Skip to main content

Petri Nets for Systems and Synthetic Biology

  • Conference paper
Formal Methods for Computational Systems Biology (SFM 2008)

Abstract

We give a description of a Petri net-based framework for modelling and analysing biochemical pathways, which unifies the qualitative, stochastic and continuous paradigms. Each perspective adds its contribution to the understanding of the system, thus the three approaches do not compete, but complement each other. We illustrate our approach by applying it to an extended model of the three stage cascade, which forms the core of the ERK signal transduction pathway. Consequently our focus is on transient behaviour analysis. We demonstrate how qualitative descriptions are abstractions over stochastic or continuous descriptions, and show that the stochastic and continuous models approximate each other. Although our framework is based on Petri nets, it can be applied more widely to other formalisms which are used to model and analyse biochemical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Singhal, V., Aziz, A., Sanwal, K., Brayton, R.: Model checking continuous time Markov chains. ACM Trans. on Computational Logic 1(1), 162–170 (2000)

    Google Scholar 

  2. Angeli, D., De Leenheer, P., Sontag, E.D.: On the structural monotonicity of chemical reaction networks. In: Proc. 45th IEEE Conference on Decision and Control, pp. 7–12 (2006)

    Google Scholar 

  3. Adalsteinsson, D., McMillen, D., Elston, T.C.: Biochemical network stochastic simulator (bionetS): software for stochastic modeling of biochemical networks. BMC Bioinformatics 5, 24 (2004)

    Article  Google Scholar 

  4. Antoniotti, M., Policriti, A., Ugel, N., Mishra, B.: Model building and model checking for biochemical processes. Cell Biochemistry and Biophysics 38, 271–286 (2003)

    Google Scholar 

  5. BioNessie website. A biochemical pathway simulation and analysis tool. University of Glasgow (2008), http://www.bionessie.org

  6. Bause, F., Kritzinger, P.S.: Stochastic Petri Nets. Vieweg (2002)

    Google Scholar 

  7. Hermanns, H., Baier, C., Haverkort, B., Katoen, J.-P.: Model-checking algorithms for continuous-time markov chains. IEEE Trans. on Software Engineering 29(6), 524–541 (2003)

    Article  Google Scholar 

  8. Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 68–94. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cambridge (2001) (third printing)

    Google Scholar 

  11. Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8(4), 210–219 (2007)

    Article  Google Scholar 

  12. Charlie Website. A Tool for the Analysis of Place/Transition Nets. BTU Cottbus (2008), http://www-dssz.informatik.tu-cottbus.de/software/charlie/charlie.html

  13. Chickarmane, V., Kholodenko, B.N., Sauro, H.M.: Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. Journal of Theoretical Biology 244(1), 68–76 (2007)

    Article  MathSciNet  Google Scholar 

  14. Curry, E.: Stochastic Simulation of the Entrained Circadian Rhythm. Master thesis, School of Informatics, Univ. of Edinburgh (2006)

    Google Scholar 

  15. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of signalling pathways using continuous time Markov chains. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 44–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  17. D’Aprile, D., Donatelli, S., Sproston, J.: CSL model checking for the GreatSPN tool. In: Aykanat, C., Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, Springer, Heidelberg (2004)

    Google Scholar 

  18. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  19. Desel, J., Juhás, G.: What is a Petri Net? In: Ehrig, H., Juhás, G., Padberg, J., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Dormand, J.R., Prince, P.J.: A family of embedded runge-kutta formulae. J. Comp. Appl. Math. 6, 1–22 (1980)

    Article  MathSciNet  Google Scholar 

  21. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Meseguer, J., Sonmez, K.: Pathway logic: Symbolic analysis of biological signaling. In: Proc. Seventh Pacific Symposium on Biocomputing, pp. 400–412 (2002)

    Google Scholar 

  22. Fages, F., Rizk, A.: On the analysis of numerical data time series in temporal logic. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 48–63. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  23. Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: TR I-02, CS Dep., BTU Cottbus (2007)

    Google Scholar 

  25. Gilbert, D., Heiner, M., Lehrack, S.: A unifying framework for modelling and analysing biochemical pathways using Petri nets. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS (LNBI), vol. 4695, pp. 200–216. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  26. Gilbert, D., Heiner, M., Rosser, S., Fulton, R., Gu, X., Trybiło, M.: A Case Study in Model-driven Synthetic Biology. In: 2nd IFIP Conference on Biologically Inspired Collaborative Computing (BICC), IFIP WCC 2008, Milano (to appear, 2008)

    Google Scholar 

  27. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  28. Goss, P.J.E., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proc. Natl. Acad. Sci., USA, 95, 2340–2361 (1998)

    Google Scholar 

  29. Heiner, M., Donaldson, R., Gilbert, D.: Petri Nets for Systems Biology. In: Iyengar, M.S. (ed.) Symbolic Systems Biology: Theory and Methods, Jones and Bartlett Publishers, Inc (to appear, 2008)

    Google Scholar 

  30. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H. et al.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. J. Bioinformatics 19, 524–531 (2003)

    Article  Google Scholar 

  31. Heiner, M., Koch, I.: Petri Net Based Model Validation in Systems Biology. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 216–237. Springer, Heidelberg (2004)

    Google Scholar 

  32. Heath, J., Kwiatkowska, M., Norman, G., Parker, D., Tymchyshyn, O.: Probabilistic model checking of complex biological pathways. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 32–47. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  33. Hofestädt, R.: A Petri net application of metabolic processes. Journal of System Analysis, Modeling and Simulation 16, 113–122 (1994)

    MATH  Google Scholar 

  34. Heiner, M., Richter, R., Schwarick, M.: Snoopy - A Tool to Design and Animate/Simulate Graph-Based Formalisms. In: Proc. PNTAP 2008, ACM, New York (to appear, 2008)

    Google Scholar 

  35. Koch, I., Heiner, M.: Petri Nets. In: Junker, B.H., Schreiber, F. (eds.) Biological Network Analysis, 7, pp. 139–179. Wiley Book Series on Bioinformatics (2008)

    Google Scholar 

  36. Kierzek, A.M.: STOCKS: STOChastic kinetic simulations of biochemical systems with gillespie algorithm. Bioinformatics 18(3), 470–481 (2002)

    Article  Google Scholar 

  37. Lautenbach, K.: Exact Liveness Conditions of a Petri Net Class (in German). Technical report, GMD Report 82, Bonn (1973)

    Google Scholar 

  38. Levchenko, A., Bruck, J., Sternberg, P.W.: Scaffold proteins biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97(11), 5818–5823 (2000)

    Article  Google Scholar 

  39. Li, C., Miyano, S., Matsuno, H.: Petri net based descriptions for systematic understanding of biological pathways. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89-A(11), 3166–3174 (2006)

    Google Scholar 

  40. Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling with Generalized Stochastic Petri Nets, 2nd edn. Wiley Series in Parallel Computing. John Wiley and Sons, Chichester (1995)

    MATH  Google Scholar 

  41. MC2 Website. MC2 - PLTL model checker. University of Glasgow (2008), http://www.brc.dcs.gla.ac.uk/software/mc2/

  42. Matsuno, H., Fujita, S., Doi, A., Nagasaki, M., Miyano, S.: Towards Pathway Modelling and Simulation. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 3–22. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  43. Max-Gruenebaum-Foundation, http://www.max-gruenebaum-stiftung.de

  44. Murata, T.: Petri nets: Properties, analysis and applications. Proc.of the IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  45. Palsson, B.O.: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  46. Petri, C.A.: Communication with Automata (in German). Schriften des Instituts für Instrumentelle Mathematik, Bonn (1962)

    Google Scholar 

  47. Parker, D., Norman, G., Kwiatkowska, M.: PRISM 3.0.beta1 Users’ Guide (2006)

    Google Scholar 

  48. Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci. 13, 45–60 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  49. Priese, L., Wimmel, H.: Theoretcial Informatics - Petri Nets (in German). Springer, Heidelberg (2003)

    Google Scholar 

  50. Reisig, W.: Petri nets; An introduction. Springer, Heidelberg (1982)

    Google Scholar 

  51. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.L.: Petri Net Representations in Metabolic Pathways. In: Proc. of the Int. Conf. on Intelligent Systems for Molecular Biology (1993)

    Google Scholar 

  52. Salis, H., Kaznessis, Y.: Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. J. Chem. Phys. 122 (2005)

    Google Scholar 

  53. Snoopy Website. A Tool to Design and Animate/Simulate Graphs. BTU Cottbus (2008), http://www-dssz.informatik.tu-cottbus.de/software/snoopy.html

  54. Srivastava, R., Peterson, M.S., Bentley, W.E.: Stochastic kinetic analysis of the escherichia coli stress circuit using σ 32-targeted antisense. Biotechnology and Bioengineering 75(1), 120–129 (2001)

    Article  Google Scholar 

  55. Shampine, L.F., Reichelt, M.W.: The MATLAB ODE Suite. SIAM Journal on Scientific Computing 18, 1–22 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Starke, P.H., Roch, S.: INA - The Intergrated Net Analyzer. Humboldt University Berlin (1999), www.informatik.hu-berlin.de/~starke/ina.html

  57. Schröter, C., Schwoon, S., Esparza, J.: The Model Checking Kit. In: van der Aalst, W.M.P., Best, E. (eds.) ICATPN 2003. LNCS, vol. 2679, pp. 463–472. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  58. Shaw, O.J., Steggles, L.J., Wipat, A.: Automatic parameterisation of stochastic Petri net models of biological networks. CS-TR-909, School of CS, Univ. of Newcastle upon Tyne (2005)

    Google Scholar 

  59. Schulz-Trieglaff, O.: Modelling the randomness in biological systems. Master thesis, School of Informatics, University of Edinburgh (2005)

    Google Scholar 

  60. Starke, P.H.: Some Properties of Timed Nets under the Earliest Firing Rule. In: Rozenberg, G. (ed.) APN 1989. LNCS, vol. 424, pp. 418–432. Springer, Heidelberg (1990)

    Google Scholar 

  61. Starke, P.H.: Analysis of Petri Net Models (in German). B.G. Teubner, Stuttgart, Stuttgart (1990)

    Google Scholar 

  62. Stewart, W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  63. Tovchigrechko, A.: Model checking using interval decision diagrams. PhD thesis, BTU Cottbus, Dep. of CS, (submitted 2006)

    Google Scholar 

  64. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Comp. Biology and Chemistry 28(3), 165–178 (2004)

    Article  MATH  Google Scholar 

  65. Wilkinson, D.J.: Stochastic Modelling for System Biology, 1st edn. CRC Press, New York (2006)

    Google Scholar 

  66. Sujathab, A., Marwan, W., Starostzik, C.: Reconstructing the regulatory network controlling commitment and sporulation in Physarum polycephalum based on hierarchical Petri net modeling and simulation. J. of Theoretical Biology 236(4), 349–365 (2005)

    Article  Google Scholar 

  67. Younes, H., Kwiatkowska, M., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. STTT 8(3), 216–228 (2006)

    Article  Google Scholar 

  68. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of descrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marco Bernardo Pierpaolo Degano Gianluigi Zavattaro

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heiner, M., Gilbert, D., Donaldson, R. (2008). Petri Nets for Systems and Synthetic Biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds) Formal Methods for Computational Systems Biology. SFM 2008. Lecture Notes in Computer Science, vol 5016. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68894-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68894-5_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68892-1

  • Online ISBN: 978-3-540-68894-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics