Skip to main content

Developmental System Drift

  • Living reference work entry
  • First Online:
Evolutionary Developmental Biology

Abstract

Developmental System Drift (DSD) is an evolutionary phenomenon whereby the genetic underpinnings of a trait in a common ancestor diverge in descendant lineages even as the trait itself remains conserved. Evidence for DSD comes from both interspecies hybridizations and comparative developmental genetic studies. The widespread occurrence of DSD implies that developmental systems are constantly evolving, even in the absence of selection for morphological change. Similar implications have been found in studies of the genetics of hybrid inviability and infertility, which reflect divergence in complex developmental systems that are perpetually under strong selection in all taxa. Gene duplications and compensatory changes in proteins and gene regulatory networks have been proposed to be the key mechanisms that drive DSD. DSD has implications for phylogenetic inference and biological homology, experimental tests of interspecies conservation of gene function, and convergent evolution. The burgeoning data and methods of comparative genomics, genome editing, and systems biology promise to greatly enhance our understanding of the dynamics and mechanisms of DSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bailey JA, Eichler EE (2006) Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 7(7):552–564. https://doi.org/10.1038/nrg1895

    Article  CAS  PubMed  Google Scholar 

  • Barriere A, Gordon K, Ruvinsky I (2012) Coevolution within and between regulatory loci can preserve promoter function despite evolutionary rate acceleration. PLoS Genet 8:e1002961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beadell AV, Liu Q, Johnson DM, Haag ES (2011) Independent recruitments of a translational regulator in the evolution of self-fertile nematodes. Proc Natl Acad Sci U S A 108(49):19672–19677. https://doi.org/10.1073/pnas.1108068108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YF, Marks ME, Jones FC, Villarreal G Jr, Shapiro MD, Brady SD, Southwick AM, Absher DM, Grimwood J, Schmutz J, Myers RM, Petrov D, Jonsson B, Schluter D, Bell MA, Kingsley DM (2010) Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327(5963):302–305. https://doi.org/10.1126/science.1182213

    Article  CAS  PubMed  Google Scholar 

  • Clark S, Chisholm A, Horvitz H (1993) Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell 74:43–55

    Article  CAS  PubMed  Google Scholar 

  • Clifford R, Lee MH, Nayak S, Ohmachi M, Giorgini F, Schedl T (2000) FOG-2, a novel F-box containing protein, associates with the GLD-1 RNA binding protein and directs male sex determination in the C. elegans hermaphrodite germline. Development 127(24):5265–5276

    CAS  PubMed  Google Scholar 

  • de Bono M, Hodgkin J (1996) Evolution of sex determination in Caenorhabditis: unusually high divergence of tra-1 and its functional consequences. Genetics 144(2):587–595

    PubMed  Google Scholar 

  • Delattre M, Felix M (2001) Polymorphism and evolution of vulval precursor cell lineages within two nematode genera, Caenorhabditis and Oscheius. Curr Biol 11:631–643

    Article  CAS  PubMed  Google Scholar 

  • Felix M (2007) Cryptic quantitative evolution of the vulva intercellular signaling network in Caenorhabditis. Curr Biol 17:103–114

    Article  CAS  PubMed  Google Scholar 

  • Force A, Lynch M, Pickett FB, Amores A, Yan Y, Postlethwait J (1999) Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haag ES (2007) Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions. Genetica 129(1):45–55. https://doi.org/10.1007/s10709-006-0032-3

    Article  PubMed  Google Scholar 

  • Haag ES, Wang S, Kimble J (2002) Rapid coevolution of the nematode sex-determining genes fem-3 and tra-2. Curr Biol 12(23):2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792

    Article  CAS  PubMed  Google Scholar 

  • Johnson NA, Porter AH (2007) Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica 129(1):57–70. https://doi.org/10.1007/s10709-006-0033-2

    Article  PubMed  Google Scholar 

  • Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R, Fitch DH, Felix MA (2007) Trends, stasis, and drift in the evolution of nematode vulva development. Curr Biol 17(22):1925–1937. https://doi.org/10.1016/j.cub.2007.10.061

    Article  CAS  PubMed  Google Scholar 

  • Milloz J, Duveau F, Nuez I, Felix M (2008) Intraspecific evolution of the intercellular signaling network underlying a robust developmental system. Genes Dev 22:3064–3075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pomiankowski A, Nothiger R, Wilkins A (2004) The evolution of the Drosophila sex-determination pathway. Genetics 166(4):1761–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmalhausen II (1949) Factors of Evolution. Blackiston Company, Philadelphia

    Google Scholar 

  • Schulze J, Schierenberg E (2011) Evolution of embryonic development in nematodes. EvoDevo 2:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Shubin N, Alberch P (1986) A morphogenetic approach to the origin and basic organization of the tetrapod limb. In: Hecht W, Wallace B, Prance G (eds) Evolutionary biology, vol 20. Plenum, New York, pp 319–387

    Chapter  Google Scholar 

  • Sommer R (1997) Evolutionary changes of developmental mechanisms in the absence of cell lineage alterations during vulva formation in the Diplogastridae (Nematoda). Development 124:243–251

    CAS  PubMed  Google Scholar 

  • Sommer R, Sternberg P (1996) Apoptosis and change of competence limit the size of the vulva equivalence group in Pristionchus pacificus: a genetic analysis. Curr Biol 6:52–59

    Article  CAS  PubMed  Google Scholar 

  • Sternberg P, Horvitz H (1986) Pattern formation during vulval development in C. elegans. Cell 44:761–772

    Article  CAS  PubMed  Google Scholar 

  • Takano T (1998) Loss of notum macrochaetae as an interspecific hybrid anomly between Drosophila melanogaster and D. simulans. Genetics 129:1435–1450

    Google Scholar 

  • True JR, Haag ES (2001) Developmental system drift and flexibility in evolutionary trajectories. Evol Dev 3:109–119

    Article  CAS  PubMed  Google Scholar 

  • Verster AJ, Ramani AK, McKay SJ, Fraser AG (2014) Comparative RNAi screens in C. elegans and C. briggsae reveal the impact of developmental system drift on gene function. PLoS Genet 10(2):e1004077. https://doi.org/10.1371/journal.pgen.1004077

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner GP (2007) The developmental genetics of homology. Nat Rev Genet 8(6):473–479. https://doi.org/10.1038/nrg2099

    Article  CAS  PubMed  Google Scholar 

  • Weiss KM, Fullerton SM (2000) Phenogenetic drift and the evolution of genotype–phenotype relationships. Theor Popul Biol 57:187–195

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E (1965) The evolution of hemoglobin. Sci Am 212:110–118

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution and genetic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Academic Press, New York, pp 189–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. True .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Haag, E.S., True, J.R. (2018). Developmental System Drift. In: Nuno de la Rosa, L., Müller, G. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-33038-9_83-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33038-9_83-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33038-9

  • Online ISBN: 978-3-319-33038-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics