Skip to main content

Integrating Time-Series Data in Large-Scale Discrete Cell-Based Models

  • Conference paper
  • First Online:
Hybrid Systems Biology (HSB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9271))

Included in the following conference series:

  • 386 Accesses

Abstract

In this work we propose an automatic way of generating and verifying formal hybrid models of signaling and transcriptional events, gathered in large-scale regulatory networks.This is done by integrating temporal and stochastic aspects of the expression of some biological components. The hybrid approach lies in the fact that measurements take into account both times of lengthening phases and discrete switches between them. The model proposed is based on a real case study of keratinocytes differentiation, in which gene time-series data was generated upon Calcium stimulation.

To achieve this we rely on the Process Hitting (PH) formalism that was designed to consider large-scale system analysis. We first propose an automatic way of detecting and translating biological motifs from the Pathway Interaction Database to the PH formalism. Then, we propose a way of estimating temporal and stochastic parameters from time-series expression data of action on the PH. Simulations emphasize the interest of synchronizing concurrent events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://process.hitting.free.fr.

References

  1. Ahmad, J., Roux, O., Bernot, G., Comet, J.-P., Richard, A.: Analysing formal models of genetic regulatory networks with delays. Int. J. Bioinform. Res. Appl. (IJBRA) 4(3), 240–262 (2008)

    Article  Google Scholar 

  2. Andreychenko, A., Mikeev, L., Spieler, D., Wolf, V.: Approximate maximum likelihood estimation for stochastic chemical kinetics. EURASIP J. Bioinform. Syst. Biol. 2012(1), 9 (2012)

    Article  Google Scholar 

  3. Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics 26(18), i603–i610 (2010)

    Article  Google Scholar 

  4. Batt, G., Ben Salah, R., Maler, O.: On timed models of gene networks. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 38–52. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Busch, H., Camacho-Trullio, D., Rogon, Z., Breuhahn, K., Angel, P., Eils, R., Szabowski, A.: Gene network dynamics controlling keratinocyte migration. Mol. Syst. Biol. 4(1), 199 (2008)

    Google Scholar 

  6. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory graphs: a computational tool based on a discrete formal framework. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) Positive Systems. LNCIS, vol. 294, pp. 119–126. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. De Jong, H., Geiselmann, J., Hernandez, C., Page, M.: Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 19(3), 336–344 (2003)

    Article  Google Scholar 

  8. Gardner, T.S., Di Bernardo, D., Lorenz, D., Collins, J.J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301(5629), 102–105 (2003)

    Article  Google Scholar 

  9. Guziolowski, C., Kittas, A., Dittmann, F., Grabe, N.: Automatic generation of causal networks linking growth factor stimuli to functional cell state changes. FEBS J. 279(18), 3462–3474 (2012)

    Article  Google Scholar 

  10. Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez, J.: Exhaustively characterizing feasible logic models of a signaling network using answer set programming. Bioinformatics 29(18), 2320–2326 (2013)

    Article  Google Scholar 

  11. Heiner, Monika, Gilbert, David, Donaldson, Robin: Petri nets for systems and synthetic biology. In: Bernardo, Marco, Degano, Pierpaolo, Zavattaro, Gianluigi (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22(3), 437–467 (1969)

    Article  Google Scholar 

  13. Kolly, C., Suter, M.M., Muller, E.J.: Proliferation, cell cycle exit, and onset of terminal differentiation in cultured keratinocytes: pre-programmed pathways in control of C-Myc and Notch1 prevail over extracellular calcium signals. J. Invest. Dermatol. 124(5), 1014–1025 (2005)

    Article  Google Scholar 

  14. MacNamara, A., Terfve, C., Henriques, D., Bernabé, B.P., Saez-Rodriguez, J.: State-time spectrum of signal transduction logic models. Phys. Biol. 9(4), 045003 (2012)

    Article  Google Scholar 

  15. Maurin, M., Magnin, M., Roux, O.: Modeling of genetic regulatory network in stochastic \(\pi \)-calculus. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 282–294. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Mitsos, A., Melas, I.N., Siminelakis, P., Chairakaki, A.D., Saez-Rodriguez, J., Alexopoulos, L.G.: Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. PLoS Comput. Biol. 5(12), e1000591 (2009)

    Article  Google Scholar 

  17. Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Comput. 100(9), 913–917 (1982)

    Article  Google Scholar 

  18. Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic \(\pi \)-calculus Framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Pinna, A., Soranzo, N., de la Fuente, A.: From knockouts to networks: Establishing direct cause-effect relationships through graph analysis. PLoS ONE 5(10), e12912 (2010)

    Article  Google Scholar 

  20. Porreca, R., Cinquemani, E., Lygeros, J., Ferrari-Trecate, G.: Identification of genetic network dynamics with unate structure. Bioinformatics 26(9), 1239–1245 (2010)

    Article  MATH  Google Scholar 

  21. Priami, C.: Stochastic \(\pi \)-calculus. Comput. J. 38(7), 578–589 (1995)

    Article  Google Scholar 

  22. Altman, R., Reinker, S., Timmer, J.: Parameter estimation in stochastic biochemical reactions. IEE Pro. Syst. Biol. 153, 168–178 (2006)

    Article  Google Scholar 

  23. Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: Pid: the pathway interaction database. Nucleic Acids Res. 37(suppl 1), D674–D679 (2009)

    Article  Google Scholar 

  24. Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis of gene regulatory networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 169–183. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Snoussi, E.H.: Qualitative dynamics of piecewise-linear differential equations: a discrete mapping approach. Dyn. Stab. Syst. 4(3–4), 565–583 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks immunity control in bacteriophage lambda. Bull. Math. Biol. 57(2), 277–297 (1995)

    MATH  Google Scholar 

  27. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3), 563–585 (1973)

    Article  Google Scholar 

  28. Tu, C.L., Chang, W., Bikle, D.D.: The calcium-sensing receptor-dependent regulation of cell-cell adhesion and keratinocyte differentiation requires Rho and filamin A. J. Invest. Dermatol. 131(5), 1119–1128 (2011)

    Article  Google Scholar 

  29. Van Goethem, S., Jacquet, J.-M., Brim, L., Šafránek, D.: Timed modelling of gene networks with arbitrarily precise expression discretization. Electron. Notes Theoret. Comput. Sci. 293, 67–81 (2013)

    Article  Google Scholar 

  30. Namhee, Y., Seo, J., Rho, K., Jang, Y., Park, J., Kim, W.K., Lee, S.: hipathdb: a human-integrated pathway database with facile visualization. Nucleic Acids Res. 40(D1), D797–D802 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a PhD grant from the CNRS and the French region Pays de la Loire and grants from the German Ministry for Research and Education (BMBF) funding program MedSys (grant number FKZ0315401A) and AGENET (FKZ0315898).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carito Guziolowski .

Editor information

Editors and Affiliations

A Algorithm of Patterns Detection

A Algorithm of Patterns Detection

Here are the algorithms that allow to detect and construct a process hitting model from an RSTC network. These algorithms have a polynomial time running that correspond to the running time of the procedure 2.

Proposition 1

Algorithm 2 has a time complexity of \(\mathcal {O}(|V|\log {}(h))\). Where h is the average height of the patterns in the RSTC network. In the worst case \(h = \log _{V}(|V|)\).

figure b
figure c
figure d

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fitime, L.F., Schuster, C., Angel, P., Roux, O., Guziolowski, C. (2015). Integrating Time-Series Data in Large-Scale Discrete Cell-Based Models. In: Abate, A., Šafránek, D. (eds) Hybrid Systems Biology. HSB 2015. Lecture Notes in Computer Science(), vol 9271. Springer, Cham. https://doi.org/10.1007/978-3-319-26916-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-26916-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-26915-3

  • Online ISBN: 978-3-319-26916-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics