Skip to main content

Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies

  • Chapter
  • First Online:
Yeasts in Biotechnology and Human Health

Abstract

Lignocellulosic biomass has been widely studied as the renewable feedstock for the production of biofuels and biochemicals. Budding yeast Saccharomyces cerevisiae is commonly used as a cell factory for bioconversion of lignocellulosic biomass. However, economic bioproduction using fermentable sugars released from lignocellulosic feedstocks is still challenging. Due to impaired cell viability and fermentation performance by various inhibitors that are present in the cellulosic hydrolysates, robust yeast strains resistant to various stress environments are highly desired. Here, we summarize recent progress on yeast strain development for the production of biofuels and biochemical using lignocellulosic biomass. Genome-wide studies which have contributed to the elucidation of mechanisms of yeast stress tolerance are reviewed. Key gene targets recently identified based on multiomics analysis such as transcriptomic, proteomic, and metabolomics studies are summarized. Physiological genomic studies based on zinc sulfate supplementation are highlighted, and novel zinc-responsive genes involved in yeast stress tolerance are focused. The dependence of host genetic background of yeast stress tolerance and roles of histones and their modifications are emphasized. The development of robust yeast strains based on multiomics analysis benefits economic bioconversion of lignocellulosic biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertyn J, Hohmann S, Thevelein JM, Prior BA (1994) GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14(6):4135–4144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ali MN, Khan MM (2014) Screening, identification and characterization of alcohol tolerant potential bioethanol producing yeasts. Curr Res Microbio Biotechnol 2(1):316–324

    Google Scholar 

  • Ali IM, Mustafa SEK, Farahat FH, Khater AMM (2017) Screening for thermotolerant yeasts in the Sudan. Am J Food Sci Health 3(4):75–82

    Google Scholar 

  • Allen SA, Clark W, McCaffery JM, Cai Z, Lanctot A, Slininger PJ, Liu ZL, Gorsich SW (2010) Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae. Biotechnol Biofuels 3:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almario MP, Reyes L, Kao KC (2013) Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng 110:2616–2623

    Article  CAS  PubMed  Google Scholar 

  • Alugoju P, Janardhanshetty SS, Subaramanian S, Periyasamy L, Dyavaiah M (2018) Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan. Curr Microbiol 75(5):519–530

    Article  CAS  PubMed  Google Scholar 

  • Ask M, Bettiga M, Mapelli V, Olsson L (2013) The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. Biotechnol Biofuels 6(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Auesukaree C (2017) Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. J Biosci Bioeng 124(2):133–142

    Article  CAS  PubMed  Google Scholar 

  • Bao Z, HamediRad M, Xue P, Xiao H, Tasan I, Chao R, Liang J, Zhao HM (2018) Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat Biotechnol 36(6):505–508

    Article  CAS  PubMed  Google Scholar 

  • Basso LC, De Amorim HV, De Oliveira AJ, Lopes ML (2008) Yeast selection for fuel ethanol production in Brazil. FEMS Yeast Res 8(7):1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Berterame NM, Martani F, Porro D, Branduardi P (2018) Copper homeostasis as a target to improve Saccharomyces cerevisiae, tolerance to oxidative stress. Metab Eng 46:43–50

    Article  CAS  PubMed  Google Scholar 

  • Bin-Umer MA, McLaughlin JE, Butterly MS, McCormick S, Tumer NE (2014) Elimination of damaged mitochondria through mitophagy reduces mitochondrial oxidative stress and increases tolerance to trichothecenes. Proc Natl Acad Sci USA 111:11798–11803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks AA (2008) Ethanol production potential of local yeast strains isolated from ripe banana peels. Afr J Biotechnol 7(20):3749–3752

    CAS  Google Scholar 

  • Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U (2012) Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Campbell K, Vowinckel J, Keller MA, Ralser M (2016) Methionine metabolism alters oxidative stress resistance via the pentose phosphate pathway. Antioxid Redox Signal 4(10):543–547

    Article  CAS  Google Scholar 

  • Caspeta L, Chen Y, Ghiaci P, Feizi A (2014) Biofuels: altered sterol composition renders yeast thermotolerant. Science 346(6205):75–78

    Article  CAS  PubMed  Google Scholar 

  • Caspeta L, Castillo T, Nielsen J (2015) Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol 3:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, da Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    Article  CAS  PubMed  Google Scholar 

  • Charoenbhakdi S, Dokpikul T, Burphan T, Techo T, Auesukaree C (2016) Vacuolar H+-ATPase protects Saccharomyces cerevisiae cells against ethanol-induced oxidative and cell wall stresses. Appl Environ Microb 82:3121–3130

    Article  CAS  Google Scholar 

  • Chen YY, Sheng JY, Jiang T, Stevens J, Feng X, Wei N (2016) Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. Biotechnol Biofuels 9(1):9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Y, Du Z, Zhu H, Guo X, He X (2016a) Protective effects of arginine on Saccharomyces cerevisiae against ethanol stress. Sci Rep 6:31311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng C, Zhao XQ, Zhang MM, Bai FW (2016b) Absence of Rtt109p, a fungal-specific histone acetyltransferase, results in improved acetic acid tolerance of Saccharomyces cerevisiae. FEMS Yeast Res 16(2):fow010

    Google Scholar 

  • Cheng C, Tang RQ, Xiong L, Hector RE, Bai FW, Zhao XQ (2018) Association of improved oxidative stress tolerance and alleviation of glucose repression with superior xylose-utilization capability by a natural isolate of Saccharomyces cerevisiae. Biotechnol Biofuels 11(1):28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L (2018) HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biot 1–12

    Google Scholar 

  • Deparis Q, Claes A, Foulquié-Moreno MR, Thevelein JM (2017) Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res 17(4)

    Google Scholar 

  • Ding MZ, Wang X, Yang Y, Yuan YJ (2011) Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS 15:647–653

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Hu J, Fan L, Chen Q (2017) RNA-Seq-based transcriptomic and metabolomic analysis reveal stress responses and programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Sci Rep 7:42659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eide DJ (2011) The oxidative stress of zinc deficiency. Metallomics 3(11):1124–1129

    Article  CAS  PubMed  Google Scholar 

  • Field SJ, Ryden P, Wilson D, James SA, Roberts IN, Richardson DJ, Waldron KW, Clarke TA (2015) Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnol Biofuels 8:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fletcher E, Feizi A, Bisschops MMM, Hallström BM, Khoomrung S, Siewers V, Nielsen J (2017) Evolutionary engineering reveals divergent paths when yeast is adapted to different acidic environments. Metab Eng 39:19–28

    Article  CAS  PubMed  Google Scholar 

  • Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, Liang L, Wang Z, Zeitoun R, Alexander WG, Gill RT (2017) Genome-wide mapping of mutations at single nucleotide resolution for protein, metabolic and genome engineering. Nat Biotechnol 35(1):48–55

    Article  CAS  PubMed  Google Scholar 

  • Giannattasio S, Atlante A, Antonacci L, Guaragnella N, Lattanzio P, Passarella S, Passarella S, Marra E (2008) Cytochrome c is released from coupled mitochondria of yeast en route to acetic acid-induced programmed cell death and can work as an electron donor and a ROS scavenger. FEBS Lett 582(10):1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Giannattasio S, Guaragnella N, Zdralevic M, Marra E (2013) Molecular mechanisms of Saccharomyces cerevisiae stress adaptation and programmed cell death in response to acetic acid. Front Microbiol 4:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong GL, Ma LY, Chen XF (2014) Isolation and improvement of Saccharomyces cerevisiae for producing the distilled liquor. J Chem Pharma Res 6(1):283–288

    Google Scholar 

  • Gu H, Zhang J, Bao J (2014) Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour Technol 157:6–13

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Olsson L (2014) Physiological response of Saccharomyces cerevisiae to weak acids present in lignocellulosic hydrolysate. FEMS Yeast Res 14:1234–1248

    Article  CAS  PubMed  Google Scholar 

  • Henriques SF, Mira NP, Sá-Correia I (2017) Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. Biotechnol Biofuels 10:96

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawa C, Katakura Y, Shimizu H, Shioya S (2007) Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis. J Biotechnol 131:34–44

    Article  CAS  PubMed  Google Scholar 

  • Ho DP, Ngo HH, Guo W (2014) A mini review on renewable sources for biofuel. Bioresour Technol 169:742–749

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Luo ZQ, Ying WT, Cao QC, Huang H, Dong JK, Wu Q, Zhao Y, Qian X, Dai JB (2017) 2-Hydroxyisobutyrylation on histone H4K8 is regulated by glucose homeostasis in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 114(33):8782–8787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inokuma K, Iwamoto R, Bamba T, Hasunuma T, Kondo A (2017) Improvement of xylose fermentation ability under heat and acid co-stress in Saccharomyces cerevisiae using genome shuffling technique. Front Bioeng Biotechnol 5:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail KS, Sakamoto T, Hasunuma T, Zhao XQ, Kondo A (2014) Zinc, magnesium, and calcium ion supplementation confers tolerance to acetic acid stress in industrial Saccharomyces cerevisiae utilizing xylose. Biotechnol J 9:1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Iwaki A, Kawai T, Yamamoto Y, Izawa S (2013) Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Appl Environ Microb 79:1661–1667

    Article  CAS  Google Scholar 

  • Jin M, Sarks C, Bals BD, Posawatz N, Gunawan C, Dale BE, Balan V (2017) Toward high solids loading process for lignocellulosic biofuel production at a low cost. Biotechnol Bioeng 114(5):980–989

    Article  CAS  PubMed  Google Scholar 

  • Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112

    Article  PubMed  CAS  Google Scholar 

  • Khatun MM, Yu XS, Kondo A, Bai FW, Zhao XQ (2017) Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein. Bioresour Technol 245:1447–1454

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Jin Y, Choi I, Park Y, Seo J (2015) Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng 29:46–55

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Kim J, Song JH, Jung YH, Choi IS, Choi W, Park YC, Seo JH, Kim KH (2016) Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling. Biotechnol J 11(9):1221–1229

    Article  CAS  PubMed  Google Scholar 

  • Ko JK, Lee SM (2017) Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Curr Opin Biotech 50:72–80

    Article  PubMed  CAS  Google Scholar 

  • Ko JK, Um Y, Lee SM (2016) Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress. Bioresour Technol 222:422–430

    Article  CAS  PubMed  Google Scholar 

  • Koedrith P, Dubois E, Scherens B, Jacobs E, Boonchird C, Messenguy F (2008) Identification and characterization of a thermotolerant yeast strain isolated from banana leaves. Sci Asia 34:147–152

    Article  CAS  Google Scholar 

  • Kumar V, Hart AJ, Wimalasena TT, Tucker GA, Greetham D (2015) Expression of RCK2 MAPKAP (MAPK-activated protein kinase) rescues yeast cells sensitivity to osmotic stress. Microb Cell Fact 14:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Engineering alcohol tolerance in yeast. Science 346(6205):71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y, Nasution O, Lee YM, Kim E, Choi W, Kim W (2016) Overexpression of PMA1 enhances tolerance to various types of stress and constitutively activates the SAPK pathways in Saccharomyces cerevisiae. Appl Microbio Biotechnol 101(1):1–11

    CAS  Google Scholar 

  • Li SS, Swanson SK, Gogol M, Florens L, Washburn MP, Workman JL, Suganuma T (2015) Serine and SAM responsive complex SESAME regulates histone modification crosstalk by sensing cellular metabolism. Mol Cell 60(3):408–421

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Dickman MB, Becker DF (2014) Proline biosynthesis is required for endoplasmic reticulum stress tolerance in Saccharomyces cerevisiae. J Biol Chem 289(40):27794–27806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304

    Article  CAS  PubMed  Google Scholar 

  • Liu ZL, Moon J, Andersh BJ, Slininger PJ, Weber S (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81(4):743–753

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Yang H, Zhang X, Liu L, Liu L, Lei M, Bao X (2009) Bdf1p deletion affects mitochondrial function and causes apoptotic cell death under salt stress. FEMS Yeast Res 9:240–246

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Zhang XH, Zhang ZJ (2014) Point mutation of H3/H4 histones affects acetic acid tolerance in Saccharomyces cerevisiae. J Biotechnol 187:116–123

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva T, Santo R, Reis A, Passarinho PC (2017) Effect of furfural on Saccharomyces carlsbergensis growth, physiology and ethanol production. Appl Biochem Biotechnol 182(2):708–720

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Wei XW, Sun CH, Zhang F, Xu JR, Bai FW (2015) Improvement of acetic acid tolerance of Saccharomyces cerevisiae using a zinc-finger-based artificial transcription factor and identification of novel genes involved in acetic acid tolerance. Appl Microbiol Biotechnol 99(5):2441–2449

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Progr 17:287–293

    Article  CAS  Google Scholar 

  • Martínez-Montañés F, Pascual-Ahuir A, Proft M (2010) Toward a genomic view of the gene expression program regulated by osmostress in yeast. OMICS 14:619–627

    Article  PubMed  CAS  Google Scholar 

  • Matsuo R, Mizobuchi S, Nakashima M, Miki K, Ayusawa D, Fujii M (2017) Central roles of iron in the regulation of oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet 63(5):895–907

    Article  CAS  PubMed  Google Scholar 

  • Mira NP, Palma M, Guerreiro JF, Sá-Correia I (2010) Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid. Microb Cell Fact 9:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mira NP, Henriques SF, Keller G, Teixeira MC, Matos RG, Arraiano CM, Winge DR, Sá-Correia I (2011) Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res 39(16):6896–6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollapour M, Piper PW (2006) Hog1p mitogen-activated protein kinase determines acetic acid resistance in Saccharomyces cerevisiae. FEMS Yeast Res 6(8):1274–1280

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Piper PW (2007) Hog1 mitogen-activated protein kinase phosphorylation targets the yeast Fps1 aquaglyceroporin for endocytosis, thereby rendering cells resistant to acetic acid. Mol Cell Biol 27:6446–6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  • Navarro-Tapia E, Nana RK, Querol A, Pérez-Torrado R (2016) Ethanol cellular defense induce unfolded protein response in yeast. Front Microbiol 7:189

    Article  PubMed  PubMed Central  Google Scholar 

  • Navarro-Tapia E, Querol A, Pérez-Torrado R (2018) Membrane fluidification by ethanol stress activates unfolded protein response in yeasts. Microb Biotechnol 11:465–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen TTM, Iwaki A, Ohya Y, Izawa S (2014) Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae. J Biosci Bioeng 117(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TY, Cai CM, Kumar R, Wyman CE (2017) Overcoming factors limiting high-solids fermentation of lignocellulosic biomass to ethanol. Proc Natl Acad Sci USA 114(44):11673–11678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nwuche CO, Murata Y, Nweze JE, Ndubuisi IA, Ohmae H, Saito M, Ogbonna JC (2018) Bioethanol production under multiple stress condition by a new acid and temperature tolerant Saccharomyces cerevisiae strain LC 269108 isolated from rotten fruits. Process Biochem 67:105–112

    Article  CAS  Google Scholar 

  • Palma M, Guerreiro JF, Sá-Correia I (2018) Adaptive response and tolerance to acetic acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: a physiological genomics perspective. Front Microbiol 9:274

    Article  PubMed  PubMed Central  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  CAS  Google Scholar 

  • Piecuch A, Obłąk E (2014) Yeast ABC proteins involved in multidrug resistance. Cell Mol Biol Lett 19:1–22

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Jiang R (2017) Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. Biotechnol Biofuels 10(1):125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rattanawong K, Kerdsomboon K, Auesukaree C (2015) Cu/Zn-superoxide dismutase and glutathione are involved in response to oxidative stress induced by protein denaturing effect of alachlor in Saccharomyces cerevisiae. Free Radic. Bio Med 89:963–971

    Article  CAS  Google Scholar 

  • Ribeiro GF, Côrte-Real M, Johansson BR (2006) Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol Biol Cell 17:4584–4591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro TP, Fernandes C, Melo KV, Ferreira SS, Lessa JA, Franco RW, Schenk G, Pereira MD, Horn A Jr (2015) Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress. Free Radical Bio Med 80:67–76

    Article  CAS  Google Scholar 

  • Santos RM, Nogueira FC, Brasil AA, Carvalho PC, Leprevost FV, Domont GB, Eleutherio EC (2017) Quantitative proteome ic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2. J Proteomics 151:114–121

    Article  CAS  PubMed  Google Scholar 

  • Sardi M, Rovinskiy N, Zhang Y, Gasch AP (2016) Leveraging genetic-background effects in Saccharomyces cerevisiae to improve lignocellulosic hydrolysate tolerance. Appl Environ Microbiol 82(19):5838–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sardi M, Paithane V, Place M, Robinson E, Hose J, Wohlbach DJ, Gasch AP (2018) Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genet 14(2):e1007217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Satomura A, Miura N, Kuroda K, Ueda M (2016) Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Sci Rep 6:231–257

    Article  CAS  Google Scholar 

  • Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Li HX, Wang XN, Zhang XR, Hou J, Wang LF, Gao N, Bao X (2014) High vanillin tolerance of an evolved Saccharomyces cerevisiae strain owing to its enhanced vanillin reduction and antioxidative capacity. J Ind Microbiol Biotechnol 41(11):1637–1645

    Article  CAS  PubMed  Google Scholar 

  • Shui W, Xiong Y, Xiao W, Qi X, Zhang Y, Lin Y, Guo Y, Zhang Z, Wang Q, Ma Y (2015) Understanding the mechanism of thermotolerance distinct from heat shock response through proteomic analysis of industrial strains of Saccharomyces cerevisiae. Mol Cell Proteomics 14:1885–1897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sousa MJ, Ludovico P, Rodrigues F, Leão C, Côrte-Real M (2012) Stress and cell death in yeast induced by acetic acid. In: Bubulya P (ed) Cell metabolism-cell homeostasis and stress response. InTech

    Google Scholar 

  • Sousa M, Duarte AM, Fernandes TR, Chaves SR, Pacheco A, Leão C, Côrte-Real M, Sousa MJ (2013) Genome-wide identification of genes involved in the positive and negative regulation of acetic acid-induced programmed cell death in Saccharomyces cerevisiae. BMC Genom 14:838

    Article  CAS  Google Scholar 

  • Swinnen S, Henriques SF, Shrestha R, Ho PW, Sá-Correia I, Nevoigt E (2017) Improvement of yeast tolerance to acetic acid through Haa1 transcription factor engineer-ing: towards the underlying mechanisms. Microb Cell Fact 16:7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Biochem Biotech 7(4):405–411

    Google Scholar 

  • Takahashi S, Ando A, Takagi H, Shima J (2009) Insufficiency of copper ion homeostasis causes freeze-thaw injury of yeast cells as revealed by indirect gene expression analysis. Appl Environ Microb 75(21):6706–6711

    Article  CAS  Google Scholar 

  • Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microb 75:5761–5772

    Article  CAS  Google Scholar 

  • Thompson OA, Hawkins GM, Gorsich SW, Doran-Peterson J (2016) Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. Biotechnol Biofuels 9:200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Rensburg E, den Haan R, Smith J, van Zyl WH, Görgens JF (2012) The metabolic burden of cellulase expression by recombinant Saccharomyces cerevisiae Y294 in aerobic batch culture. Appl Microbiol Biotechnol 96(1):197–209

    Article  CAS  PubMed  Google Scholar 

  • Vázquez J, Grillitsch K, Daum G, Mas A, Torija MJ, Beltran G (2018) Melatonin minimizes the impact of oxidative stress induced by hydrogen peroxide in Saccharomyces and non-conventional yeast. Front Microbiol 9:1933

    Article  PubMed  PubMed Central  Google Scholar 

  • Wallace-Salinas V, Brink DP, Ahrén D, Gorwa-Grauslund MF (2015) Cell periphery-related proteins as major genomic targets behind the adaptive evolution of an industrial Saccharomyces cerevisiae strain to combined heat and hydrolysate stress. BMC Genom 6:514

    Article  CAS  Google Scholar 

  • Wan C, Zhang MM, Fang Q, Xiong L, Zhao XQ, Hasunuma T, Kondo A (2015) The impact of zinc sulfate addition on the dynamic metabolic profiling of Saccharomyces cerevisiae subjected to long term acetic acid stress treatment and identification of key metabolites involved in the antioxidant effect of zinc. Metallomics 7(2):322–332

    Article  CAS  PubMed  Google Scholar 

  • Wang PM, Zheng DQ, Chi XQ, Li O, Qian CD, Liu TZ, Zhang XY, Du FG, Sun PY, Qu AM, Wu XC (2014) Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Bioresour Technol 152:371–376

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Bai X, Chen DF, Chen FZ, Li BZ, Yuan YJ (2015) Increasing proline and myo-inositol improves tolerance of Saccharomyces cerevisiae to the mixture of multiple lignocellulose-derived inhibitors. Biotechnol Biofuels 8:142

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang XN, Liang ZZ, Hou J, Bao XM, Shen Y (2017a) Identification and functional evaluation of the reductases and dehydrogenases from Saccharomyces cerevisiae involved in vanillin resistance. BMC Biotechnol 16:31

    Article  CAS  Google Scholar 

  • Wang X, Liang Z, Hou J, Shen Y, Bao X (2017b) The absence of the transcription factor Yrr1p, identified from comparative genome profiling, increased vanillin tolerance due to enhancements of ABC transporters expressing, rRNA processing and ribosome biogenesis in Saccharomyces cerevisiae. Front Microbiol 8:367

    PubMed  PubMed Central  Google Scholar 

  • Woo J, Yang K, Kim S, Blank LM, Park J (2014) High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl Microbiol Biotechnol 98(13):6085–6094

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Zhao XQ, Yuan WJ, Bai FW (2008) Improving ethanol tolerance of a self-flocculating yeast by optimization of medium composition. World J Microb Biot 24(10):2257

    Article  CAS  Google Scholar 

  • Xue C, Zhao XQ, Bai FW (2010) Effect of the size of yeast flocs and zinc supplementation on continuous ethanol fermentation performance and metabolic flux distribution under very high concentration conditions. Biotechnol Bioeng 105:935–944

    CAS  PubMed  Google Scholar 

  • Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9:32–44

    Article  CAS  PubMed  Google Scholar 

  • Zhang MM, Zhao XQ, Cheng C, Bai FW (2015) Improved growth and ethanol fermentation of Saccharomyces cerevisiae in the presence of acetic acid by overexpression of SET5 and PPR1. Biotechnol J 10(12):1903–1911

    Article  CAS  PubMed  Google Scholar 

  • Zhang MM, Zhang KY, Mehmood MA, Zhao ZBK, Bai FW, Zhao XQ (2017) Deletion of acetate transporter gene ADY2, improved tolerance of Saccharomyces cerevisiae, against multiple stresses and enhanced ethanol production in the presence of acetic acid. Bioresour Technol 245:1461–1468

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Bai FW (2012) Zinc and yeast stress tolerance: micronutrient plays a big role. J Biotechnol 158:176–183

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Xue C, Ge XM, Yuan WJ, Wang JY, Bai FW (2009) Impact of zinc supplementation on the improvement of ethanol tolerance and yield of self-flocculating yeast in continuous ethanol fermentation. J Biotechnol 139(1):55–60

    Article  CAS  PubMed  Google Scholar 

  • Zhao XQ, Zi LH, Bai FW, Lin HL, Hao XM, Yue GJ, Ho NW (2012) Bioethanol from lignocellulosic biomass. Adv Biochem Eng Biotechnol 128:25–51

    CAS  PubMed  Google Scholar 

  • Zhao XQ, Xiong L, Zhang MM, Bai FW (2016) Towards efficient bioethanol production from agricultural and forestry residues: Exploration of unique natural microorganisms in combination with advanced strain engineering. Bioresour Technol 215:84–91

    Article  CAS  PubMed  Google Scholar 

  • Zheng DQ, Jin XN, Zhang K, Fang YH, Wu XC (2017) Novel strategy to improve vanillin tolerance and ethanol fermentation performances of Saccharomycere cerevisiae strains. Bioresour Technol 231:53–58

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-Qing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, MM., Chen, HQ., Ye, PL., Wattanachaisaereekul, S., Bai, FW., Zhao, XQ. (2019). Development of Robust Yeast Strains for Lignocellulosic Biorefineries Based on Genome-Wide Studies. In: Sá-Correia, I. (eds) Yeasts in Biotechnology and Human Health. Progress in Molecular and Subcellular Biology, vol 58. Springer, Cham. https://doi.org/10.1007/978-3-030-13035-0_3

Download citation

Publish with us

Policies and ethics