Skip to main content

Advertisement

Log in

Animal Models to Study Thyroid Hormone Action in Cerebellum

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Thyroid hormone plays a crucial role in the development and functional maintenance of the central nervous system including the cerebellum. To study the molecular mechanisms of thyroid hormone action, various animal models have been used. These are classified: (1) congenital hypothyroid animals due to thyroid gland dysgenesis or thyroid dyshormonogenesis, (2) thyroid hormone receptor (TR) gene-mutated animals, and (3) thyroid hormone transport or metabolism-modified animals. TR is a ligand-activated transcription factor. In the presence of ligand, it activates transcription of target gene, whereas it represses the transcription without ligand. Thus, phenotype of TR-knockout mouse is different from that of hypothyroid animal (low thyroid hormone level), in which unliganded TR actively represses the transcription. On the other hand, human patient harboring mutant TR expresses different phenotypes depending on the function of mutated TR. To mimic this phenotype, other animal models are generated. In addition, recent human studies have shown that thyroid hormone transporters such as monocarboxylate transporter (MCT) 8 may play an important role in thyroid hormone-mediated brain development. However, MCT8 knockout mouse show different phenotypes from a human patient. This article introduces representative animal models currently used to study various aspects of thyroid hormone, particularly to study the involvement of the thyroid hormone system on the development and functional maintenance of the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. Wu Y, Koenig RJ (2000) Gene regulation by thyroid hormone. Trends Endocrinol Metab 11:207–211

    Article  PubMed  CAS  Google Scholar 

  2. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193

    PubMed  CAS  Google Scholar 

  3. Hsu JH, Brent GA (1998) Thyroid hormone receptor gene knockouts. Trends Endocrinol Metab 9:103–112

    Article  PubMed  CAS  Google Scholar 

  4. Park SM, Chatterjee VK (2005) Genetics of congenital hypothyroidism. J Med Genet 42:379–389

    Article  PubMed  CAS  Google Scholar 

  5. Mansouri A, Chowdhury K, Gruss P (1998) Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet 19:87–90

    Article  PubMed  CAS  Google Scholar 

  6. Poguet AL, Legrand C, Feng X, Yen PM, Meltzer P, Samarut J, Flamant F (2003) Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev Biol 254:188–199

    Article  PubMed  CAS  Google Scholar 

  7. Biesiada E, Adams PM, Shanklin DR, Bloom GS, Stein SA (1996) Biology of the congenitally hypothyroid hyt/hyt mouse. Adv Neuroimmunol 6:309–346

    Article  PubMed  CAS  Google Scholar 

  8. Yen PM (2000) Thyrotropin receptor mutations in thyroid diseases. Rev Endocr Metab Disord 1:123–129

    Article  PubMed  CAS  Google Scholar 

  9. Li J, Chow SY (1994) Subcellular distribution of carbonic anhydrase and Na+–K+–ATPase in the brain of the hyt/hyt hypothyroid mice. Neurochem Res 19:83–88

    Article  PubMed  CAS  Google Scholar 

  10. Lever EG, Medeiros-Neto GA, DeGrood LJ (1983) Inherited disorders of thyroid metabolism. Endocr Rev 4:213–239

    Article  PubMed  CAS  Google Scholar 

  11. Legrand J (1967) Variations, en fonction de l’age, de la réponse du cervelet a l’action morphogénétique de la thyroïde chez le rat. Arch Anat Microsc Morphol Exp 56:291–308

    PubMed  CAS  Google Scholar 

  12. Koibuchi N (2001) Thyroid hormone and cerebellar development. In: Manto M, Pandolfo M (eds) The cerebellum and its disorders. Cambridge University Press, Cambridge, pp 305–315

    Google Scholar 

  13. Koibuchi N, Jingu H, Iwasaki T, Chin WW (2003) Current perspectives on the role of thyroid hormone in growth and development of cerebellum. Cerebellum 2:279–289

    Article  PubMed  CAS  Google Scholar 

  14. Koibuchi N, Yamaoka S, Chin WW (2001) Effects of altered thyroid status in neurotrophin gene expression during postnatal development of the mouse cerebellum. Thyroid 11:205–210

    Article  PubMed  CAS  Google Scholar 

  15. Takabayashi S, Umeki K, Yamamoto E, Suzuki T, Okayama A, Katoh H (2006) A novel hypothyroid dwarfism due to the missense mutation Arg479Cys of the thyroid peroxidase gene in the mouse. Mol Endocrinol 20:2584–2590

    Article  PubMed  CAS  Google Scholar 

  16. Johnson KR, Marden CC, Ward-Bailey P, Gagnon LH, Bronson RT, Donahue LR (2007) Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol 21:1593–1602

    Article  PubMed  CAS  Google Scholar 

  17. Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, Onigata K, Fugazzola L, Refetoff S, Persani L, Weber G (2008) Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 93:605–610

    Article  PubMed  CAS  Google Scholar 

  18. Beamer WG, Maltais LJ, DeBaets MH, Eicher EM (1987) Inherited congenital goiter in mice. Endocrinology 120:838–840

    PubMed  CAS  Google Scholar 

  19. Umezu M, Kagabu S, Jiang J, Sato E (1998) Evaluation and characterization of congenital hypothyroidism in rdw dwarf rats. Lab Anim Sci 48:496–501

    PubMed  CAS  Google Scholar 

  20. Rivolta CM, Targovnik HM (2006) Molecular advances in thyroglobulin disorders. Clin Chim Acta 374:8–24

    Article  PubMed  CAS  Google Scholar 

  21. Sugisaki T, Beamer WG, Noguchi T (1992) Microcephalic cerebrum with hypomyelination in the congenital goiter mouse (cog). Neurochem Res 17:1037–1040

    Article  PubMed  CAS  Google Scholar 

  22. Chassande O (2003) Do unliganded thyroid hormone receptors have physiological functions? J Mol Endocr 31:9–20

    Article  CAS  Google Scholar 

  23. Wikström L, Johansson C, Saltó C, Barlow C, Campos Barros A, Baas F, Forrest D, Thorén P, Vennström B (1998) Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. EMBO J 17:455–461

    Article  PubMed  Google Scholar 

  24. Guadaño-Ferraz A, Benavides-Piccione R, Venero C, Lancha C, Vennström B, Sandi C, DeFelipe J, Bernal J (2003) Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 8:30–38

    Article  PubMed  CAS  Google Scholar 

  25. Morte B, Manzano J, Scanlan TS, Vennström B, Bernal J (2004) Aberrant maturation of astrocytes in thyroid hormone receptor alpha 1 knockout mice reveals an interplay between thyroid hormone receptor isoforms. Endocrinology 145:1386–1391

    Article  PubMed  CAS  Google Scholar 

  26. Morte B, Manzano J, Scanlan T, Vennström B, Bernal J (2002) Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA 99:3985–3989

    Article  PubMed  CAS  Google Scholar 

  27. Saltó C, Kindblom JM, Johansson C, Wang Z, Gullberg H, Nordström K, Mansén A, Ohlsson C, Thorén P, Forrest D, Vennström B (2001) Ablation of TRα2 and a concomitant overexpression of alpha1 yields a mixed hypo- and hyperthyroid phenotype in mice. Mol Endocrinol 15:2115–2128

    Article  PubMed  Google Scholar 

  28. Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, Legrand C, Gauthier K, Kedinger M, Malaval L, Rousset B, Samarut J (1997) The T3R alpha gene encoding a thyroid hormone receptor is essential for post-natal development and thyroid hormone production. EMBO J 16:4412–4420

    Article  PubMed  CAS  Google Scholar 

  29. Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE, Refetoff S, Willott JF, Sundin V, Roux JP, Malaval L, Hara M, Samarut J, Chassande O (2001) Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol 21:4748–4760

    Article  PubMed  CAS  Google Scholar 

  30. Macchia PE, Takeuchi Y, Kawai T, Cua K, Gauthier K, Chassande O, Seo H, Hayashi Y, Samarut J, Murata Y, Weiss RE, Refetoff S (2001) Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor alpha. Proc Natl Acad Sci USA 98:349–354

    Article  PubMed  CAS  Google Scholar 

  31. Abel ED, Boers ME, Pazos-Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F (1999) Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 104:291–300

    Article  PubMed  CAS  Google Scholar 

  32. Ng L, Hurley JB, Dierks B, Srinivas M, Saltó C, Vennström B, Reh TA, Forrest D (2001) A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27:94–98

    PubMed  CAS  Google Scholar 

  33. Forrest D, Erway LC, Ng L, Altschuler R, Curran T (1996) Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13:354–357

    Article  PubMed  CAS  Google Scholar 

  34. Sandhofer C, Schwartz HL, Mariash CN, Forrest D, Oppenheimer JH (1998) Beta receptor isoforms are not essential for thyroid hormone-dependent acceleration of PCP-2 and myelin basic protein gene expression in the developing brains of neonatal mice. Mol Cell Endocrinol 137:109–115

    Article  PubMed  CAS  Google Scholar 

  35. Göthe S, Wang Z, Ng L, Kindblom JM, Barros AC, Ohlsson C, Vennström B, Forrest D (1999) Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary–thyroid axis, growth, and bone maturation. Genes Dev 13:1329–1341

    Article  PubMed  Google Scholar 

  36. Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, Pain B, Rousset B, Weiss R, Trouillas J, Samarut J (1999) Different functions for the thyroid hormone receptors TRα and TRβ in the control of thyroid hormone production and post-natal development. EMBO J 18:623–631

    Article  PubMed  CAS  Google Scholar 

  37. Refetoff S, Weiss RE, Usala SJ (1993) The syndromes of resistance to thyroid hormone. Endocr Rev 14:348–399

    PubMed  CAS  Google Scholar 

  38. Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S (2000) Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci USA 97:13209–13214

    Article  PubMed  CAS  Google Scholar 

  39. Hashimoto K, Curty FH, Borges PP, Lee CE, Abel ED, Elmquist JK, Cohen RN, Wondisford FE (2001) An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA 98:3998–4003

    Article  PubMed  CAS  Google Scholar 

  40. Kaneshige M, Suzuki H, Kaneshige K, Cheng J, Wimbrow H, Barlow C, Willingham MC, Cheng S (2001) A targeted dominant negative mutation of the thyroid hormone α1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci USA 98:15095–15100

    Article  PubMed  CAS  Google Scholar 

  41. Itoh Y, Esaki T, Kaneshige M, Suzuki H, Cook M, Sokoloff L, Cheng SY, Nunez J (2001) Brain glucose utilization in mice with a targeted mutation in the thyroid hormone α or β receptor gene. Proc Natl Acad Sci USA 98:9913–9918

    Article  PubMed  CAS  Google Scholar 

  42. Tinnikov A, Nordström K, Thorén P, Kindblom JM, Malin S, Rozell B, Adams M, Rajanayagam O, Pettersson S, Ohlsson C, Chatterjee K, Vennström B (2002) Retardation of post-natal development caused by a negatively acting thyroid hormone receptor α1. EMBO J 21:5079–5087

    Article  PubMed  CAS  Google Scholar 

  43. Venero C, Guadaño-Ferraz A, Herrero AI, Nordström K, Manzano J, de Escobar GM, Bernal J, Vennström B (2005) Anxiety, memory impairment, and locomotor dysfunction caused by a mutant thyroid hormone receptor alpha1 can be ameliorated by T3 treatment. Genes Dev 19:2152–2163

    Article  PubMed  CAS  Google Scholar 

  44. Visser WE, Friesema EC, Jansen J, Visser TJ (2008) Thyroid hormone transport in and out of cells. Trends Endocrinol Metab 19:50–56

    Article  PubMed  CAS  Google Scholar 

  45. Palha JA, Nissanov J, Fernandes R, Sousa JC, Bertrand L, Dratman MB, Morreale de Escobar G, Gottesman M, Saraiva MJ (2002) Thyroid hormone distribution in the mouse brain: the role of transthyretin. Neuroscience 113:837–847

    Article  PubMed  CAS  Google Scholar 

  46. Dumitrescu AM, Liao XH, Best TB, Brockmann K, Refetoff S (2004) A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 74:168–75

    Article  PubMed  CAS  Google Scholar 

  47. Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S (2006) Tissue-specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8-deficient mice. Endocrinology 147:4036–4043

    Article  PubMed  CAS  Google Scholar 

  48. Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H (2007) Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 117:627–635

    Article  PubMed  CAS  Google Scholar 

  49. Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, Galton VA (2001) Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 15:2137–2148

    Article  PubMed  CAS  Google Scholar 

  50. Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, Clark AS, St Germain DL (2007) Thyroid hormone homeostasis and action in the type 2 deiodinase-deficient rodent brain during development. Endocrinology 148:3080–3088

    Article  PubMed  CAS  Google Scholar 

  51. Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D (2006) Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116:476–484

    Article  PubMed  CAS  Google Scholar 

  52. Schneider MJ, Fiering SN, Thai B, Wu SY, St Germain E, Parlow AF, St Germain DL, Galton VA (2006) Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology 147:580–589

    Article  PubMed  CAS  Google Scholar 

  53. Koibuchi N, Chin WW (1998) ROR alpha gene expression in the perinatal rat cerebellum: ontogeny and thyroid hormone regulation. Endocrinology 139:2335–2341

    Article  PubMed  CAS  Google Scholar 

  54. Qiu CH, Shimokawa N, Iwasaki T, Parhar IS, Koibuchi N (2007) Alteration of cerebellar neurotropin messenger ribonucleic acids and the lack of thyroid hormone receptor augmentation by staggerer-type retinoic acid receptor-related orphan receptor-alpha mutation. Endocrinology 148:1745–1753

    Article  PubMed  CAS  Google Scholar 

  55. Nishihara E, Yoshida-Komiya H, Chan CS, Liao L, Davis RL, O’Malley BW, Xu J (2003) SRC-1 null mice exhibit moderate motor dysfunction and delayed development of cerebellar Purkinje cells. J Neurosci 23:213–222

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noriyuki Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, N. Animal Models to Study Thyroid Hormone Action in Cerebellum. Cerebellum 8, 89–97 (2009). https://doi.org/10.1007/s12311-008-0089-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-008-0089-x

Keywords

Navigation