Skip to main content
Log in

Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift

  • ORIGINAL RESEARCH PAPER
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Developmental systems are regulated by a web of interacting loci. One common and useful approach in studying the evolution of development is to focus on classes of interacting elements within these systems. Here, we use individual-based simulations to study the evolution of traits controlled by branched developmental pathways involving three loci, where one locus regulates two different traits. We examined the system under a variety of selective regimes. In the case where one branch was under stabilizing selection and the other under directional selection, we observed “developmental system drift”: the trait under stabilizing selection showed little phenotypic change even though the loci underlying that trait showed considerable evolutionary divergence. This occurs because the pleiotropic locus responds to directional selection and compensatory mutants are then favored in the pathway under stabilizing selection. Though developmental system drift may be caused by other mechanisms, it seems likely that it is accelerated by the same underlying genetic mechanism as that producing the Dobzhansky–Muller incompatibilities that lead to speciation in both linear and branched pathways. We also discuss predictions of our model for developmental system drift and how different selective regimes affect probabilities of speciation in the branched pathway system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abouheif E (1997) Developmental genetics and homology: a hierarchical approach. Trends Ecol Evol 12:405–408

    Article  Google Scholar 

  • Abouheif E (1999) Establishing homology criteria for regulatory gene networks: prospects and challenges. In: Bock GR, Cardew G (eds) Homology. Wiley, Chircester, pp 207–225 (Novartis Foundation Symposium 222)

    Google Scholar 

  • Abouheif E, Akam M, Dickinson WJ, Holland PWH, Meyer A, Patel NH, Raff RA, Roth VL, Wray GA (1997). Homology and developmental genes. Trends in Genetics 13:423–433

    Article  Google Scholar 

  • Barbash DA, Siino DF, Tarone AM, Roote J (2003) A rapidly evolving MYB-related protein causes species isolation in Drosophila. Proc Nat Acad Sci (USA) 100:5302–5307

    Article  CAS  Google Scholar 

  • Cabot EL, Davis AW, Johnson NA, Wu C-I (1994) Genetics of reproductive isolation in the Drosophila simulans clade: complex epistasis underlying hybrid sterility. Genetics 137:175–189

    PubMed  CAS  Google Scholar 

  • Charlesworth B, Lande R, Slatkin M (1982) A neo-Darwinian commentary on macroevolution. Evolution 36:474–498

    Article  Google Scholar 

  • Davidson EH (2001). Genomic regulatory systems: development and evolution. Academic Press, San Diego

    Google Scholar 

  • Dickinson WJ (1995) Molecules and morphology: where’s the homology? Trends Genet 11:119–120

    Article  PubMed  CAS  Google Scholar 

  • Dilda CL, MacKay TFC (2002) The genetic architecture of Drosophila sensory bristle number. Genetics 162:1655–1674

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  PubMed  CAS  Google Scholar 

  • Duboule D, Wilkins AS (1998) The evolution of ‘bricolage’. Trends Genet 14:54–59

    Article  PubMed  CAS  Google Scholar 

  • Frank S (1999) Population and quantitative genetics of regulatory networks. J Theor Biol 197:281–284

    Article  PubMed  CAS  Google Scholar 

  • Futuyma DJ (1998) Evolutionary Biology, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  • Gerhardt J, Kirschner M (1997) Cells, Embryos, and Evolution. Blackwell Science, London

    Google Scholar 

  • Gibson G (1996) Epistasis and pleiotropy as natural properties of transcriptional regulation. Theor Pop Biol 49:58–89

    Article  CAS  Google Scholar 

  • Gompel N, Carroll SB (2003) Genetic mechanisms and constraints governing the evolution of correlated traits in drosphilid flies. Nature 424:931–935

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Haag ES, True JR (2001) Perspective: from mutants to mechanisms? Assessing the candidate gene paradigm in evolutionary biology. Evolution 55:1077–1084

    PubMed  CAS  Google Scholar 

  • Halliburton R (2004). Introduction to population genetics. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Hansen TF, Wagner GP (2001) Modeling genetic architecture: a multilinear theory of gene interaction. Theor Pop Biol 59:61–86

    Article  CAS  Google Scholar 

  • Johnson NA (2000) Gene interaction and the origin of species. In: Wolf JB, Brodie ED III, Wade MJ (eds) Epistasis and the evolutionary process. Oxford University Press, New York, pp 197–212

    Google Scholar 

  • Johnson NA, Porter AH (2000) Rapid speciation via parallel, directional selection on regulatory genetic pathways. J of Theor Biol 205:527–542

    Article  CAS  Google Scholar 

  • Johnson NA, Porter AH (2001) Toward a new synthesis: population genetics and evolutionary developmental biology. Genetica 112/113:45–58

    Article  Google Scholar 

  • Leips J, Mackay TFC (2002) The complex genetic architecture of Drosophila lifespan. Exp Aging Res 28:361–390

    Article  PubMed  Google Scholar 

  • Lemon B, Meiklejohn CD, Caceres M, Hartl DL (2005) Rates of divergence in gene expression profiles of primates, mice, and flies: Stabilizing selection and variability among functional categories. Evolution 59:126–137

    Google Scholar 

  • Liu J, Mercer JM, Stam LF, Gibson GC, Zeng ZB, Laurie CC (1996) Genetic analysis of a morphological shape difference in the male genitalia of Drosophila simulans and D. mauritiana. Genetics 142:1129–1145

    PubMed  CAS  Google Scholar 

  • Ludwig MZ, Bergman C, Patel NH, Kreitman M (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403:564–567

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh JB (1998) Genetics and Analysis of Quantitative Traits. Sinauer Associates, Sunderland, MA

  • MacKay TFC (2001) The genetic architecture of quantitative traits. Annu Rev Genet 35:303–339

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1954) Change of genetic environment and evolution. In: Huxley J, Hardy AC, Ford EB (eds) Evolution as a process. Allen and Unwin, London, pp 157–180

    Google Scholar 

  • Mayr E (1963) Animal Species and Evolution. Harvard University Press, Cambridge, MA

    Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  PubMed  CAS  Google Scholar 

  • Merila J, Sheldon BC, Kruuk LEB (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112/113:199–222

    Article  Google Scholar 

  • Michalak P, Noor MAF (2003) Genome-wide patterns of expression in Drosophila pure-species and hybrid males. Mol Biol Evol 20:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Michalak P, Noor MAF (2004) Association of misexpression with sterility in hybrids of Drosophila simulans and D.␣mauritiana. J Mol Evol 59:277–282

    Article  PubMed  CAS  Google Scholar 

  • Nanney DL (1982) Genes and phenes in Tetrahymena. Bioscience 32:783–788

    Article  Google Scholar 

  • Orr HA (1995) The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics 139:1805–1813

    PubMed  CAS  Google Scholar 

  • Orr HA (1998) Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics 149:2099–2104

    PubMed  CAS  Google Scholar 

  • Pagel P, Mewes H-W, Frishman D (2004) Conservation of protein–protein interactions – lessons from ascomycota. Trends Genet 20:72–76

    Article  PubMed  CAS  Google Scholar 

  • Patterson C (1988) Homology in classical and molecular biology. Mol Biol Evol 5:603–625

    PubMed  CAS  Google Scholar 

  • Perez DE, Wu C-I, Johnson NA, Wu M-L (1993) Genetics of reproductive isolation in the Drosophila simulans clade: DNA marker-assisted mapping of a hybrid-male sterility gene, Odysseus (Ods). Genetics 134:261–275

    PubMed  CAS  Google Scholar 

  • Pomiankowski A, Rolf Nöthiger, Wilkins A (2004) The evolution of the Drosophila sex-determination pathway. Genetics 166:1761–1773

    Article  PubMed  CAS  Google Scholar 

  • Porter AH, Johnson NA (2002) Speciation despite gene flow when developmental pathways evolve. Evolution 56:2103–2111

    PubMed  Google Scholar 

  • Presgraves DC, Balagopalan L, Abmayr SM, Orr HA (2003) Adaptive evolution drives the divergence of a hybrid inviability gene between two species of Drosophila. Nature 423:715–719

    Article  PubMed  CAS  Google Scholar 

  • Ranz JM, Namgyal K, Gibson G, Hartl DL (2004) Anomalies in the expression profile of interspecific hybrids of Drosophila melanogaster and Drosophila simulans. Genome Res 14:373–379

    Article  PubMed  CAS  Google Scholar 

  • Ranz JM, Machado CA (2006) Uncovering evolutionary patterns of gene expression using microarrays. Trends Eco Evol 21:29–37

    Article  Google Scholar 

  • Reiland J, Noor MAF (2002) Little qualitative RNA misexpression in sterile male F1 hybrids of Drosophila pseudoobscura and D. persimilis. BMC Evol Biol 2:16

    Article  PubMed  Google Scholar 

  • Rice SH (1998) The evolution of canalization and the breaking of Von Baer laws: modeling the evolution of development with epistasis. Evolution 52:647–656

    Article  Google Scholar 

  • Rice SH (2000) The evolution of developmental interactions: epistasis, canalization, and integration. In: Wolf JB, Brodie ED III, Wade MJ (eds) Epistasis and the evolutionary process. Oxford University Press, New York, pp 82–98

    Google Scholar 

  • Romano LA, Wray GA (2003) Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation. Development 130:4187–4199

    Article  PubMed  CAS  Google Scholar 

  • Schartl M, Hornung U, Gutbrod H, Volff J-N, Wittbrodt J (1999) Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Genetics 153:1385–1394

    PubMed  CAS  Google Scholar 

  • Skaer N, Simpson P (2000) Genetic analysis of bristle loss in hybrids between Drosophila melanogaster and D. simulans provides evidence for divergence of cis-regulatory sequences in the achete-scute gene complex. Dev Biol 221:148–167

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1994) Biometry, 3rd edn. W. H. Freeman, New York

    Google Scholar 

  • Stern DL (2000) Evolutionary developmental biology and the problem of variation. Evolution 54:1079–1091

    PubMed  CAS  Google Scholar 

  • Sucena E, Delon I, Jones I, Payre F, Stern DL (2003) Regulatory evolution of shavenbaby/ovo underlies multiple cases of parallelism. Nature 424:935–939

    Article  PubMed  CAS  Google Scholar 

  • Takano TS (1998) Loss of notum macrochaetae as an interspecific hybrid anomaly between Drosophila melanogaster and D. simulans. Genetics 149:1435–1450

  • Takano-Shimizu T (2000) Genetic screens for factors involved in the notum bristle loss of interspecific hybrids between Drosophila melanogaster and D. simulans. Genetics 156:269–282

    Google Scholar 

  • Ting C-T, Tsaur S-C, Wu M-L, Wu C-I (1998). A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282:1501–1504

    Article  PubMed  CAS  Google Scholar 

  • True JR, Haag ES (2001). Developmental system drift and flexibility in evolutionary trajectories. Evol Develop 3:109–119

    Article  CAS  Google Scholar 

  • Wade MJ, Johnson NA, Wardle G (1994) Analysis of autosomal polygenic variation for the expression of Haldane’s rule in flour beetles. Genetics 138:791–799

    PubMed  CAS  Google Scholar 

  • Wade MJ, Johnson NA, Jones R, Siguel V, McNaughton M (1997) Genetic variation segregating in natural populations of Tribolium castaneum affecting traits observed in hybrids with T. freemani. Genetics 147:1235–1247

    PubMed  CAS  Google Scholar 

  • Wade MJ, Johnson NA, Toquenaga Y (1999) Temperature effects and genotype by environment interactions (GEI) in hybrids: Haldane’s rule in flour beetles. Evolution 53:855–865

    Article  Google Scholar 

  • Wagner GP (1989) The biological homology concept. Annu Rev Ecol Syst 20:125–140

    Article  Google Scholar 

  • Wagner GP (1996) Does evolutionary plasticity evolve? Evolution 50:1008–1023

    Article  Google Scholar 

  • Wagner GP (1999) A research programme for testing the biological homology concept. In: Bock GR, Cardew G (eds) Homology. Wiley, Chircester, pp 125–140 (Novartis Foundation Symposium 222)

    Google Scholar 

  • Wilkins AS (2002) The evolution of developmental pathways. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Wolf JB, Framkino WA, Agrawal AF, Brodie ED III, Moore AJ (2001) Developmental interactions and the constituents of quantitative variation. Evolution 55:232–245

    PubMed  CAS  Google Scholar 

  • Wray GA (1999) Evolutionary dissociations between homologous genes and homologous structures. In: Bock GR, Cardew G (eds) Homology. Wiley, Chircester, pp 189–206 (Novartis Foundation Symposium 222)

    Google Scholar 

  • Wray GA, Hahn MW, Abouheif E, Balhouf JP, Pizer M, Rockman MV, Romano LA (2003) The evolution of transcriptional regulation in eukaryotes. Mol Biol Evol 20:1377–1419

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Eric Haag, Rich Kliman, and Mohamed Noor for many stimulating discussions. We also thank the above, Jody Hey and John True for comments on drafts of␣this manuscript. This work was supported by NSF DEB 0075451.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman A. Johnson.

Appendix 1: Constraint and Speciation

Appendix 1: Constraint and Speciation

When both branches are under directional selection, there is a possibility that the selection responses on the two branches may interfere with each other and thus constrain the ways by which the populations respond to selection. There are four ways by which a population can respond to selection for looser binding at both branches of the pathway. Where promoter j and product j represent the allelic values of promoter and product sites at locus j, looser binding evolves in both branches by any of the following routes:

  1. (1)

    productA > promoterB and productA > promoterC, with probability a;

  2. (2)

    productA > promoterB and productA < promoterC, with probability b;

  3. (3)

    productA < promoterB and productA > promoterC, with probability c;

  4. (4)

    productA < promoterB and productA < promoterC, with probability d.

These routes are mutually exclusive so a + b +  c + d = 1.

Reproductive isolation arises only if the two different populations take different, incompatible routes. The probability that strong reproductive isolation will not occur is thus the summation of the squared probabilities that a population will respond along a given route, Prob [high hybrid fitness] = a 2 + b 2 + c 2 + d 2. Routes 1 and 4 are symmetrical as are routes 2 and 3, so a = d and b = c.

With constraint, populations will be more likely to transverse routes 1 and 4 and less likely to transverse routes 2 and 3. Let T equal the constraint or equivalently, the correlation of the allelic values in the two pathways. Therefore,

$$ a = d = (1 + T)/4 $$
$$ b = c = (1 - T)/4 . $$

When T = 0, the interactions are independent and a = b = c = d. When T = 1, the pathways are completely constrained to evolve together, whereby a = d = 1/2 and b = c = 0. Thus Prob [high hybrid fitness] = 

$$ 2\left( {\frac{{1 + T}} {4}} \right)^2 + 2\left( {\frac{{1 - T}} {4}} \right)^2 = \frac{{1 + T^2 }} {4} $$

.

$$\eqalign{ 2\left( {\frac{{\left( 1 + T \right)^2 }} {{16}}} \right) + 2\left( {\frac{{\left( {1 - T} \right)^2 }} {{16}}} \right) = \frac{{\left( {1 + T} \right)^2 + \left( {1 - T} \right)^2 }} {8} \cr \qquad= \frac{{1 + 2T + T^2 + 1 - 2T + T^2 }} {8} = \frac{{2 + 2T^2 }} {8}} $$
$$ 1 - \frac{{1 + T^2 }} {4} = \frac{{4 - 1 - T^2 }} {4} = \frac{{3 - T^2 }} {4} $$

The probability that reproductive isolation will arise is Prob [low hybrid fitness] = 1−Prob [high hybrid fitness] = (3−T 2)/4, which ranges from 1/2 to 3/4 as T ranges from 1 to 0.

T can be estimated from this equation by substituting the observed frequency \( \hat f \) of low hybrid fitness outcomes and rearranging, giving \( \hat T = \sqrt {3 - 4\hat f} \). This estimates the extent to which evolution is correlated on the two branches of the pathway.

$$ \hat f = \frac{{3 - \hat T\,^2 }} {4}\quad 4\hat f - 3 = - \hat T\,^2 \quad \hat T\,^2 = 3 - 4\hat f $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, N.A., Porter, A.H. Evolution of branched regulatory genetic pathways: directional selection on pleiotropic loci accelerates developmental system drift. Genetica 129, 57–70 (2007). https://doi.org/10.1007/s10709-006-0033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0033-2

Keywords

Navigation