Skip to main content

Abstract

The folate receptor (FR) is essential for intracellular transport of folic acid, a vital enzymatic cofactor required for cell survival and growth. FR exists in four isoforms termed as α, β, γ, and δ having variable affinity for folate ligand and exhibit differential expression in normal tissues. The receptors are known to amplify in a broad spectrum of cancers and therefore have been extensively explored to treat as well as to diagnose various cancers. This chapter presents an overview of the receptor family, ligands explored, pathophysiological features, importance of FR in therapeutics and diagnostics, different FR-mediated delivery systems, and clinical studies relying on FR targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-CH3-THF:

5 Methyl tetrahydrofolate

5-CHO-THF:

5-Formyltetrahydrofolate

A549:

human lung adenocarcinoma cell line

Ala:

Alanine

ALL:

Acute lymbhoblastic leukemia

AML:

Acute myelogenous leukemias

Arg:

Arginine

CD:

Clusters of differentiation

CDDP:

Cis-diamminedichloroplatinum

CLL:

Chronic lymphocytic leukemia

CML:

Chronic myelogenous leukemias

CT:

Computed tomography

DNA:

Deoxyribonucleic acid

DPPE:

Dipalmitoyl phosphatidylethanolamine

DSPC:

1,2-Distearoyl-sn-glycero-3-phosphatidylcholine

DSPE:

1,2-Distearoylphosphatidylethanolamine

EPR effect:

Enhanced permeation and retention effect

FA:

Folic acid

FA-PEG/PEO–PPO–PCL:

Folic acid–polyethyleneglycol/polyethyleneoxide-poly(Ɛ-caprolactone)

FA-PEG-DOX:

Folic acid–polyethylene glycol–doxorubicin

FA-PEG-PLA:

Folic acid–polyethylene glycol–polylactic acid

FITC:

Fluorescein isothiocyanate

FR:

Folate receptor

Glu:

Glutamic acid

Gly:

Glycine

GPI:

Glycosyl phosphatidylinositol

HDL:

High density lipid

HeLa:

Cervical cancer cell lines

HepG2:

Hepatocellular carcinoma cell line

His:

Histidine

HT 29:

A human colorectal adenocarcinoma cell line

HT-1080:

A human fibrosarcoma cell line

HuR:

Human antigen R

IC50:

Inhibitory concentration 50

IM:

Intramuscular

JEG-3 and JAR:

Placental choriocarcinoma cell lines

KB:

Line KB is now known to be a subline of the ubiquitous KERATIN-forming tumor cell line HeLa

Leu:

Leucine

mab 343:

A monoclonal antibody to FR-α

mab 909:

A monoclonal antibody to FR-β

met:

Methionine

MKN28:

Gastric cancer cell line

MRI:

Magnetic resonance imaging

m-RNA:

Messenger RNA

NIR:

Near infra red

NLCs:

nanostructured lipid carriers

PAMAM:

Polyamidoamine

PE:

Phosphatidylethanolamine

PEG:

Polyethylene glycol

PEO–PPO–PCL:

Polyethylene oxide-polypropylene oxide-poly(Ɛ-caprolactone)

PET:

Positron emission tomography

P-gp:

P-glycoprotein

Phe:

Phenylalanine

PLGA:

Poly lactic-co-glycolic acid

Pro:

Proline

PTX:

Paclitaxel

RFC:

Reduced folate carrier

RNA:

Ribonucleic acid

Ser:

Serine

siRNA:

Small interfering RNA

SKOV3:

Ovarian cancer cell line

SLN:

Solid lipid nanoparticles

TAM:

Tumor-associated macrophages

Thr:

Threonine

Trp:

Tryptophan

Tyr:

Tyrosine

UVA:

Ultraviolet A

Val:

Valine

References

  1. Kelemen LE. The role of folate receptor α in cancer development, progression and treatment: cause, consequence or innocent bystander? Int J Cancer. 2006;119(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  2. Lucock M. Folic acid: nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab. 2000;71(1–2):121–38.

    Article  CAS  PubMed  Google Scholar 

  3. Xia W, Hilgenbrink AR, Matteson EL, Lockwood MB, Cheng JX, Low PS. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood. 2009;113(2):438–46.

    Article  CAS  PubMed  Google Scholar 

  4. Shen F, Wu M, Ross JF, Miller D, Ratnam M. Folate receptor type ϒ is primarily a secretory protein due to lack of an efficient signal for glycosylphosphatidylinositol modification: protein characterization and cell type specificity. Biochemistry. 1995;34(16):5660–5.

    Article  CAS  PubMed  Google Scholar 

  5. Antony AC. Folate receptors. Annu Rev Nutr. 1996;16(1):501–21.

    Article  CAS  PubMed  Google Scholar 

  6. Matherly LH, Goldman D. Membrane transport of folates. Vitamins and hormones. 2003 Jan 1;66:405–57. Academic Press, USA.

    Google Scholar 

  7. Chen C, Ke J, Zhou XE, Yi W, Brunzelle JS, Li J, Yong E-L, Xu HE, Melcher K. Structural basis for molecular recognition of folic acid by folate receptors. Nature. 2013;500(7463):486–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wibowo AS, Singh M, Reeder KM, Carter JJ, Kovach AR, Meng W. Structures of human folate receptors reveal biological trafficking states and diversity in folate and antifolate recognition. PNAS. 2013;110(38):15180–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sabharanjak S, Mayor S. Folate receptor endocytosis and trafficking. Adv Drug Deliv Rev. 2004;56(8):1099–109.

    Article  CAS  PubMed  Google Scholar 

  10. Shannessy DJO, Somers EB, Albone E, Cheng X, Park C, Tomkowicz BE, et al. Characterization of the human folate receptor alpha via novel antibody-based probes. Oncotarget. 2011;2(12):1227–43.

    Google Scholar 

  11. Pissarek M. Activated microglia in the brain: mitochondrial and cell membrane-associated targets for positron emission tomography. World J Neurosci. 2019;8:50–81.

    Article  Google Scholar 

  12. Xing L, Xu Y, Sun K, Wang H, Zhang F, Zhou Z, et al. Identification of a peptide for folate receptor alpha by phage display and its tumor targeting activity in ovary cancer xenograft. Sci Rep. 2018;8(1):8426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Walters CL, Arend RC, Armstrong DK, Naumann RW, Alvarez RD. Folate and folate receptor alpha antagonists mechanism of action in ovarian cancer. Gynecol Oncol. 2013;131(2):493–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bueno R, Appasani K, Mercer H, Lester S, Sugarbaker D. The α folate receptor is highly activated in malignant pleural mesothelioma. J Thorac Cardiovasc Surg. 2001;121(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  15. O’Shannessy DJ, Somers EB, Wang LC, Wang H, Hsu R. Expression of folate receptors alpha and beta in normal and cancerous gynecologic tissues: correlation of expression of the beta isoform with macrophage markers. J Ovarian Res. 2015;8(1):1–9.

    Article  CAS  Google Scholar 

  16. Weitman SD, Lark RH, Coney LR, Fort DW, Frasca V, Zurawski VR, et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res. 1992;52(12):3396–401.

    CAS  PubMed  Google Scholar 

  17. Ross JF, Wang H, Behm FG, Mathew P, Wu M, Booth R, et al. Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer. 1999;85(2):348–57.

    Article  CAS  PubMed  Google Scholar 

  18. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Cancer. 1994;73(9):2432–43.

    Article  CAS  PubMed  Google Scholar 

  19. Chancy CD, Kekuda R, Huang W, Prasad PD, Kuhnel JM, Sirotnak FM, et al. Expression and differential polarization of the reduced-folate transporter-1 and the folate receptor α in mammalian retinal pigment epithelium. J Biol Chem. 2000;275(27):20676–84.

    Article  CAS  PubMed  Google Scholar 

  20. Wu M, Gunning W, Ratnam M. Expression of folate receptor type α in relation to cell type, malignancy, and differentiation in ovary, uterus, and cervix. Cancer Epidemiol Biomark Prev. 1999;8(9):775–82.

    CAS  Google Scholar 

  21. Sun X, Antony AC. Evidence that a specific interaction between an 18-base cis-element in the human folate receptor-alpha mRNA and a 46-kDa cystolic trans-factor is critical for translation. J Biol Chem. 1996;271(41):25539–47.

    CAS  PubMed  Google Scholar 

  22. Xiao X, Tang YS, Mackins JY, Sun XL, Jayaram HN, Hansen DK, et al. Isolation and characterization of a folate receptor mRNA-binding trans-factor from human placenta. Evidence favoring identity with heterogeneous nuclear ribonucleoprotein E1. J Biol Chem. 2001;276(44):41510–7.

    Article  CAS  PubMed  Google Scholar 

  23. Chung-Tsen HDB. Altered folate-binding protein mRNA stability in KB cells grown infolate-deficient medium. Biochem Pharmacol. 1993;45(12):2537–45.

    Article  Google Scholar 

  24. Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  25. Li PY, Del Vecchio S, Fonti R, Carriero MV, Potena MI, Botti G, Miotti S, Lastoria S, Menard S, Colnaghi MISM. Local concentration of folate binding protein GP38 in sections of human ovarian carcinoma by in vitro quantitative autoradiography. J Nucl Med. 1996;37(4):665–72.

    CAS  PubMed  Google Scholar 

  26. O’Shannessy DJ, Somers EB, Maltzman J, Smale R, Fu YS. Folate receptor alpha (FRA) expression in breast cancer: identification of a new molecular subtype and association with triple negative disease. Springerplus. 2012 Dec 1;1(1):22.

    Google Scholar 

  27. Zhang Z, Wang J, Tacha DE, Li P, Bremer RE, Chen H, et al. Folate receptor α associated with triple-negative breast cancer and poor prognosis. Arch Pathol Lab Med. 2014;138(7):890–5.

    Article  PubMed  Google Scholar 

  28. Necela BM, Crozier JA, Andorfer CA, Lewis-Tuffin L, Kachergus JM, Geiger XJ, et al. Folate receptor-α (FOLR1) expression and function in triple negative tumors. PLoS One. 2015;10(3):e0122209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Aboulhagag NAER, Torky RF, Fadel SA. Folate receptor α is associated with poor clinicopathological perspectives in breast carcinoma. Pathophysiology. 2018;25(1):71–6.

    Article  CAS  PubMed  Google Scholar 

  30. Weitman SD, Frazier KM, Kamen BA. The folate receptor in central nervous system malignancies of childhood. J Neuro-Oncol. 1994;21(2):107–12.

    Article  CAS  Google Scholar 

  31. Shen F, Ross JF, Wang X, Ratnam M. Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry. 1994;33(5):1209–15.

    Article  CAS  PubMed  Google Scholar 

  32. Dhawan D, Ramos-Vara JA, Naughton JF, Cheng L, Low PS, Rothenbuhler R, et al. Targeting folate receptors to treat invasive urinary bladder cancer. Cancer Res. 2013;73(2):875–84.

    Article  CAS  PubMed  Google Scholar 

  33. D’Angelica M, Ammori J, Gonen M, Klimstra DS, Low PS, Murphy L, et al. Folate receptor-α expression in resectable hepatic colorectal cancer metastases: patterns and significance. Mod Pathol. 2011;24(9):1221–8.

    Article  PubMed  Google Scholar 

  34. Shia J, Klimstra DS, Nitzkorski JR, Low PS, Gonen M, Landmann R, et al. Immunohistochemical expression of folate receptor α in colorectal carcinoma: patterns and biological significance. Hum Pathol. 2008;39(4):498–505.

    Article  CAS  PubMed  Google Scholar 

  35. Chan SY, Empig CJ, Welte FJ, Speck RF, Schmaljohn A, Kreisberg JF, et al. Folate receptor-α is a cofactor for cellular entry by Marburg and Ebola viruses. Cell. 2001;106(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  36. Simmons G, Rennekamp AJ, Chai N, Vandenberghe LH, Riley JL, Bates P. Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol. 2003;77(24):13433–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao X, Li H, Lee RJ. Targeted drug delivery via folate receptors. Expert Opin Drug Deliv. 2008;5(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  38. Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012;3(1):18496.

    Article  CAS  Google Scholar 

  39. Reddy J, Allagadda VM, Leamon CP. Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr Pharm Biotechnol. 2005;6(2):131–50.

    Article  CAS  PubMed  Google Scholar 

  40. Yoo HS, Park TG. Folate-receptor-targeted delivery of doxorubicin nano-aggregates stabilized by doxorubicin-PEG-folate conjugate. J Control Release. 2004;100(2):247–56.

    Article  CAS  PubMed  Google Scholar 

  41. Qiu J, Zhang H, Wang Z, Liu D, Liu S, Han W, et al. The antitumor effect of folic acid conjugated-Auricularia auricular polysaccharide-cisplatin complex on cervical carcinoma cells in nude mice. Int J Biol Macromol. 2018;107:2180–9.

    Article  CAS  PubMed  Google Scholar 

  42. Li H, Li Y, Ao H, Bi D, Han M, Guo Y. Folate-targeting annonaceous acetogenins nanosuspensions: significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Deliv. 2018;25(1):880–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahn GY, Kang R, Lee ES, Choi S. Electrosprayed folic acid-conjugated ursolic acid nanoparticles for tumor therapy. Macromol Res. 2018;26(7):573–6.

    Article  CAS  Google Scholar 

  44. Lu Y, Low PS. Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunol Immunother. 2002;51(3):153–62.

    Article  CAS  PubMed  Google Scholar 

  45. Leamon CP, Low PS. Cytotoxicity of momordin-folate conjugates in cultured human cells. J Biol Chem. 1992;267(35):24966–71.

    CAS  PubMed  Google Scholar 

  46. Atkinson SF, Bettinger T, Seymour LW, Behr J, Ward CM. Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells ∗. J Biol Chem. 2001;276(30):27930–5.

    Article  CAS  PubMed  Google Scholar 

  47. Gabizon A, Shmeeda H, Horowitz AT, Zalipsky S. Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Adv Drug Deliv Rev. 2004;56(8):1177–92.

    Article  CAS  PubMed  Google Scholar 

  48. Goren D, Horowitz A, Tzemach D. Nuclear delivery of doxorubicin via folate targeted liposomes with bypass of multidrug resistance efflux pump 1. Clin Cancer Res. 2000;6(5):1949–57.

    CAS  PubMed  Google Scholar 

  49. Guo W, Lee T, Sudimack J, Lee RJ. Receptor-specific delivery of liposomes via folate-Peg-Chol. J Liposome Res. 2000;10(2&3):179–95.

    Article  CAS  Google Scholar 

  50. Saul JM, Annapragada A, Natarajan JV, Bellamkonda RV. Controlled targeting of liposomal doxorubicin via the folate receptor in vitro. J Control Release. 2003;92(1–2):49–67.

    Article  CAS  PubMed  Google Scholar 

  51. Shmeeda H, Mak L, Tzemach D, Astrahan P, Tarshish M, AG, Experimental. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol Cancer Ther. 2006;5(4):818–24.

    Article  CAS  PubMed  Google Scholar 

  52. Pan XQ, Zheng X, Shi G, Wang H, Ratnam M, Lee RJ. Strategy for the treatment of acute myelogenous leukemia based on folate receptor β-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood. 2002;100(2):594–602.

    Article  CAS  PubMed  Google Scholar 

  53. Li M, Shi K, Tang X, Wei J, Cun X, Long Y, et al. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced breast cancer and brain metastasis therapy. Nanomedicine. 2018;14(6):1833–43.

    Article  CAS  PubMed  Google Scholar 

  54. Chen Y, Cheng Y, Zhao P, Zhang S, Li M, He C, et al. Co-delivery of doxorubicin and imatinib by pH sensitive cleavable PEGylated nanoliposomes with folate-mediated targeting to overcome multidrug resistance. Int J Pharm. 2018;542(1–2):266–79.

    Article  CAS  PubMed  Google Scholar 

  55. Zhou W, Yuan X, Wilson A, Yang L, Mokotoff M, Pitt B, et al. Efficient intracellular delivery of oligonucleotides formulated in folate receptor-targeted lipid vesicles. Bioconjug Chem. 2002;13(6):1220–5.

    Article  CAS  PubMed  Google Scholar 

  56. Michael P, Kern S, Lee D, Schmaus J. Folate receptor-directed orthogonal click-functionalization of siRNA lipopolyplexes for tumor cell killing in vivo. Biomaterials. 2018;178:630–42.

    Article  CAS  Google Scholar 

  57. Urbiola K, García L, Zalba S, Garrido MJ, Tros De Ilarduya C. Efficient serum-resistant lipopolyplexes targeted to the folate receptor. Eur J Pharm Biopharm. 2013;83(3):358–63.

    Article  CAS  PubMed  Google Scholar 

  58. Pan XQ, Wang H, Shukla S, Sekido M, Adams DM, Tjarks W, et al. Boron-containing folate receptor-targeted liposomes as potential delivery agents for neutron capture therapy. Bioconjug Chem. 2002;13(3):435–42.

    Article  CAS  PubMed  Google Scholar 

  59. Öztürk AB, Cevher E, Pabuccuoğlu S, Özgümüş S. pH sensitive functionalized hyperbranched polyester based nanoparticulate system for the receptor-mediated targeted cancer therapy. Int J Polym Mater Polym Biomater. 2018;68(8):417–32.

    Article  CAS  Google Scholar 

  60. Ma H, Deng C, Zong X, He Y, Cheng L, Fan Q, et al. Reversal of doxorubicin-resistance by delivering tetramethylprazine via folate-chitosan nanoparticles in MCF-7 / ADM cells. Int J Clin Exp Med. 2016;9(3):5439–48.

    CAS  Google Scholar 

  61. Thu HP, Nam NH, Duong LQ, Tham NT, Quang BT, Thi HTM, et al. Targeting effect of folate on cancer cell through curcumin carrier nano-system. Int J Drug Deliv. 2014;6(4):351–8.

    CAS  Google Scholar 

  62. Cheng L, Ma H, Shao M, Fan Q, Lv H, Peng J, et al. Synthesis of folate-chitosan nanoparticles loaded with ligustrazine to target folate receptor positive cancer cells. Mol Med Rep. 2017;16(2):1101–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cao Y, He J, Liu J, Zhang M, Ni P, Cao Y, et al. Folate-conjugated polyphosphoester with reversible cross-linkage and reduction-sensitivity for drug delivery folate-conjugated polyphosphoester with reversible cross- linkage and reduction-sensitivity for drug delivery. ACS Appl Mater Interfaces. 2018;10(9):7811–20.

    Article  CAS  PubMed  Google Scholar 

  64. Fasehee H, Dinarvand R, Ghavamzadeh A, Esfandyari-Manesh M, Moradian H, Faghihi S, et al. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. J Nanobiotechnol. 2016;14(1):1–18.

    Article  CAS  Google Scholar 

  65. Xu X, Wu C, Bai A, Liu X, Lv H, Liu Y. Folate-functionalized mesoporous silica nanoparticles as a liver tumor-targeted drug delivery system to improve the antitumor effect of paclitaxel. J Nanomater. 2017;2017:1–13.

    Google Scholar 

  66. Alvarez-Berríos MP, Vivero-Escoto JL. In vitro evaluation of folic acid-conjugated redox-responsive mesoporous silica nanoparticles for the delivery of cisplatin. Int J Nanomedicine. 2016;11:6251–65.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xiuling Xu, Fan Hu, Qi Shuai. Facile synthesis of highly biocompatible folic acid-functionalized SiO2 encapsulated rare-earth metal complexes nanoparticles and its application on targeted metal-based complex delivery. Dalton Trans. 2017;46(44):15424–33.

    Article  PubMed  Google Scholar 

  68. Gao B, Shen L, He KW, Xiao WH. GNRs@SiO2-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins. Int J Mol Med. 2015;36(5):1282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ramesh I, Meena KS. Folic acid gelatin coated HAp @ Al2O3 core-shell NPs for receptor mediated targeted drug delivery system. Int J Curr Res. 2016;8(03):28000–6.

    CAS  Google Scholar 

  70. Ak G, Yilmaz H, Güneş A, Sanlier SH. In vitro and in vivo evaluation of folate receptor- targeted a novel magnetic drug delivery system for ovarian cancer therapy. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 1):926–37.

    Article  CAS  PubMed  Google Scholar 

  71. Ramasamy S, Jeya R, Sam R, Enoch IVMV, Ramasamy S, Jeya R, et al. Folate-molecular encapsulator-tethered biocompatible polymer grafted with magnetic nanoparticles for augmented drug delivery. Artif Cells Nanomed Biotechnol. 2018;46(Suppl 2):675–82.

    Article  CAS  PubMed  Google Scholar 

  72. Feng S, Zhang H, Yan T, Huang D, Zhi C, Nakanishi H, Gao X-D. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs. Int J Nanomedicine. 2016;11:4573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li X, Sun Y, Hu Y, Peng Y, Li Y, Yin G, et al. Synthesis of size-tunable hollow polypyrrole nanostructures and their assembly into folate targeting and pH-responsive anti- cancer drug delivery. Chem Eur J. 2017;23(68):17279–89.

    Article  PubMed  CAS  Google Scholar 

  74. Jafaria M, Heidaria D, Ebrahimnejad P. Synthesizing and characterizing functionalized short multiwall carbon nanotubes with folate, magnetite and polyethylene glycol as multi- targeted nanocarrier of anti-cancer drugs. Iran J Pharm Res. 2016;15(2):449–56.

    CAS  Google Scholar 

  75. Yao Y, Lee RJ. Folic acid receptor-targeted human serum albumin nanoparticle formulation of cabazitaxel for tumor therapy. Int J Nanomedicine. 2019;14:135–48.

    Article  PubMed  Google Scholar 

  76. Press D. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;5:669–77.

    Google Scholar 

  77. Li H, Liu Y, Chen L, Liu Q, Qi S, Cheng X, et al. Folate receptor-targeted lipid-albumin nanoparticles (F-LAN) for therapeutic delivery of an Akt1 antisense oligonucleotide. J Drug Target. 2018;26(5–6):466–73.

    Article  CAS  PubMed  Google Scholar 

  78. Yoo HS, Park TG. Folate receptor targeted biodegradable polymeric doxorubicin micelles. J Control Release. 2004;96(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  79. Chen L, Qian M, Zhang L, Xia J, Bao Y. Co-delivery of doxorubicin and shRNA of Beclin1 by folate receptor targeted pullulan-based cancer therapy. RSC Adv. 2018;8(32):17710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang Y, Ren J, Liu Y, Liu R, Wang L, Yuan Q, et al. Preparation and evaluation of folic acid modified succinylated gelatin micelles for targeted delivery of doxorubicin. J Drug Deliv Sci Technol. 2018;46:400–7.

    Article  CAS  Google Scholar 

  81. Lv Y, Yang B, Li YM, He F, Zhuo RX. Folate-conjugated amphiphilic block copolymer micelle for targeted and redox-responsive delivery of doxorubicin. J Biomater Sci Polym Ed. 2018;29(1):92–106.

    Article  CAS  PubMed  Google Scholar 

  82. Shi C, Zhang Z, Wang F, Luan Y. Active-targeting docetaxel-loaded mixed micelles for enhancing antitumor ef fi cacy. J Mol Liq. 2018;264:172–8.

    Article  CAS  Google Scholar 

  83. Jones SK, Lizzio V, Merkel OM. Folate receptor targeted delivery of siRNA and paclitaxel to ovarian cancer cells via folate conjugated triblock copolymer to overcome TLR4 driven chemotherapy resistance. Biomacromolecules. 2016;17(1):76–87.

    Article  CAS  PubMed  Google Scholar 

  84. Zamani M, Rostamizadeh K, Manjili HK, Danafar H. In vitro and in vivo biocompatibility study of folate-lysine- PEG-PCL as nanocarrier for targeted breast cancer drug delivery. Eur Polym J. 2018;103:260–70.

    Article  CAS  Google Scholar 

  85. Chen D, Song X, Wang K. Design and evaluation of dual CD44 receptor and folate nanocarrier double-smart pH-response multifunctional nanocarrier. J Nanopart Res. 2017;19(12):400.

    Article  CAS  Google Scholar 

  86. Rosière R, Van Woensel M, Gelbcke M, Mathieu V, Hecq J, Mathivet T, et al. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation. Mol Pharm. 2018;15(3):899–910.

    Article  PubMed  CAS  Google Scholar 

  87. Liu Z, Zhong Z, Peng G, Wang S, Du X, Yan D, et al. Folate receptor mediated intracellular gene delivery using the charge changing solid lipid nanoparticles. Drug Deliv. 2009;16(6):341–7.

    Article  CAS  PubMed  Google Scholar 

  88. Rajpoot K, Jain SK. Colorectal cancer-targeted delivery of oxaliplatin via folic acid-grafted solid lipid nanoparticles: preparation, optimization, and in vitro evaluation. Artif Cells Nanomed Biotechnol. 2018;46(6):1236–47.

    Article  CAS  PubMed  Google Scholar 

  89. Venishetty VK, Komuravelli R, Kuncha M, Sistla R, Diwan PV. Increased brain uptake of docetaxel and ketoconazole loaded folate-grafted solid lipid nanoparticles. Nanomedicine. 2013;9(1):111–21.

    Article  CAS  PubMed  Google Scholar 

  90. Gao W, Xiang B, Meng T, Liu F, Qi X. Chemotherapeutic drug delivery to cancer cells using a combination of folate targeting and tumor microenvironment-sensitive polypeptides. Biomaterials. 2013;34(16):4137–49.

    Article  CAS  PubMed  Google Scholar 

  91. Amreddy N, Babu A, Panneerselvam J, Srivastava A, Ms RM, Ms AC, et al. Chemo-biologic combinatorial drug delivery using folate receptor-targeted dendrimer nanoparticles for lung cancer treatment. Nanomedicine. 2017;14(2):373–84.

    Article  PubMed  CAS  Google Scholar 

  92. Raniolo S, Vindigni G, Ottaviani A, Unida V, Iacovelli F, Manetto A, et al. Selective targeting and degradation of doxorubicin-loaded folate- functionalized DNA nanocages. Nanomedicine. 2018;14(4):1181–90.

    Article  CAS  PubMed  Google Scholar 

  93. Fong Y, Chen C-H, Chen J. Intratumoral delivery of doxorubicin on folate-conjugated graphene oxide by in-situ forming thermo-sensitive hydrogel for breast cancer therapy. Nano. 2017;7(11):388.

    Google Scholar 

  94. Elamin KM, Motoyama K, Higashi T, Yamashita Y, Tokuda A, Arima H. Dual targeting system by supramolecular complex of folate-conjugated methyl-β-cyclodextrin with adamantane-grafted hyaluronic acid for the treatment of colorectal cancer. Int J Biol Macromol. 2018;113:386–94.

    Article  CAS  PubMed  Google Scholar 

  95. Son J, Yang SM, Yi G, Roh YJ, Park H, Park JM, et al. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochem Biophys Res Commun. 2018;498(3):523–8.

    Article  CAS  PubMed  Google Scholar 

  96. Peng F, Qiu L, Chai R, Meng F, Yan C, Chen Y, et al. Conjugated polymer-based nanoparticles for cancer cell-targeted and image-guided photodynamic therapy. Macromol Chem Phys. 2018;219(4):1–6.

    Google Scholar 

  97. Keyvan Rad J, Mahdavian AR, Khoei S, Shirvalilou S. Enhanced photogeneration of reactive oxygen species and targeted photothermal therapy of C6 glioma brain cancer cells by folate-conjugated gold-photoactive polymer nanoparticles. ACS Appl Mater Interfaces. 2018;10(23):19483–93.

    Article  CAS  PubMed  Google Scholar 

  98. Li J, Yao S, Wang K, Lu Z, Su X, Li L, et al. Hypocrellin B-loaded, folate-conjugated polymeric micelle for intraperitoneal targeting of ovarian cancer in vitro and in vivo. Cancer Sci. 2018;109(6):1958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chien YY, Wang TY, Liao PW, Wu WC, Chen CY. Folate-conjugated and dual stimuli-responsive mixed micelles loading indocyanine green for photothermal and photodynamic therapy. Macromol Biosci. 2018;18(6):1–12.

    Article  CAS  Google Scholar 

  100. Yu S, Tian-yi S, Ling-yun Z, Yu-yan Z, Bai-wang S, Xiao-ping L. Folate-decorated and NIR-activated nanoparticles based on platinum(IV) prodrugs for targeted therapy of ovarian cancer. J Microencapsul. 2017;34(7):675–86.

    Article  CAS  Google Scholar 

  101. Wong PT, Tang S, Cannon J, Chen D, Sun R, Phan J, et al. Photocontrolled release of doxorubicin conjugated through a thioacetal photocage in folate-targeted nanodelivery systems. Bioconjug Chem. 2017;28(12):3016–28.

    Article  CAS  PubMed  Google Scholar 

  102. Malekmohammadi S, Hadadzadeh H, Hossein Farrokhpour ZA. Immobilization of gold nanoparticles on the folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter. 2018;14(12):2400–10.

    Article  CAS  PubMed  Google Scholar 

  103. Meier R, Henning TD, Boddington S, Piontek G, Rudelius M. Breast cancers: MR imaging of folate-receptor expression with the folate specific nanoparticle P1133. Radiology. 2010;255(2):527–35.

    Article  PubMed  Google Scholar 

  104. Soleymani J, Hasanzadeh M, Somi MH, Shadjou N, Jouyban A. Probing the specific binding of folic acid to folate receptor using amino-functionalized mesoporous silica nanoparticles for differentiation of MCF 7 tumoral cells from MCF 10A. Biosens Bioelectron. 2018;115:61–9.

    Article  CAS  PubMed  Google Scholar 

  105. Chávez-García D, Juárez-Moreno K, Campos CH, Alderete JB, Hirata GA. Upconversion rare earth nanoparticles functionalized with folic acid for bioimaging of MCF-7 breast cancer cells. J Mater Res. 2018;33(2):191–200.

    Article  CAS  Google Scholar 

  106. Khademi S, Sarkar S, Shakeri-zadeh A, Attaran N. Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. Mater Sci Eng C. 2018;89(2017):182–93.

    Article  CAS  Google Scholar 

  107. Xia J, Wei X, Chen X, Shu Y. Folic acid modified copper nanoclusters for fluorescent imaging of cancer cells with over-expressed folate receptor. Microchim Acta. 2018;185(3):205.

    Article  CAS  Google Scholar 

  108. Li R, Wang X, Li Z, Zhu H, Liu J. Folic acid-functionalized graphene quantum dots with tunable fluorescence emission for cancer cell imaging and optical detection of Hg2+. New J Chem. 2018;42(6):4352–60.

    Article  CAS  Google Scholar 

  109. Moon WK, Lin Y, O’Loughlin T, Tang Y, Kim DE, Weissleder R, et al. Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Bioconjug Chem. 2003;14(3):539–45.

    Article  CAS  PubMed  Google Scholar 

  110. Predina JD, Newton AD, Connolly C, Ashley Dunbar MB, Deshpande C, Cantu E III, Stadanlick J, Kularatne SA, Low PS, Singhal S. Identification of a folate receptor-targeted near-infrared molecular contrast agent to localize pulmonary adenocarcinomas. Mol Ther. 2018;26(2):390–403.

    Article  CAS  PubMed  Google Scholar 

  111. Chen Q, Meng X, McQuade P, Rubins D, Lin SA, Zeng Z, et al. Folate-PEG-NOTA-Al18F: a new folate based radiotracer for PET imaging of folate receptor-positive tumors. Mol Pharm. 2017;14(12):4353–61.

    Article  CAS  PubMed  Google Scholar 

  112. Dong S, Teo JDW, Chan LY, Lee CK, Sou K. Far-red fluorescent liposomes for folate receptor-targeted bioimaging. ACS Appl Nano Mater. 2018;1(3):1009–13.

    Article  CAS  Google Scholar 

  113. Corbin IR, Ng KK, Ding L, Jurisicova AZG. Near-infrared fluorescent imaging of metastatic ovarian cancer using folate-receptor targeted high-density lipoprotein. Nanomedicine. 2013;8(6):875–90.

    Article  CAS  PubMed  Google Scholar 

  114. Konda SD, Aref M, Wang S, Brechbiel M, Wiener EC. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA. 2001;12(01):104–13.

    Article  CAS  PubMed  Google Scholar 

  115. Liang L, Zhang X, Su X, Li J, Tian Y, Xue H, et al. 99m Tc-labeled oligomeric nanoparticles as potential agents for folate receptor-positive tumor targeting. J Label Compd Radiopharm. 2018;61(2):54–60.

    Article  CAS  Google Scholar 

  116. Rajkumar S, Prabaharan M. Multi-functional nanocarriers based on iron oxide nanoparticles conjugated with doxorubicin, poly(ethylene glycol) and folic acid as theranostics for cancer therapy. Colloids Surf B Biointerfaces. 2018;170:529–37.

    Article  CAS  PubMed  Google Scholar 

  117. Maeng JH, Lee DH, Jung KH, Bae YH, Park IS, Jeong S, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010;31(18):4995–5006.

    Article  CAS  PubMed  Google Scholar 

  118. Wang H, Wang S, Liao Z, Zhao P, Su W, Niu R, et al. Folate-targeting magnetic core – shell nanocarriers for selective drug release and imaging. Int J Pharm. 2012;430(1–2):342–9.

    Article  CAS  PubMed  Google Scholar 

  119. Poshteh Shirani M, Rezaei B, Khayamian T, Dinari M, Karami K, Mehri-Lighvan Z, et al. Folate receptor-targeted multimodal fluorescence mesosilica nanoparticles for imaging, delivery palladium complex and in vitro G-quadruplex DNA interaction. J Biomol Struct Dyn. 2018;36:1456–69.

    Article  CAS  Google Scholar 

  120. Mendoza-nava H, Ferro-flores G, Ramírez FDM, Ocampo-garcía B, Santos-cuevas C, Aranda-lara L, et al. Lu-dendrimer conjugated to folate and bombesin with gold nanoparticles in the dendritic cavity: a potential theranostic radiopharmaceutical. J Nanomater. 2016;2016:1039258.

    Article  CAS  Google Scholar 

  121. Patel NR, Piroyan A, Ganta S, Morse AB, Candiloro KM, Solon AL, et al. In vitro and in vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers. Cancer Biol Ther. 2018;19(7):554–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Puligujja P, McMillan JE, Kendrick L, Li T, Balkundi S, Smith N, et al. Macrophage folate receptor-targeted antiretroviral therapy facilitates drug entry, retention, antiretroviral activities and biodistribution for reduction of human immunodeficiency virus infections. Nanomedicine. 2013;9(8):1263–73.

    Article  CAS  PubMed  Google Scholar 

  123. Date PV, Patel MD, Majee SB, Samad A, Devarajan PV. Ionic complexation as a non-covalent approach for the design of folate anchored rifampicin gantrez nanoparticles. J Biomed Nanotechnol. 2013;9(5):765–75.

    Article  CAS  PubMed  Google Scholar 

  124. Patel MD, Date PV, Gaikwad RV, Samad A, Malshe VC, Devarajan PV. Comparative evaluation of polymeric nanoparticles of rifampicin comprising Gantrez and poly(ethylene sebacate) on pharmacokinetics, biodistribution and lung uptake following oral administration. J Biomed Nanotechnol. 2014;10(4):687–94.

    Article  CAS  PubMed  Google Scholar 

  125. Teng L, Xie J, Teng L, Lee RJ. Clinical translation of folate receptor-targeted therapeutics. Expert Opin Drug Deliv. 2012;9(8):901–8.

    Article  CAS  PubMed  Google Scholar 

  126. Vergote I, Leamon CP. Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors. Ther Adv Med Oncol. 2015;7(4):206–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Study for women with platinum resistant ovarian cancer evaluating EC145 in combination with Doxil® (PROCEED) (PROCEED) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01170650?cond=NCT01170650&rank=1.

  128. Peethambaram PP, Hartmann LC, Jonker DJ, de Jonge M, Plummer ER, Martin L, Konner J, Marshall J, Goss GD, Teslenko V, Clemens PL, Cohen LJ, Ahlers CM, Alland L. A phase I pharmacokinetic and safety analysis of epothilone folate (BMS-753493), a folate receptor targeted chemotherapeutic agent in humans with advanced solid tumors. Invest New Drugs. 2015;33(2):321–31.

    Article  CAS  PubMed  Google Scholar 

  129. A phase 1/2 study of epofolate (BMS-753493) in subjects with advanced cancer (Schedule 2) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT00550017?cond=NCT00550017&rank=1.

  130. Messmann R, Amato R, Hernandez-McClain J, Conley B, Rogers H, Lu Y, Low P, Bever S, Morgenstern D. A phase II study of FolateImmune (EC90 with GP1-0100 adjuvant followed by EC17) with low dose cytokines interleukin-2 (IL-2) and interferon-{alpha} (IFN-{alpha}) in patients with refractory or metastatic cancer. J Clin Oncol. 2007;25(18_suppl):13516.

    Google Scholar 

  131. A phase II study of EC17 (Folate-hapten Conjugate) in patients with progressive metastatic renal cell carcinoma [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT00485563?cond=NCT00485563&rank=1.

  132. Maurer AH, Elsinga P, Fanti S, Nguyen B, Oyen WJG, Weber WA. Imaging the folate receptor on cancer cells with 99mTc-Etarfolatide: properties, clinical use, and future potential of folate receptor imaging. J Nucl Med. 2014;55(5):701–4.

    Article  CAS  PubMed  Google Scholar 

  133. Cheung A, Bax HJ, Josephs DH, Ilieva KM, Pellizzari G, Opzoomer J, et al. Targeting folate receptor alpha for cancer treatment. Oncotarget. 2016;7(32):52553–74.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Study of EC0489 for the treatment of refractory or metastatic tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT00852189?cond=NCT00852189&rank=1.

  135. Sharma S, Sausville EA, LoRusso P, Vogelzang NJ, Samlowski WE, Carter J, Forman K, Bever S, Messmann RA. A phase I study of EC0225 administered weeks 1 and 2 of a 4-week cycle. J Clin Oncol. 2010;28(15 Suppl):3082.

    Article  Google Scholar 

  136. Study of EC0225 for the treatment of refractory or metastatic tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT00441870?cond=NCT00441870&rank=1.

  137. Sachdev JC, Matei D, Harb WA, Clark R, Edelman MJ, Starodub A. A phase 1 dose-escalation study of the folic acid-tubulysin small molecule drug conjugate (SMDC) folate-tubulysin EC1456 in advanced cancer patients. J Oncol. 2016;34(15_suppl):2585.

    Article  Google Scholar 

  138. Folic acid-tubulysin conjugate EC1456 in patients with advanced solid tumors [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT01999738?cond=NCT01999738&rank=1.

  139. OTL38 for intra-operative imaging of folate receptor positive ovarian cancer [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT03180307?cond=NCT03180307&rank=1.

  140. Vergote I, Armstrong D, Scambia G, Teneriello M, Sehouli J, Schweizer C, et al. A randomized, double-blind, placebo-controlled, phase 3 study to assess efficacy and safety of weekly farletuzumab in combination with carboplatin and taxane in patients with ovarian cancer in first platinum-sensitive relapse. J Clin Oncol. 2016;34(19):2271–8.

    Article  CAS  PubMed  Google Scholar 

  141. Ab O, Whiteman KR, Bartle LM, Sun X, Singh R, Tavares D, et al. IMGN853, a folate receptor-α (FRα) – targeting antibody – drug conjugate, exhibits potent targeted antitumor activity against FR a – expressing tumors. Mol Cancer Ther. 2015;17:1605–14.

    Article  CAS  Google Scholar 

  142. Moore KN, Vergote I, Oaknin A, Colombo N, Oza A, Pautier P, et al. FORWARD I: a phase III study of mirvetuximab soravtansine versus chemotherapy in platinum-resistant ovarian cancer. Future Oncol. 2018;14(17):1669–78.

    Article  CAS  PubMed  Google Scholar 

  143. PH3 Study of Mirvetuximab Soravtansine vs Investigator’s Choice of Chemotherapy in Women With FRa+ Adv. EOC, Primary Peritoneal or Fallopian Tube Cancer (FORWARD I) [Internet]. Available from: https://clinicaltrials.gov/ct2/show/NCT02631876?cond=NCT02631876&rank=1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padma V. Devarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, B., Shevade, S.S., Dandekar, P., Devarajan, P.V. (2019). Folate Receptor and Targeting Strategies. In: Devarajan, P., Dandekar, P., D'Souza, A. (eds) Targeted Intracellular Drug Delivery by Receptor Mediated Endocytosis. AAPS Advances in the Pharmaceutical Sciences Series, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-030-29168-6_14

Download citation

Publish with us

Policies and ethics