an animal model homologous to the pcd mutant mouse? Cerebellum 8:202–210

    Article  PubMed  Google Scholar 

  • Altman J (1987) Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model. Environ Health Perspect 74:153–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alusi SH, Worthigton J, Glickman S et al (2001) A study of tremor in multiple sclerosis. Brain 124:720–730

    Article  CAS  PubMed  Google Scholar 

  • Ariel M, Ward KC, Tolbert DL (2009) Topography of Purkinje cells and other calbindin-immunoreactive cells within adult and hatching turtle cerebellum. Cerebellum 8:463–476

    Article  PubMed  Google Scholar 

  • Armbrust KR, Wang X, Hathorn TJ et al (2014) Mutant β-III spectrin causes mGluR1α mislocalization and functional deficits in a mouse model of spinocerebellar ataxia type 5. J Neurosci 34:9891–9904

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barmack NH, Baughman RW, Eckenstein FP (1992) Cholinergic innervation of the cerebellum or rat, rabbit, cat, and monkey as revealed by choline acetyltranferase activity and immunohistochemistry. J Comp Neurol 317:233–249

    Article  CAS  PubMed  Google Scholar 

  • Becker EB (2014) The moonwalker mouse: new insights into TRPC3 function, cerebellar development, and ataxia. Cerebellum 13:628–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11:514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukhtouche F, Doulazmi M, Frederic F et al (2006) RORα, a pivotal nuclear receptor for Purkinje neuron survival and differentiation: from development to ageing. Cerebellum 5:97–104

    Article  CAS  PubMed  Google Scholar 

  • Bracha V, Zbarska S, Parker K et al (2009) The cerebellum and eye-blink conditioning: learning versus network performance hypothesis. Neuroscience 162:787–796

    Article  CAS  PubMed  Google Scholar 

  • Brown ME, Martin JR, Rosenbluth J et al (2011) A novel path for rapid transverse communication of vestibular signals in turtle cerebellum. J Neurophysiol 105:1071–1088

    Article  PubMed  Google Scholar 

  • Burright EN, Clark HB, Servadio A et al (1995) SCA1 transgenic mice: a model for neurodegeneration caused by an expanded CAG trinucleotide repeat. Cell 82:937–948

    Article  CAS  PubMed  Google Scholar 

  • Burt DW (2004) Chicken genomics charts a path to the genome sequence. Brief Funct Genomic Proteomic 3:60–67

    Article  CAS  PubMed  Google Scholar 

  • Butts T, Chaplin N, Wingate JT (2011) Can clues from evolution unlock the molecular development of the cerebellum? Mol Neurobiol 43:67–76

    Article  CAS  PubMed  Google Scholar 

  • Campbell DB (1996) Extrapolation from animals to man. The integration of pharmacokinetics and pharmacodynamics. Ann N Y Acad Sci 801:116–135

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MC, Nazari EM, Farina M et al (2008) Behavioral, morphological and biochemical changes after in ovo exposure to methylmercury in chicks. Toxicol Sci 106:180–185

    Article  CAS  PubMed  Google Scholar 

  • Cemal CK, Carroll CJ, Lawrence L et al (2002) YAC transgenic mice carrying pathological alleles of the MJD1 locus exhibit a mild and slowly progressive cerebellar deficit. Hum Mol Genet 11:1075–1094

    Article  CAS  PubMed  Google Scholar 

  • Chen JC, Chesler M (1991) Extracellular alkalinization evoked by GABA and its relationship to activity-dependent pH shifts in turtle cerebellum. J Physiol 442:431–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark GA, McCormick DA, Lavond DG et al (1984) Effects of lesions of cerebellar nuclei on conditioned behavioral and hippocampal neuronal responses. Brain Res 291:125–136

    Article  CAS  PubMed  Google Scholar 

  • Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 6699:272–274

    Article  CAS  Google Scholar 

  • Cohen RW, Fisher RS, Duong T et al (1991) Altered excitatory amino acid function and morphology of the cerebellum of the spastic Han-Wistar rat. Mol Brain Res 11:27–36

    Article  CAS  PubMed  Google Scholar 

  • De Goef B, Grommen SVH, Darras VM (2008) The chicken embryo as a model for developmental endocrinology: development of the thyrotropic, corticotropic, and somatotropic axes. Mol Cell Endocrinol 293:17–24

    Article  CAS  Google Scholar 

  • Descan N (1987) The use of xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem 22:317–318

    Article  Google Scholar 

  • Dietrich H, Straka H (2016) Prolonged vestibular stimulation induces homeostatic plasticity of the vestibulo-ocular reflex in larval Xenopus laevis. Eur J Neurosci 44:1787–1796

    Article  PubMed  Google Scholar 

  • Driever W, Solnica-Krezel L, Schier AF et al (1996) A genetic screen for mutation s affecting embryogenesis in zebrafish. Development 123:37–46

    CAS  PubMed  Google Scholar 

  • Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9:885–894

    Article  CAS  PubMed  Google Scholar 

  • Dusart I, Guenet JL, Sotelo C (2006) Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum 5:163–173

    Article  PubMed  Google Scholar 

  • Fernandez-Gonzalez A, La Spada AR, Treadaway J et al (2002) Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science 295:1904–1906

    Article  CAS  PubMed  Google Scholar 

  • Fletcher CF, Lutz CM, O’Sullivan TN et al (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87:607–617

    Article  CAS  PubMed  Google Scholar 

  • Friedman MJ, Shah AG, Fand Z-H et al (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nat Neurosci 10:1519–1528

    Article  CAS  PubMed  Google Scholar 

  • Fu Y-H, Ptacek LJ (2002) Spinocerebellar ataxia type 4. In: Manto MU, Pandolfo M (eds) The cerebellum and its disorders. Cambridge University Press, Cambridge

    Google Scholar 

  • Fujita H, Oh-Nishi A, Obayashi S et al (2010) Organization of the marmoset cerebellum in three dimensional space: lobulation, aldolase C compartmentalization and axonal projection. J Comp Neurol 518:1764–1791

    Article  CAS  PubMed  Google Scholar 

  • Furutani-Seki M, Sasado T, Morinaga C et al (2004) A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mech Dev 121:647–658

    Article  CAS  Google Scholar 

  • Gatewood BK, Cottingham RW (2000) Mouse-human comparative map resources on the web. Brief Bioinform 1:60–75

    Article  CAS  PubMed  Google Scholar 

  • Goti D, Katzen SM, Mez J et al (2004) A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci 24:10266–10279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grillner S (1975) Locomotion in vertebrates: central mechanisms and reflex interaction. Physiol Rev 55:247–304

    Article  CAS  PubMed  Google Scholar 

  • Haffter P, Granato M, Brand M et al (1996) The identification of genes with unique and essential functions in the development of zebrafish, Danio rerio. Development 123:1–36

    CAS  PubMed  Google Scholar 

  • Han VZ, Meek J, Campbell HR et al (2006) Cell morphology and circuitry in the cerebellar lobes of the mormyrid cerebellum. J Comp Neurol 497:309–325

    Article  PubMed  Google Scholar 

  • Harkins AB, Fox AP (2002) Cell death in weaver mouse cerebellum. Cerebellum 1:201–206

    Article  PubMed  Google Scholar 

  • Hashiguchi S, Doi H, Kunii M et al (2019) Ataxic phenotype with altered CaV3.1 channel property in a mouse model for spinocerebellar ataxia 42. Neurobiol Dis 130:104516

    Article  CAS  PubMed  Google Scholar 

  • Hirai H (2012) Basic research on cerebellar gene therapy using lentiviral vectors. Cerebellum 11:443–445

    Article  CAS  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoxha E, Gabriele RMC, Balbo I et al (2017) Motor deficits and cerebellar atrophy in Elovl5 knock out mice. Front Cell Neurosci 11:343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huynh DP, Figueroa K, Hoang N et al (2000) Nuclear localization or inclusion body formation of ataxin-2 are not necessary for SCA2 pathogenesis in mouse or human. Nat Genet 26:44–50

    Article  CAS  PubMed  Google Scholar 

  • Hyun B-H, Kim M-S, Choi Y-K et al (2001) Mapping of the pogo gene, a new ataxic mutant from Korean wild mince, on central mouse chromosome 8. Mamm Genome 12:250–252

    Article  CAS  PubMed  Google Scholar 

  • Ikenaga T, Yoshida M, Uematsu K (2006) Cerebellar efferent neurons in teleost fish. Cerebellum 5:268–274

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa Y, Yamamoto N, Yasuda T et al (2010) Morphogenesis of the medaka cerebellum, with special reference to the mesencephalic sheet, a structure homologous to the rostrolateral part of mammalian anterior medullary velum. Brain Behav Evol 75:88–103

    Article  PubMed  Google Scholar 

  • Joven A, Morona R, González A, Moreno N et al (2013) Expression patterns of Pax6 and Pax7 in the adult brain of a urodele amphibian, Pleurodeles waltl. J Comp Neurol 2521:2088–2124

    Article  CAS  PubMed  Google Scholar 

  • Katsuyama Y, Terashima T (2009) Developmental anatomy of reeler mutant mouse. Develop Growth Differ 51:271–286

    Article  CAS  Google Scholar 

  • Ke MC, Guo CC, Raymond JL (2009) Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci 12:1171–1179

    Article  CAS  PubMed  Google Scholar 

  • Kiehl TR, Shibata H, Pulst SM (2000) The ortholog of human ataxin-2 is essential for early embryonic patterning in C. elegans. J Mol Neurosci 15:231–241

    Article  CAS  PubMed  Google Scholar 

  • Klockgether T (2007) Ataxias. Parkinsonism Relat Disord 13(Supple 3):S391–S394

    Article  PubMed  Google Scholar 

  • Koibuchi N (2009) Animal models to study thyroid hormone action in cerebellum. Cerebellum 8:89–97

    Article  CAS  PubMed  Google Scholar 

  • Koibuchi N, Jingu H, Iwasaki T et al (2003) Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2:279–289

    Article  CAS  PubMed  Google Scholar 

  • La Spada AR, Fu Y-H, Sopher BL et al (2001) Polyglutamine-expanded ataxin-7 antagonizes CRX function and induces cone-rod dystrophy in a mouse model of SCA7. Neuron 31:913–927

    Article  PubMed  Google Scholar 

  • Luo J, Redies C (2004) Overexpression of genes in Purkinje cells in the embryonic chicken cerebellum by in vivo electroporation. J Neurosci Methods 139:241–245

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Zhao Y, Chen Y et al (2018) Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur J Pharmacol 819:169–180

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie-Graham A, Tiwari-Woodruff SK, Sharma G et al (2009) Purkinje cell loss in experimental autoimmune encephalomyelitis. NeuroImage 48:637–651

    Article  PubMed  Google Scholar 

  • Mancini C, Hoxha E, Iommarini L et al (2019) Mice harboring a SCA28 patient mutation in AFG3L2 develop late-onset ataxia associated with enhanced mitochondrial proteotoxicity. Neurobiol Dis 124:14–28

    Article  CAS  PubMed  Google Scholar 

  • Manto M, Marmolino D (2009) Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum 8:137–154

    Article  PubMed  Google Scholar 

  • Margolis RL (2002) The spinocerebellar ataxias: order emerges from chaos. Curr Neurol Neurosci Rep 2:447–456

    Article  PubMed  Google Scholar 

  • Matsui T, Koyano KW, Tamura K et al (2012) FMRI activity in the macaque cerebellum evoked by intracortical microstimulation of the primary somatosensory cortex: evidence for polysynaptic propagation. PLoS One 7:e47515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201:377–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori S (1997) Carp experiment in space microgravity –a visual-vestibular sensory conflict model. Biol Sci Space 11:327–333

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Matsui T, Kuze B et al (1998) Cerebellar-induced locomotion: reticulospinal control of spinal rhythm generating mechanisms in cats. Ann N Y Acad Sci 860:94–105

    Article  CAS  PubMed  Google Scholar 

  • Morona R, González A (2009) Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. J Comp Neurol 515:503–537

    Article  CAS  PubMed  Google Scholar 

  • Moseley ML, Zu T, Ikeda Y et al (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocebellar ataxia type 8. Nat Genet 38:758–769

    Article  CAS  PubMed  Google Scholar 

  • Murphy MJ, Clark NB (1990) The avian embryo as a model for early developmental endocrinology. J Exp Zool 4(Suppl):177–180

    Article  CAS  Google Scholar 

  • Nabulsi N, Huang Y, Weinzimmer D et al (2010) High-resolution imaging of brain 5-HT1B receptors in the rhesus monkey using [11C]P943. Nucl Med Biol 37:205–214

    Article  CAS  PubMed  Google Scholar 

  • Ngwenya A, Patzke N, Herculano-Houzel S et al (2018) Potential adult neurogenesis in the telencephalon and cerebellar cortex of the Nile crocodile revealed with doublecortin immunohistochemistry. Anat Rec (Hoboken) 301:659–672

    Article  CAS  Google Scholar 

  • Nieuwenhuys R (1976) Aspects of the structural organization of the cerebellum of mormyrid fishes. Exp Brain Res 1(suppl):90–95

    Google Scholar 

  • Nigon VM, Félix M-A (2017) History of research on C. elegans and other free-living nematodes as model organisms. WormBook 2017:1–84

    PubMed  Google Scholar 

  • Okamoto H, Hirate Y, Ando H (2004) Systematic identification of factors in zebrafish regulating the early midbrain and cerebellar development by ordered differentia display and caged mRNA technology. Front Biosci 9:93–99

    Article  CAS  PubMed  Google Scholar 

  • Orlovsky GN (1970) Influence of the cerebellum on the reticulo-spinal neurons during locomotion. Biophysics 15:928–936

    Google Scholar 

  • Pidoux L, Le Blanc P, Levenes C et al (2018) A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning. elife 7. pii: e32167

    Google Scholar 

  • Postlethwait JH, Yan YL, Gates MA et al (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349

    Article  CAS  PubMed  Google Scholar 

  • Reiter LT, Potocki L, Chien S et al (2001) A systematic analysis of human disease-associated gene sequences in Drosophila melanogaster. Genome Res 11:1114–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez F, Durán A, Gómez FM et al (2005) Cognitive and emotional functions of the teleost fish cerebellum. Brain Res Bull 66:365–370

    Article  PubMed  Google Scholar 

  • Sarna JR, Hawkes R (2003) Patterned Purkinje cell death in cerebellum. Prog Neurobiol 70:473–507

    Article  CAS  PubMed  Google Scholar 

  • Sasado T, Tanaka M, Kobayashi K et al (2010) The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences. Exp Anim 59:13–23

    Article  CAS  PubMed  Google Scholar 

  • Sasaki E, Suemizu H, Shimada A et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Oyake M, Nakamura K et al (1999) Transgenic mouse harboring a full-length human mutant DRPLA gene exhibit age-dependent intergenerational and somatic instabilities of CAG repeats comparable with those in DRPLA patients. Hum Mol Genet 8:99–106

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Miura M, Yamada M et al (2009) Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice. Hum Mol Genet 18:723–736

    Article  CAS  PubMed  Google Scholar 

  • Sawtell NB, Bell CC (2008) Adaptive processing in electrosensory systems: Linkis to cerebellar plasticity and learning. J Physiol Paris 102:223–232

    Article  PubMed  Google Scholar 

  • Schmahmann JD (2004) Disorders of the cerebellum: ataxia dysmetria of thought and cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci 16:367–378

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Weilburg JB, Shcerman JC (2007) The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum 6:254–267

    Article  PubMed  Google Scholar 

  • Schmidt T, Schmidt J, Hübener J (2015) Model systems for spinocerebellar ataxias: lessons learned about the pathogenesis. In: McGrath I (ed) Spinocerebellar Ataxia. Foster Academics, Jersey City, pp 1–26

    Google Scholar 

  • Seki T, Sato M, Kibe Y et al (2018) Lysosomal dysfunction and early glial activation are involved in the pathogenesis of spinocerebellar ataxia type 21 caused by mutant transmembrane protein 240. Neurobiol Dis 120:34–50

    Article  CAS  PubMed  Google Scholar 

  • Somogyi P, Takagi H, Reichards JG et al (1989) Subcellular localization of benzodiazepine/GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. J Neurosci 9:2197–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17

    CAS  PubMed  Google Scholar 

  • Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Ann Rev Neurosci 32:413–434

    Article  CAS  PubMed  Google Scholar 

  • Sugahara F, Murakami Y, Pascual-Anaya J et al (2017) Reconstructing the ancestral vertebrate brain. Develop Growth Differ 59:163–174

    Article  Google Scholar 

  • Sultan F, Glickstein M (2007) The cerebellum: comparative and animal studies. Cerebellum 6:168–176

    Article  PubMed  Google Scholar 

  • Takeuchi M, Yamaguchi S, Sakakibara Y et al (2017) Gene expression profiling of granule cells and Purkinje cells in the zebrafish cerebellum. J Comp Neurol 525:1558–1585

    Article  CAS  PubMed  Google Scholar 

  • Teixeira-Castro A, Ailion M, Jalles A et al (2011) Neuron-specific proteotoxicity of mutant ataxin-3 in C. elegans: rescue by the DAF-16 and HSF-1 pathways. Hum Mol Genet 20:2996–3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RF (1986) The neurobiology of learning and memory. Science 233:941–947

    Article  CAS  PubMed  Google Scholar 

  • Tokuda S, Kuramoto T, Tanaka K et al (2007) The ataxic groggy rat has a missense mutation in the P/Q-type voltage-gated Ca2+ channel α1A subunit gene and exhibits absence seizures. Brain Res 1133:168–177

    Article  CAS  PubMed  Google Scholar 

  • Tolbert DL, Conoyer B, Ariel M (2004) Quantitative analysis of granule cell axons and climbing fiber afferents in the turtle cerebellar cortex. Anat Embryol 209:49–58

    Article  CAS  Google Scholar 

  • Tomioka I, Ishibashi H, Minakawa EN et al (2017) Transgenic monkey model of the polyglutamine diseases recapitulating progressive neurological symptoms. eNeuro 4. pii: ENEURO.0250-16.2017

    Google Scholar 

  • van de Leemput J, Chandran J, Knight MA et al (2007) Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 3:e108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warrick JM, Paulson HL, Gray-Board GL et al (1998) Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93:939–949

    Article  CAS  PubMed  Google Scholar 

  • Watase K, Weeber E, XU B et al (2002) A long CAG repeat in the mouse sca1 locus replicates SCA1 features and reveals the impact of protein solubility on selective neurodegeneration. Neuron 34:905–919

    Article  CAS  PubMed  Google Scholar 

  • Watase K, Barrett CF, Miyazaki T et al (2008) Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant Cav2.1 channels. Proc Natl Acad Sci USA 105:11987–11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whishaw IQ, Kolb B (eds) (2005) The behavior of the laboratory rat. A handbook with tests. Oxford University Press, London

    Google Scholar 

  • White MC, Gao R, Xu W et al (2010) Inactivation of hnRNP K by expanded intronic AUUCA repeat induces apoptosis via translocation of PKCδ to mitochondria in spinocerebellar ataxia 10. PLoS Genet 6:e1000984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wingate RJT, Hatten ME (1999) The role of the rhombic lip in avian cerebellum development. Development 126:4395–4404

    CAS  PubMed  Google Scholar 

  • Wylie DR, Hoops D, Aspden JW et al (2016) Zebrin II is expressed in sagittal stripes in the cerebellum of dragon lizards (Ctenophorus sp.). Brain Behav Evol 88:177–186

    Article  PubMed  Google Scholar 

  • Xu Z, Tito AJ, Rui YN et al (2015) Studying polyglutamine diseases in Drosophila. Exp Neurol 274:25–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue H-G, Yang C-Y, Yamamoto N (2008) Afferent source to the inferior olive and distribution of the olivocerebellar climbing fibers in cyprinids. J Comp Neurol 507:1409–1427

    Article  PubMed  Google Scholar 

  • Yoo S-Y, Pennesi ME, Weeber EJ et al (2003) SCA7 knockin mice model human SCA7 and reveal gradual accumulation of mutant ataxin-7 in neurons and abnormalities in short-term plasticity. Neuron 37:913–927

    Article  Google Scholar 

  • Yvert G, Liderberg KS, Picaud S et al (2000) Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retia of SCA7 transgenic mice. Hum Mol Genet 9:2491–2506

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Snider A, Willard L et al (2009) Loss of Purkinje cells in the PKCγH101Y transgenic mouse. Biochem Biophys Res Commun 378:524–528

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Magnus G, Han VZ (2010) Electrophysiological characteristics of cells in the anterior caudal lobe of the mormyrid cerebellum. Neuroscience 171:79–91

    Article  CAS  PubMed  Google Scholar 

  • Zu T, Duvick LA, Kaytor MD et al (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24:8853–8861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Koibuchi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Koibuchi, N. (2020). Animal Models: An Overview. In: Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Sillitoe, R. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-97911-3_62-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97911-3_62-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97911-3

  • Online ISBN: 978-3-319-97911-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics