Skip to main content

Advertisement

Log in

The spinocerebellar ataxias: Order emerges from chaos

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

In the past decade, the genetic etiologies accounting for most cases of adult-onset dominant cerebellar ataxia have been discovered. This group of disorders, generally referred to as the spinocerebellar ataxias (SCAs), can now be classified by a simple genetic nosology, essentially a sequential list in which each new SCA is given a number. However, recent advances in the elucidation of SCA pathogenesis provide the opportunity to subclassify the disorders into three discrete groups based on pathogenesis: 1) the polyglutamine disorders, SCAs 1, 2, 3, 7, and 17, which result from proteins with toxic stretches of polyglutamine; 2) the channelopathies, SCA6 and episodic ataxia types 1 and 2 (EA1 and EA2), which result from disruption of calcium or potassium channel function; and 3) the gene expression disorders, SCAs 8, 10, and 12, which result from repeat expansions outside of coding regions that may quantitatively alter gene expression. SCAs 4, 5, 9, 11, 13-16, 19, 21, and 22 are of unknown etiology, and may or may not fit into one of these three groups. At present, most diagnostic and therapeutic strategies apply equally to all of the SCAs. Therapy specific for individual diseases or types of diseases is a realistic goal in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. van de Warrenburg BP: Autosomal dominant cerebellar ataxias in the Netherlands: a national inventory. Ned Tijdschr Geneeskd 2001, 145:962–967.

    PubMed  Google Scholar 

  2. Silva MC, Coutinho P, Pinheiro CD, et al.: Hereditary ataxias and spastic paraplegias: methodological aspects of a prevalence study in Portugal. J Clin Epidemiol 1997, 50:1377–1384.

    Article  PubMed  CAS  Google Scholar 

  3. Harper PS: Huntington Disease. London: WB Saunders; 1996.

    Google Scholar 

  4. Subramony SH, Vig PJ: Clinical aspects of spinocerebellar ataxia 1. In Genetic Instabilities and Hereditary Neurological Diseases. Edited by Wells RD, Warren ST. San Diego: Academic Press; 1998:231–240.

    Google Scholar 

  5. Robitaille Y, Schut L, Kish SJ: Structural and immunocytochemical features of olivopontocerebellar atrophy caused by the spinocerebellar ataxia type 1 (SCA-1) mutation define a unique phenotype. Acta Neuropathol (Berl) 1995, 90:572–581.

    CAS  Google Scholar 

  6. Geschwind DH, Perlman S, Figueroa CP, et al.: The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 1997, 60:842–850.

    PubMed  CAS  Google Scholar 

  7. Cancel G, Durr A, Didierjean O, et al.: Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet 1997, 6:709–715.

    Article  PubMed  CAS  Google Scholar 

  8. Estrada R, Galarraga J, Orozco G, et al.: Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol (Berl) 1999, 97:306–310.

    Article  CAS  Google Scholar 

  9. Paulson HL: Spinocerebellar ataxia type 3/Machado-Joseph disease. In Analysis of Triplet Repeat Disorders. Edited by Rubinsztein DC, Hayden MR. Oxford: Bios; 1998:129–144.

    Google Scholar 

  10. David G, Durr A, Stevanin G, et al.: Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 1998, 7:165–170.

    Article  PubMed  CAS  Google Scholar 

  11. Martin JJ, Van Regemorter N, Krols L, et al.: On an autosomal dominant form of retinal-cerebellar degeneration: an autopsy study of five patients in one family. Acta Neuropathol (Berl) 1994, 88:277–286.

    CAS  Google Scholar 

  12. Nakamura K, Jeong SY, Uchihara T, et al.: SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001, 10:1441–1448. Proof that a polyglutamine expansion in TBP causes a spinocerebellar ataxia. This is of interest because TBP is only the second polyglutamine expansion protein with a known function. It is possible that the polyglutamine expansion could alter capacity of TBP to bind DNA.

    Article  PubMed  CAS  Google Scholar 

  13. Zuhlke C, Hellenbroich Y, Dalski A, et al.: Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 2001, 9:160–164.

    Article  PubMed  CAS  Google Scholar 

  14. Orr HT: Beyond the Qs in the polyglutamine diseases. Genes Dev 2001, 15:925–932. An excellent overview of polyglutamine disease pathogenesis.

    Article  PubMed  CAS  Google Scholar 

  15. Margolis RL, Ross CA: Expansion explosion: new clues to the pathogenesis of repeat expansion neurodegenerative diseases. Trends Mol Med 2001, 7:479–482.

    Article  PubMed  CAS  Google Scholar 

  16. Kazantsev A, Walker HA, Slepko N, et al.: A bivalent Huntingtin binding peptide suppresses polyglutamine aggregation and pathogenesis in Drosophila. Nat Genet 2002, 30:367–376. An interesting experiment in which a peptide was used to prevent polyglutamine-containing proteins from binding to each other. This reduced the number of aggregates and decreased neuronal death in a fly model of polyglutamine disease.

    Article  PubMed  CAS  Google Scholar 

  17. Nucifora FC Jr, Sasaki M, Peters MF, et al.: Interference by huntingtin and atrophin-1 with CBP-mediated transcription leading to cellular toxicity. Science 2001, 291:2423–2428. A series of experiments supporting the hypothesis that polyglutamine toxicity could arise through the sequestration of proteins into polyglutamine aggregates. In this study, the transcriptional co-activator CBP appeared to shift into polyglutamine aggregates, with consequent loss of expression of CBP-mediated genes. Overexpression of CBP rescued polyglutamine-induced neuronal toxicity in cell culture experiments.

    Article  PubMed  CAS  Google Scholar 

  18. Bence NF, Sampat RM, Kopito RR: Impairment of the ubiquitin-proteasome system by protein aggregation. Science 2001, 292:1552–1555. A clear demonstration of the vulnerability of the ubiquitin-proteasome pathway to protein aggregates. This pathway is necessary for cell survival, and its protection in polyglutamine or other disorders might be a valuable approach to developing treatment.

    Article  PubMed  CAS  Google Scholar 

  19. Matilla A, Gorbea C, Einum DD, et al.: Association of ataxin-7 with the proteasome subunit S4 of the 19S regulatory complex. Hum Mol Genet 2001, 10:2821–2831.

    Article  PubMed  CAS  Google Scholar 

  20. Cummings CJ, Sun Y, Opal P, et al.: Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum Mol Genet 2001, 10:1511–1518. One of many illuminative experiments performed by the Orr and Zoghbi laboratories in a long-term collaborative exploration of spinocerebellar ataxia (SCA)1 pathogenesis. In this experiment, HSP70-overexpressing mice were crossed with SCA1 model mice. SCA1 mice overexpressing HSP70, a chaperone, were partially protected from neuronal loss, and behavioral abnormalities were also partly prevented. This is the best vertebrate example of the role of chaperones in ameliorating polyglutamine disease.

    Article  PubMed  CAS  Google Scholar 

  21. Wyttenbach A, Sauvageot O, Carmichael J, et al.: Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum Mol Genet 2002, 11:1137–1151.

    Article  PubMed  CAS  Google Scholar 

  22. Steffan JS, Bodai L, Pallos J, et al.: Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001, 413:739–743. Cell and fly models of polyglutamine disease are described in which proteins with histone acetlytransferase activity, including CBP, are bound and partially inactivated by an expanded glutamine tract in a fragment of huntingtin. Inhibitors of histone deacteylases partially block neuronal death in these models, suggesting an approach for developing therapies.

    Article  PubMed  CAS  Google Scholar 

  23. Hand PJ, Gardner RJ, Knight MA, et al.: Clinical features of a large Australian pedigree with episodic ataxia type 1. Mov Disord 2001, 16:938–939.

    Article  PubMed  CAS  Google Scholar 

  24. Browne DL, Gancher ST, Nutt JG, et al.: Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 1994, 8:136–140.

    Article  PubMed  CAS  Google Scholar 

  25. Rea R, Spauschus A, Eunson LH, et al.: Variable K(+) channel subunit dysfunction in inherited mutations of KCNA1. J Physiol 2002, 538:5–23. An outstanding example of the relationship among mutation, biochemical function, and clinical phenotype. Mutations with a more profound effect on potassium channel function have a greater effect on phenotype.

    Article  PubMed  CAS  Google Scholar 

  26. Zhuchenko O, Bailey J, Bonnen P, et al.: Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997, 15:62–69.

    Article  PubMed  CAS  Google Scholar 

  27. Schols L, Kruger R, Amoiridis G, et al.: Spinocerebellar ataxia type 6: genotype and phenotype in German kindreds. J Neurol Neurosurg Psychiatry 1998, 64:67–73.

    Article  PubMed  CAS  Google Scholar 

  28. Ikeuchi T, Takano H, Koide R, et al.: Spinocerebellar ataxia type 6: CAG repeat expansion in alpha1A voltage-dependent calcium channel gene and clinical variations in Japanese population. Ann Neurol 1997, 42:879–884.

    Article  PubMed  CAS  Google Scholar 

  29. Subramony SH, Fratkin JD, Manyam BV, Currier RD: Dominantly inherited cerebello-olivary atrophy is not due to a mutation at the spinocerebellar ataxia-I, Machado-Joseph disease, or Dentato-Rubro-Pallido-Luysian atrophy locus. Mov Disord 1996, 11:174–180.

    Article  PubMed  CAS  Google Scholar 

  30. Piedras-Renteria ES, Watase K, Harata N, et al.: Increased expression of alpha 1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J Neurosci 2001, 21:9185–9193.

    PubMed  CAS  Google Scholar 

  31. Baloh RW, Winder A: Acetazolamide-responsive vestibulocerebellar syndrome: clinical and oculographic features. Neurology 1991, 41:429–433.

    PubMed  CAS  Google Scholar 

  32. Bain PG, O’Brien MD, Keevil SF, Porter DA: Familial periodic cerebellar ataxia: a problem of cerebellar intracellular pH homeostasis. Ann Neurol 1992, 31:147–154.

    Article  PubMed  CAS  Google Scholar 

  33. Terwindt GM, Ophoff RA, Haan J, et al.: Familial hemiplegic migraine: a clinical comparison of families linked and unlinked to chromosome 19.DMG RG. Cephalalgia 1996, 16:153–155.

    Article  PubMed  CAS  Google Scholar 

  34. Ophoff RA, Terwindt GM, Vergouwe MN, et al.: Familial hemiplegic migrane and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996, 87:543–552.

    Article  PubMed  CAS  Google Scholar 

  35. Jodice C, Mantuano E, Veneziano L, et al.: Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 1997, 6:1973–1978.

    Article  PubMed  CAS  Google Scholar 

  36. Sinke RJ, Ippel EF, Diepstraten CM, et al.: Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Arch Neurol 2001, 58:1839–1844.

    Article  PubMed  CAS  Google Scholar 

  37. Yue Q, Jen JC, Nelson SF, Baloh RW: Progressive ataxia due to a missense mutation in a calcium-channel gene. Am J Hum Genet 1997, 61:1078–1087.

    Article  PubMed  CAS  Google Scholar 

  38. Koob MD, Moseley ML, Schut LJ, et al.: An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999, 21:379–384.

    Article  PubMed  CAS  Google Scholar 

  39. Day JW, Schut LJ, Moseley ML, et al.: Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 2000, 55:649–657.

    PubMed  CAS  Google Scholar 

  40. Juvonen V, Hietala M, Paivarinta M, et al.: Clinical and genetic findings in Finnish ataxia patients with the spinocerebellar ataxia 8 repeat expansion. Ann Neurol 2000, 48:354–361.

    Article  PubMed  CAS  Google Scholar 

  41. Silveira I, Miranda C, Guimaraes L, et al.: Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol 2002, 59:623–629.

    Article  PubMed  CAS  Google Scholar 

  42. Vincent JB, Neves-Pereira ML, Paterson AD, et al.: An unstable trinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet 2000, 66:819–829.

    Article  PubMed  CAS  Google Scholar 

  43. Stevanin G, Herman A, Durr A, et al.: Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat Genet 2000, 24:213.

    Article  PubMed  CAS  Google Scholar 

  44. Nemes JP, Benzow KA, Moseley ML, et al.: The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet 2000, 9:1543–1551.

    Article  PubMed  CAS  Google Scholar 

  45. Koob D, Moseley ML, Benzow KA, et al.: A 3′ untranslated CTG repeat causes spinocerebellar ataxia type 8 (SCA8). Am J Hum Genet 1998, 63:A9.

    Google Scholar 

  46. Matsuura T, Yamagata T, Burgess DL, et al.: Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000, 26:191–194.

    Article  PubMed  CAS  Google Scholar 

  47. Rasmussen A, Matsuura T, Ruano L, et al.: Clinical and genetic analysis of four Mexican families with spinocerebellar ataxia type 10. Ann Neurol 2001, 50:234–239.

    Article  PubMed  CAS  Google Scholar 

  48. O’Hearn E, Holmes SE, Calvert PC, et al.: SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 2001, 56:299–303.

    PubMed  CAS  Google Scholar 

  49. Fujigasaki H, Verma IC, Camuzat A, et al.: SCA12 is a rare locus for autosomal dominant cerebellar ataxia: a study of an Indian family. Ann Neurol 2001, 49:117–121.

    Article  PubMed  CAS  Google Scholar 

  50. Srivastava AK, Choudhry S, Gopinath MS, et al.: Molecular and clinical correlation in five Indian families with spinocerebellar ataxia 12. Ann Neurol 2001, 50:796–800.

    Article  PubMed  CAS  Google Scholar 

  51. Holmes SE, O’Hearn EE, McInnis MG, et al.: Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 1999, 23:391–392.

    Article  PubMed  CAS  Google Scholar 

  52. Holmes SE, Hearn EO, Ross CA, Margolis RL: SCA12: an unusual mutation leads to an unusual spinocerebellar ataxia. Brain Res Bull 2001, 56:397–403.

    Article  PubMed  CAS  Google Scholar 

  53. Flanigan K, Gardner K, Alderson K, et al.: Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): Clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996, 59:392–399.

    PubMed  CAS  Google Scholar 

  54. Takashima M, Ishikawa K, Nagaoka U, et al.: A linkage disequilibrium at the candidate gene locus for 16q-linked autosomal dominant cerebellar ataxia type III in Japan. J Hum Genet 2001, 46:167–171.

    Article  PubMed  CAS  Google Scholar 

  55. Nagaoka U, Takashima M, Ishikawa K, et al.: A gene on SCA4 locus causes dominantly inherited pure cerebellar ataxia. Neurology 2000, 54:1971–1975.

    PubMed  CAS  Google Scholar 

  56. Ranum LP, Schut LJ, Lundgren JK, et al.: Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 1994, 8:280–284.

    Article  PubMed  CAS  Google Scholar 

  57. Stevanin G, Herman A, Brice A, Durr A: Clinical and MRI findings in spinocerebellar ataxia type 5. Neurology 1999, 53:1355–1357.

    PubMed  CAS  Google Scholar 

  58. Higgins JJ, Pho LT, Ide SE, et al.: Evidence for a new spinocerebellar ataxia locus. Mov Disord 1997, 12:412–417.

    Article  PubMed  CAS  Google Scholar 

  59. Worth PF, Giunti P, Gardner-Thorpe C, et al.: Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 1999, 65:420–426.

    Article  PubMed  CAS  Google Scholar 

  60. Herman-Bert A, Stevanin G, Netter JC, et al.: Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am J Hum Genet 2000, 67:229–235.

    Article  PubMed  CAS  Google Scholar 

  61. Yamashita I, Sasaki H, Yabe I, et al.: A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 2000, 48:156–163.

    Article  PubMed  CAS  Google Scholar 

  62. Storey E, Gardner RJ, Knight MA, et al.: A new autosomal dominant pure cerebellar ataxia. Neurology 2001, 57:1913–1915.

    PubMed  CAS  Google Scholar 

  63. Knight MA, Kennerson M, Nicholson GA, et al.: A new spinocerebellar ataxia, SCA 15. Am J Hum Genet 2001, S69:509.

    Google Scholar 

  64. Miyoshi Y, Yamada T, Tanimura M, et al.: A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 2001, 57:96–100.

    PubMed  CAS  Google Scholar 

  65. Brkanac Z, Fernandez M, Matsushita M, et al.: Autosomal dominant sensory/motor neuropathy with ataxia (SMNA): linkage to chromosome 7q22-q32. Am J Med Genet 2002, 114:450–457.

    Article  PubMed  Google Scholar 

  66. Schelhaas HJ, Ippel PF, Hageman G, et al.: Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J Neurol 2001, 248:113–120.

    Article  PubMed  CAS  Google Scholar 

  67. Devos D, Schraen-Maschke S, Vuillaume I, et al.: Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 2001, 56:234–238.

    PubMed  CAS  Google Scholar 

  68. Schols L, Szymanski S, Peters S, et al.: Genetic background of apparently idiopathic sporadic cerebellar ataxia. Hum Genet 2000, 107:132–137.

    Article  PubMed  CAS  Google Scholar 

  69. Abele M, Burk K, Schols L, et al.: The aetiology of sporadic adult-onset ataxia. Brain 2002, 125:961–968.

    Article  PubMed  CAS  Google Scholar 

  70. Shill HA, Hallet M: Cerebellar diseases. Intl Rev Psychiatry 2001, 13:261–276.

    Article  Google Scholar 

  71. Benjamin CM, Adam S, Wiggins S, et al.: Proceed with care: direct predictive testing for Huntington disease. Am J Hum Genet 1994, 55:606–617.

    PubMed  CAS  Google Scholar 

  72. Sequeiros J, Maciel P, Taborda F, et al.: Prenatal diagnosis of Machado-Joseph disease by direct mutation analysis. Prenat Diagn 1998, 18:611–617.

    Article  PubMed  CAS  Google Scholar 

  73. Grafman J, Litvan I, Massaquoi S, et al.: Cognitive planning deficit in patients with cerebellar atrophy. Neurology 1992, 42:1493–1496.

    PubMed  CAS  Google Scholar 

  74. Burk K, Bosch S, Globas C, et al.: Executive dysfunction in spinocerebellar ataxia type 1. Eur Neurol 2001, 46:43–48.

    Article  PubMed  CAS  Google Scholar 

  75. Leroi I, O’Hearn E, Marsh L, et al.: Psychopathology in degenerative cerebellar diseases: a comparison to Huntington’s disease and normal controls. Am J Psychiatry 2002, in press. The first study using contemporary methodology to determine the frequency and nature of psychiatric disorders in patients with cerebellar degeneration of various causes. It will be important to replicate these results in genetically homogenous patient populations.

  76. The Huntington’s Disease Study Group: A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 2001, 57:397–404. The largest and most sophisticated treatment trial ever performed for a polyglutamine disease. Although the results were largely disappointing, the study provides a template for future efforts. It is clear that given limitations in patient availability, time, and money, large-scale clinical trials should only proceed on the basis of persuasive preclinical data.

    Google Scholar 

  77. Hauser RA, Furtado S, Cimino CR, et al.: Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 2002, 58:687–695. This trial primarily demonstrated the risks of a transplant approach to neurodegenerative disease, as many patients developed major postoperative complications.

    PubMed  CAS  Google Scholar 

  78. Ranen NG, Peyser CE, Coyle J, et al.: A controlled trial of idebenone in Huntington’s disease. Mov Disorder 1996, 11:549–554.

    Article  CAS  Google Scholar 

  79. Hughes RE, Olson JM: Therapeutic opportunities in polyglutamine disease. Nat Med 2001, 7:419–423.

    Article  PubMed  CAS  Google Scholar 

  80. Perlman SL: Cerebellar ataxia. Curr Treat Options Neurol 2000, 2:215–224.

    PubMed  Google Scholar 

  81. Yabe I, Sasaki H, Yamashita I, et al.: Clinical trial of acetazolamide in SCA6, with assessment using the Ataxia Rating Scale and body stabilometry. Acta Neurol Scand 2001, 104:44–47.

    Article  PubMed  CAS  Google Scholar 

  82. Schulte T, Mattern R, Berger K, et al.: Double-blind crossover trial of trimethoprim-sulfamethoxazole in spinocerebellar ataxia type 3/Machado-Joseph disease. Arch Neurol 2001, 58:1451–1457.

    Article  PubMed  CAS  Google Scholar 

  83. Mori M, Adachi Y, Mori N, et al.: Double-blind crossover study of branched-chain amino acid therapy in patients with spinocerebellar degeneration. J Neurol Sci 2002, 195:149–152. A promising, small-scale, short-term study with 16 subjects with cerebellar degeneration of various etiologies treated for 4 weeks in each study arm. It will be necessary to look at the effect of the treatment for a longer time period in more individuals.

    Article  PubMed  CAS  Google Scholar 

  84. Shiga Y, Tsuda T, Itoyama Y, et al.: Transcranial magnetic stimulation alleviates truncal ataxia in spinocerebellar degeneration. J Neurol Neurosurg Psychiatry 2002, 72:124–126. An unexpected and unprecedented result in a heterogenous group of patients. Thirty-nine patients receieved transcranial magnetic stimulation and 35 received sham treatments. Most measures of walking significantly improved in the treatment group relative to the control group, though a rating of overall walking capacity did not significantly improve. This study merits replication.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margolis, R.L. The spinocerebellar ataxias: Order emerges from chaos. Curr Neurol Neurosci Rep 2, 447–456 (2002). https://doi.org/10.1007/s11910-002-0072-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0072-8

Keywords

Navigation