Skip to main content

Natural Variation in Arabidopsis thaliana

  • Chapter
  • First Online:

Part of the book series: Plant Genetics and Genomics: Crops and Models ((PGG,volume 9))

Abstract

Arabidopsis thaliana is a wild species widely distributed in diverse environments and current resources allow efficient quantitative analyses aimed to identify the genetic and molecular bases of adaptation. The study of natural genetic variation in this model plant has rapidly developed in the past 10 years, leading to the identification of hundreds of loci that are responsible for the variation of a plethora of traits and more than 30 of the underlying genes. This knowledge can be used for the identification of genes also relevant for crop breeding. Particularly, related species of A. thaliana such as Brassica sp. may benefit from this information because current genomic information is providing detailed knowledge of genetic synteny among these species. In this chapter, we summarize the approaches that are followed to dissect A. thaliana intraspecific variation. In addition, the main results obtained up to now are described considering current possibilities to transfer them to Brassica crops.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AIL:

Advanced Intercross line

AM:

Association Mapping

BIL:

Backcross Inbred Line

IL:

Introgression Line

LD:

Linkage Disequilibrium

QTL:

Quantitative Trait Locus

RIL:

Recombinant Inbred Line

References

  • Al-Shehbaz IA, ÓKane SL (2002) Taxonomy and phylogeny of Arabidopsis (Brassicaceae). The Arabidopsis book. doi:1199/tab.001

    Google Scholar 

  • Alcázar R, García AV, Parker JE et al (2009) Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl Acad Sci USA 106:334–339

    Article  PubMed  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ et al (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Alonso-Blanco C, Aarts MG, Bentsink L et al (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    Google Scholar 

  • Alonso-Blanco C, Bentsink L, Hanhart CJ et al (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164:711–729

    CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Blankesteijn-de Vries H, Hanhart C et al (1999) Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Natl Acad Sci USA 96:4710–4717

    Google Scholar 

  • Alonso-Blanco C, Gomez-Mena C, Llorente F et al (2005) Genetic and molecular analyses of natural variation indicate CBF2 as a candidate gene for underlying a freezing tolerance quantitative trait locus in Arabidopsis. Plant Physiol 139:1304–1312

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5:22–29

    Article  CAS  PubMed  Google Scholar 

  • Alonso-Blanco C, Koornneef M, van Ooijen J (2006) QTL analysis. In: Salinas J, Sanchez-Serrano JJ (eds) Arabidopsis protocols. Methods in molecular biology, vol 323, pp 79–99. Humana Press, Inc., Totowa, NJ

    Chapter  Google Scholar 

  • Alonso-Blanco C, Peeters AJM, Koornneef M, Lister C, Dean C, van den Bosch N, Pot J, Kuiper MTR (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

    Article  CAS  PubMed  Google Scholar 

  • Amar S, Ecke W, Becker H et al (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 116:1051–1061

    Article  CAS  PubMed  Google Scholar 

  • Aranzana MJ, Kim S, Zhao K et al (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:531–539

    Article  CAS  Google Scholar 

  • Aukerman MJ, Hirschfeld M, Wester L et al (1997) A deletion in the PHYD Gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing. Plant Cell 9:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian S, Sureshkumar S, Agrawal M et al (2006) The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana. Nat Genet 38:711–715

    Article  CAS  PubMed  Google Scholar 

  • Baxter I, Muthukumar B, Park HC et al (2008) Variation in molybdenum content across broadly distributed populations of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:e1000004

    Article  PubMed  CAS  Google Scholar 

  • Beck JB, Schmuths H, Schaal BA (2008) Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects pleistocene glacial dynamics. Mol Ecol 17:902–915

    Article  CAS  PubMed  Google Scholar 

  • Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19:137–144

    Article  CAS  PubMed  Google Scholar 

  • Benfey PN, Mitchell-Olds T (2008) From genotype to phenotype: systems biology meets natural variation. Science 320:495–497

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Alonso-Blanco C, Vreugdenhil D et al (2000) Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 124:1595–1604

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Jowett J, Hanhart CJ et al (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103:17042–17047

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Yuan K, Koornneef M et al (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Genet 106:1234–1243

    CAS  PubMed  Google Scholar 

  • Bergelson J, Kreitman M, Stahl EA et al (2001) Evolutionary dynamics of plant R.genes. Science 292:2281–2285

    Article  CAS  PubMed  Google Scholar 

  • Bomblies K, Lempe J, Epple P et al (2007) Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5:e236

    Article  PubMed  CAS  Google Scholar 

  • Borevitz JO, Hazen SP, Michael TP et al (2007) Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:12057–12062

    Article  CAS  PubMed  Google Scholar 

  • Borevitz JO, Maloof JN, Lutes J et al (2002) Quantitative trait loci controlling light and hormone response in two accessions of Arabidopsis thaliana. Genetics 160:683–696

    CAS  PubMed  Google Scholar 

  • Botella MA, Parker JE, Frost LN et al (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10:1847–1860

    Article  CAS  PubMed  Google Scholar 

  • Botto JF, Alonso-Blanco C, Garzaron I et al (2003) The Cape Verde Islands allele of cryptochrome 2 enhances cotyledon unfolding in the absence of blue light in Arabidopsis. Plant Physiol 133:1547–1556

    Article  CAS  PubMed  Google Scholar 

  • Botto JF, Coluccio MP (2007) Seasonal and plant-density dependency for quantitative trait loci affecting flowering time in multiple populations of Arabidopsis thaliana. Plant Cell Environ 30:1465–1479

    Article  PubMed  Google Scholar 

  • Caicedo AL, Stinchcombe JR, Olsen KM et al (2004) Epistatic interaction between Arabidopsis FRI and FLC flowering time genes generates a latitudinal cline in a life history trait. Proc Natl Acad Sci USA 101:15670–15675

    Article  CAS  PubMed  Google Scholar 

  • Chai Y-R, Lei B, Huang H-L et al (2008) TRANSPARENT TESTA 12 genes from Brassica napus and parental species: cloning, evolution, and differential involvement in yellow seed trait. Mol Genet Genomics doi:10.1007/s00438-008-0399–1

    PubMed  Google Scholar 

  • Chisholm ST, Mahajan SK, Whitham SA et al (2000) Cloning of the Arabidopsis RTM1 gene, which controls restriction of long-distance movement of tobacco etch virus. Proc Natl Acad Sci USA 97:489–494

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Teakle G, Plaha P et al (2007) The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor App Genet 115:777–792

    Article  CAS  Google Scholar 

  • Clark RM, Schweikert G, Toomajian C et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342

    Article  CAS  PubMed  Google Scholar 

  • Clauss MJ, Cobban H, Mitchell-Olds T (2002) Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Mol Ecol 11:591–601

    Article  CAS  PubMed  Google Scholar 

  • Clerkx EJM, El-Lithy ME, Vierling E et al (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443

    Article  CAS  PubMed  Google Scholar 

  • Cooley MB, Pathirana S, Wu HJ et al. (2000) Members of the Arabidopsis HRT/RPP8 family of resistance genes confer resistance to both viral and oomycete pathogens. Plant Cell 12:663–676

    Google Scholar 

  • DeCook R, Lall S, Nettleton D et al (2006) Genetic regulation of gene expression during shoot development in Arabidopsis. Genetics 172:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Denby KJ, Kumar P, Kliebenstein DJ (2004) Identification of Botrytis cinerea susceptibility loci in Arabidopsis thaliana. Plant J 38:473–486

    Article  CAS  PubMed  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F et al (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  CAS  PubMed  Google Scholar 

  • Deslandes L, Pileur F, Liaubet L et al (1998) Genetic characterization of RRS1, a recessive locus in Arabidopsis thaliana that confers resistance to the bacterial soilborne pathogen Ralstonia solanacearum. Mol Plant Microbe Interact 11:659–667

    Article  CAS  PubMed  Google Scholar 

  • Doyle MR, Bizzell CM, Keller MR et al (2005) HUA2 is required for the expression of floral repressors in Arabidopsis thaliana. Plant J 41:376–385

    Article  CAS  PubMed  Google Scholar 

  • El-Assal SE-D, Alonso-Blanco C, Peeters AJM et al (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  CAS  Google Scholar 

  • El-Lithy ME, Bentsink L, Hanhart CJ et al (2006) New arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci. Genetics 172:1867–1876

    Article  CAS  PubMed  Google Scholar 

  • El-Lithy ME, Clerkx EJ, Ruys GJ et al (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 135:444–458

    Article  CAS  PubMed  Google Scholar 

  • Filiault DL, Wessinger CA, Dinneny JR et al (2008) Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc Natl Acad Sci USA 105:3157–3162

    Article  CAS  PubMed  Google Scholar 

  • Fitz Gerald JN, Lehti-Shiu MD, Ingram PA et al (2006) Identification of quantitative trait loci that regulate Arabidopsis root system size and plasticity. Genetics 172:485–498

    Article  CAS  PubMed  Google Scholar 

  • Fourmann M, Barret P, Renard M et al (1998) The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • François O, Blum MGB, Jakobsson M et al (2008) Demographic history of European populations of Arabidopsis thaliana. PLoS Genet 4(5):Public Library of Science, p e1000075

    Article  CAS  Google Scholar 

  • Frenkel M, Johansson Jänkänpää H, Moen J et al (2008) An illustrated gardener’s guide to transgenic Arabidopsis field experiments. New Phytol 180:545–555

    Article  PubMed  Google Scholar 

  • Fu F-Y, Liu L-Z, Chai Y-R et al (2007) Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome 50:840–854

    Article  CAS  PubMed  Google Scholar 

  • Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease-resistance genes. Plant J 20:265–277

    Article  CAS  PubMed  Google Scholar 

  • Gazzani S, Gendall AR, Lister C et al (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Godiard L, Straube E et al (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  CAS  PubMed  Google Scholar 

  • Greene EA, Codomo CA, Taylor NE et al (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    CAS  PubMed  Google Scholar 

  • Göllner K, Schweizer P, Bai Y et al (2008) Natural genetic resources of Arabidopsis thaliana reveal a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742

    Article  PubMed  CAS  Google Scholar 

  • Hagenblad J, Tang C, Molitor J et al (2004) Haplotype structure and phenotypic associations in the chromosomal regions surrounding two Arabidopsis thaliana flowering time loci. Genetics 168:1627–1638

    Article  CAS  PubMed  Google Scholar 

  • Harada H, Kuromori T, Hirayama T et al (2004) Quantitative trait loci analysis of nitrate storage in Arabidopsis leading to an investigation of the contribution of the anion channel gene, AtCLC-c, to variation in nitrate levels. J Exp Bot 55:2005–2014

    Article  CAS  PubMed  Google Scholar 

  • Hauser M-T, Harr B, Schlotterer C (2001) Trichome distribution in Arabidopsis thaliana and its close relative Arabidopsis lyrata: molecular analysis of the candidate gene GLABROUS1. Mol Biol Evol 18:1754–1763

    CAS  PubMed  Google Scholar 

  • Hausmann NJ, Juenger TE, Sen S et al (2005) Quantitative trait loci affecting delta13C and response to differential water availability in Arabidopsis thaliana. Evolution 59:81–96

    CAS  PubMed  Google Scholar 

  • He F, Kang D, Ren Y et al (2007) Genetic diversity of the natural populations of Arabidopsis thaliana in China. Heredity 99:423–431

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y et al (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  CAS  PubMed  Google Scholar 

  • Hobbs DH, Flintham JE, Hills MJ (2004) Genetic control of storage oil synthesis in seeds of Arabidopsis. Plant Physiol 136:3341–3349

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). J Biogeography 29:125–134

    Article  Google Scholar 

  • Hoffmann MH (2005) Evolution of the realized climatic niche in the genus: Arabidopsis (Brassicaceae). Evolution 59:1425–1436

    PubMed  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M et al (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Säll T, Lind-Halldén C et al (2007) The evolutionary history of the common chloroplast genome of Arabidopsis thaliana and A. suecica. J Evol Biol 20:104–121

    Article  CAS  PubMed  Google Scholar 

  • Jander G, Norris SR, Rounsley SD et al (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129:440–450

    Article  CAS  PubMed  Google Scholar 

  • Johanson U, West J, Lister C et al (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen S, Mauricio R (2004) Neutral genetic variation among wild North American populations of the weedy plant Arabidopsis thaliana is not geographically structured. Mol Ecol 13:3403–3413

    Article  CAS  PubMed  Google Scholar 

  • Jubault M, Lariagon C, Simon M et al (2008) Identification of quantitative trait loci controlling partial clubroot resistance in new mapping populations of Arabidopsis thaliana. Theor Appl Genet 117:191–202

    Article  CAS  PubMed  Google Scholar 

  • Juenger TE, McKay JK, Hausmann N et al (2005) Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: delta13C, stomatal conductance and transpiration efficiency. Plant Cell Environ 28:697–708

    Article  CAS  Google Scholar 

  • Juenger T, Purugganan M, Mackay TFC (2000) Quantitative trait loci for floral morphology in Arabidopsis thaliana. Genetics 156:1379–1392

    CAS  PubMed  Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJB, Bentsink L, Alonso-Blanco C et al (2007a) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175:891–905

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJB, Fu J, de Vos CH et al (2006) The genetics of plant metabolism. Nat Genet 38:842–849

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJB, Fu J, Terpstra IR et al (2007b) Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci. Proc Natl Acad Sci USA 104:1708–1713

    Article  CAS  PubMed  Google Scholar 

  • Keurentjes JJB, Koornneef M, Vreugdenhil D (2008) Quantitative genetics in the age of omics. Curr Opin Plant Biol 11:123–128

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Plagnol V, Hu TT et al (2007) Recombination and linkage disequilibrium in Arabidopsis thaliana. Nat Genet 39:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Lambrix VM, Reichelt M et al (2001) Gene duplication in the diversification of secondary metabolism: Tandem 2-oxoglutarate-dependent dioxygenases control glucosinolate biosynthesis in Arabidopsis. Plant Cell 13:681–693

    Article  CAS  PubMed  Google Scholar 

  • Kliebenstein D, Pedersen D, Barker B et al (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161:325–332

    CAS  PubMed  Google Scholar 

  • Kliebenstein D, West M, van Leeuwen H et al (2006) Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics 7:308

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Haubold B, Mitchell-Olds T (2001) Molecular systematics of the Brassicaceae: evidence from coding plastidic matK and nuclear Chs sequences. Am J Bot 88:534–544

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172

    Article  CAS  PubMed  Google Scholar 

  • Korves TM, Schmid KJ, Caicedo AL et al (2007) Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am Nat 169:141–157

    Article  Google Scholar 

  • Kover PX, Cheverud J (2007) The genetic basis of quantitative variation in susceptibility of Arabidopsis thaliana to Pseudomonas syringae (Pst DC3000): evidence for a new genetic factor of large effect. New Phytol 174:172–181

    Article  CAS  PubMed  Google Scholar 

  • Kover PX, Wolf JB, Kunkel BN et al (2005) Genetic architecture of Arabidopsis thaliana response to infection by Pseudomonas syringae. Heredity 94:507–517

    Article  CAS  PubMed  Google Scholar 

  • Kowalski SP, Lan T-H, Feldmann KA et al (1994) QTL mapping of naturally-occurring variation in flowering time of Arabidopsis thaliana. Mol Gen Genet 245:548–555

    Article  CAS  PubMed  Google Scholar 

  • Kroymann J, Donnerhacke S, Schnabelrauch D et al (2003) Evolutionary dynamics of an Arabidopsis insect resistance quantitative trait locus. Proc Natl Acad Sci USA 100:14587–14592

    Article  CAS  PubMed  Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  CAS  PubMed  Google Scholar 

  • Kuittinen H, de Haan AA, Vogl C et al (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168:1575–1584

    Article  CAS  PubMed  Google Scholar 

  • Kuittinen H, Mattila A, Savolainen O (1997) Genetic variation at marker loci and in quantitative traits in natural populations of Arabidopsis Thaliana. Heredity 79:144–152

    Article  PubMed  Google Scholar 

  • Kuittinen H, Niittyvuopio A, Rinne P et al (2008) Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism. Mol Biol Evol 25:319–329

    Article  CAS  PubMed  Google Scholar 

  • Kusterer B, Muminovic J, Utz HF et al (2007b) Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics 175:2009–2017

    Article  CAS  PubMed  Google Scholar 

  • Kusterer B, Piepho H-P, Utz HF et al (2007a) Heterosis for biomass-related traits in Arabidopsis investigated by quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 177:1839–1850

    Article  CAS  PubMed  Google Scholar 

  • Laibach F (1943) Arabidopsis thaliana (L.) Heynh. als Objekt für genetische und entwicklungsphysiologische Untersuchungen. Bot Arch 44:439–455

    Google Scholar 

  • Lall S, Nettleton D, DeCook R et al (2004) Quantitative trait loci associated with adventitious shoot formation in tissue culture and the program of shoot development in Arabidopsis. Genetics 167:1883–1892

    Article  CAS  PubMed  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T et al (2001) The Arabidopsis epithiospecifier protein promotes the hydrolysis of glucosinolates to nitriles and influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  CAS  PubMed  Google Scholar 

  • Laserna MP, Sanchez RA, Botto JF (2008) Light-related loci controlling seed germination in Ler × Cvi and Bay-0 × Sha recombinant inbred-line populations of Arabidopsis thaliana. Ann Bot 102:631–642

    Article  PubMed  Google Scholar 

  • Lau JA, Shaw RG, Reich PB et al (2007) Strong ecological but weak evolutionary effects of elevated CO2 on a recombinant inbred population of Arabidopsis thaliana. New Phytol 175:351–362

    Article  CAS  PubMed  Google Scholar 

  • Le Corre V (2005) Variation at two flowering time genes within and among populations of Arabidopsis thaliana: comparison with markers and traits. Mol Ecol 14:4181–4192

    Article  PubMed  CAS  Google Scholar 

  • Le Corre V, Roux F, Reboud X (2002) DNA polymorphism at the FRIGIDA gene in Arabidopsis thaliana: extensive nonsynonymous variation is consistent with local selection for lowering time. Mol Biol Evol 19:1261–1271

    PubMed  Google Scholar 

  • Lempe J, Balasubramanian S, Sureshkumar S et al (2005) Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet 1:109–118

    Article  CAS  PubMed  Google Scholar 

  • Li G, Quiros CF (2003) In planta side-chain glucosinolate modification in Arabidopsis by introduction of dioxygenase Brassica homolog BoGSL-ALK. Theor Appl Genet 106:1116–1121

    CAS  PubMed  Google Scholar 

  • Li Y, Roycewicz P, Smith E et al (2006) Genetics of local adaptation in the laboratory: flowering time quantitative trait loci under geographic and seasonal conditions in Arabidopsis. PLoS One 1:1–8

    Article  CAS  Google Scholar 

  • Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750

    Article  CAS  Google Scholar 

  • Long Y, Shi J, Qiu D et al (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genome-wide alignment with Arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  Google Scholar 

  • Lou P, Zhao J, He H et al (2008) Quantitative trait loci for glucosinolate accumulation in Brassica rapa leaves. New Phytol 179:1017–1032

    Article  CAS  PubMed  Google Scholar 

  • Lou P, Zhao J, Kim JS et al (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  CAS  PubMed  Google Scholar 

  • Loudet O, Chaillou S, Camilleri C et al (2002) Bay-0 × Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Loudet O, Chaillou S, Merigout P et al (2003) Quantitative trait loci analysis of nitrogen use efficiency in Arabidopsis. Plant Physiol 131:345–358

    Article  CAS  PubMed  Google Scholar 

  • Loudet O, Gaudon V, Trubuil A et al (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110:742–753

    Article  CAS  PubMed  Google Scholar 

  • Loudet O, Michael TP, Burger BT et al (2008) A zinc knuckle protein that negatively controls morning-specific growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:17193–17198

    Article  CAS  PubMed  Google Scholar 

  • Loudet O, Saliba-Colombani V, Camilleri C, Calenge F, Gaudon V, Koprivova A, North KA, Kopriva S, Daniel-Vedele F (2007) Natural variation for sulfate content in Arabidopsis thaliana is highly controlled by APR2. Nat Genet 39:896–900

    Article  CAS  PubMed  Google Scholar 

  • Macquet A, Ralet M-C, Loudet O et al (2007) A naturally occurring mutation in an Arabidopsis accession affects a β-D-Galactosidase that increases the hydrophilic potential of rhamnogalacturonan I in seed mucilage. Plant Cell 19:3990–4006

    Article  CAS  PubMed  Google Scholar 

  • Magliano TMA, Botto JF, Godoy AV et al (2005) New arabidopsis recombinant inbred lines (Landsberg erecta × Nossen) reveal natural variation in phytochrome-mediated responses. Plant Physiol 138:1126–1135

    Article  CAS  PubMed  Google Scholar 

  • Malmberg RL, Held S, Waits A et al (2005) Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. Genetics 171:2013–2027

    Article  CAS  PubMed  Google Scholar 

  • Maloof JN, Borevitz JO, Dabi T et al (2001) Natural variation in light sensitivity of Arabidopsis. Nat Genet 29:441–446

    Article  CAS  PubMed  Google Scholar 

  • Masle J, Gilmore SR, Farquhar GD (2005) The ERECTA gene regulates plant transpiration efficiency in Arabidopsis. Nature 436:866–870

    Article  CAS  PubMed  Google Scholar 

  • Mauricio R, Stahl EA, Korves T et al (2003) Natural selection for polymorphism in the disease resistance gene RPS2 of Arabidopsis thaliana. Genetics 163:735–746

    CAS  PubMed  Google Scholar 

  • McDowell JM, Dhandaydham M, Long TA et al (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10:1861–1874

    Article  CAS  PubMed  Google Scholar 

  • Melchinger AE, Piepho H-P, Utz HF et al (2007) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177:1827–1837

    Article  PubMed  Google Scholar 

  • Meyer RC, Steinfath M, Lisec J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proc Natl Acad Sci USA 104:4759–4764

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, He Y, Scortecci KC et al (2003) Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. Proc Natl Acad Sci USA 100:10102–10107

    Article  CAS  PubMed  Google Scholar 

  • Millenaar FF, Cox MCH, van Berkel YEM et al (2005) Ethylene-induced differential growth of petioles in Arabidopsis. Analyzing natural variation, response kinetics, and regulation. Plant Physiol 137:998–1008

    Article  CAS  PubMed  Google Scholar 

  • Mindrinos M, Katagiri F, Yu G et al (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099

    Article  CAS  PubMed  Google Scholar 

  • Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441:947–952

    Article  CAS  PubMed  Google Scholar 

  • Mithen R, Clarke J, Lister C et al (1995) Genetics of aliphatic glucosinolates. III. Side chain structure of aliphatic glucosinolates in Arabidopsis thaliana. Heredity 74:210–215

    Article  CAS  Google Scholar 

  • Mouchel ClF, Briggs GC, Hardtke CS (2004) Natural genetic variation in Arabidopsis identifies BREVIS RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev 18:700–714

    Article  CAS  PubMed  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y et al (2005) The pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3:e196

    Article  PubMed  CAS  Google Scholar 

  • Okazaki K, Sakamoto K, Kikuchi R et al (2007) Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet 114:595–608

    Article  CAS  PubMed  Google Scholar 

  • Olsen KM, Halldorsdottir SS, Stinchcombe JR et al (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 167:1361–1369

    Article  CAS  PubMed  Google Scholar 

  • O’Neill C, Morgan C, Kirby J et al (2008) Six new recombinant inbred populations for the study of quantitative traits in Arabidopsis thaliana. Theor Appl Genet 116:623–634

    Article  PubMed  CAS  Google Scholar 

  • Ossowski S, Schneeberger K, Clark RM, Lanz C, Warthmann N, Weigel D (2008) Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome Res 18:2024–2033

    Article  CAS  PubMed  Google Scholar 

  • Ostrowski MF, David J, Santoni S et al (2006) Evidence for a large-scale population structure among accessions of Arabidopsis thaliana: possible causes and consequences for the distribution of linkage disequilibrium. Mol Ecol 15:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Parker JE, Coleman MJ, Szabò V et al (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. Plant Cell 9:879–894

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  CAS  PubMed  Google Scholar 

  • Perchepied L, Kroj T, Tronchet M et al (2006) Natural variation in partial resistance to Pseudomonas syringae is controlled by two major QTLs in Arabidopsis thaliana. PLoS One 1:e123

    Article  PubMed  CAS  Google Scholar 

  • Perez-Perez JM, Serrano-Cartagena J, Micol JL (2002) Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 162:893–915

    CAS  PubMed  Google Scholar 

  • Pfalz M, Vogel H, Mitchell-Olds T et al (2007) Mapping of QTL for resistance against the crucifer specialist herbivore Pieris brassicae in a new Arabidopsis inbred line population, Da(1)-12xEi-2. PLoS One 2:e578

    Article  PubMed  CAS  Google Scholar 

  • Picó FX, Mendez-Vigo B, Martinez-Zapater JM et al (2008) Natural genetic variation of Arabidopsis thaliana is geographically structured in the iberian peninsula. Genetics 180:1009–1021

    Article  PubMed  Google Scholar 

  • Quesada V, Garcia-Martinez S, Piqueras P et al (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    Article  CAS  PubMed  Google Scholar 

  • Rauh BL, Basten C, Buckler ES (2002) Quantitative trait loci analysis of growth response to varying nitrogen sources in Arabidopsis thaliana. Theor Appl Genet 104:743–750

    Article  CAS  PubMed  Google Scholar 

  • Reif JC, Kusterer B, Piepho H-P et al (2008) Unravelling epistasis with triple testcross progenies of near isogenic lines. Genetics 181:247–257. doi:108.093047

    PubMed  Google Scholar 

  • Reymond M, Svistoonoff S, Loudet O et al (2006) Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ 29:115–125

    Article  CAS  PubMed  Google Scholar 

  • Riddle NC, Richards EJ (2005) Genetic variation in epigenetic inheritance of ribosomal RNA gene methylation in Arabidopsis. Plant J 41:524–532

    Article  CAS  PubMed  Google Scholar 

  • Rose LE, Bittner-Edy PD, Langley CH et al (2004) The maintenance of extreme amino acid diversity at the disease resistance gene, RPP13, in Arabidopsis thaliana. Genetics 166:1517–1527

    Article  CAS  PubMed  Google Scholar 

  • Rowe HC, Kliebenstein DJ (2008) Complex genetics control natural variation in Arabidopsis thaliana resistance to Botrytis cinerea. Genetics:doi:108.091439

    PubMed  Google Scholar 

  • Rus A, Baxter I, Muthukumar B et al (2006) Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis. PLoS Genet 2:e210

    Article  PubMed  CAS  Google Scholar 

  • Salt DE, Baxter I, Lahner B (2008) Ionomics and the study of the plant ionome. Annu Rev Plant Biol 59:709–733

    Article  CAS  PubMed  Google Scholar 

  • Scarcelli N, Cheverud JM, Schaal BA et al (2007) Antagonistic pleiotropic effects reduce the potential adaptive value of the FRIGIDA locus. Proc Natl Acad Sci USA 104:16986–16991

    Article  CAS  PubMed  Google Scholar 

  • Schläppi MR (2006) FRIGIDA LIKE 2 is a functional allele in Landsberg erecta and compensates for a nonsense allele of FRIGIDA LIKE 1. Plant Physiol 142:1728–1738

    Article  PubMed  CAS  Google Scholar 

  • Schmid KJ, Torjek O, Meyer R et al (2006) Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. Theor Appl Genet 112:1104–1114

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Quijada P, Sung S-B et al (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    CAS  PubMed  Google Scholar 

  • Sergeeva LI, Keurentjes JJB, Bentsink L et al (2006) Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proc Natl Acad Sci USA 103:2994–2999

    Article  CAS  PubMed  Google Scholar 

  • Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol 9:2109–2118

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ et al (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    Article  CAS  PubMed  Google Scholar 

  • Shindo C, Aranzana MJ, Lister C et al (2005) Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. Plant Physiol 138:1163–1173

    Article  CAS  PubMed  Google Scholar 

  • Shindo C, Bernasconi G, Hardtke CS (2008) Intraspecific competition reveals conditional fitness effects of single gene polymorphism at the Arabidopsis root growth regulator BRX. New Phytol 180:71–80

    Article  CAS  PubMed  Google Scholar 

  • Shindo C, Lister C, Crevillen P et al (2006) Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes Dev 20:3079–3083

    Article  CAS  PubMed  Google Scholar 

  • Shpak ED, McAbee JM, Pillitteri LJ, Torii KU (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309:290–293

    Article  CAS  PubMed  Google Scholar 

  • Sicard O, Loudet O, Keurentjes JJB et al (2008) Identification of quantitative trait loci controlling symptom development during viral infection in Arabidopsis thaliana. Mol Plant Microbe Interact 21:198–207

    Article  CAS  PubMed  Google Scholar 

  • Simon M, Loudet O, Durand S et al (2008) Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus single-nucleotide polymorphism markers. Genetics 178:2253–2264

    Article  CAS  PubMed  Google Scholar 

  • Staal J, Kaliff M, Bohman S et al (2006) Transgressive segregation reveals two Arabidopsis TIR-NB-LRR resistance genes effective against Leptosphaeria maculans, causal agent of blackleg disease. Plant J 46:218–230

    Article  CAS  PubMed  Google Scholar 

  • Stahl EA, Dwyer G, Mauricio R et al (1999) Dynamics of disease resistance polymorphism at the RPM1 locus of Arabidopsis. Nature 400:667–671

    Article  CAS  PubMed  Google Scholar 

  • Stenoien HK, Fenster CB, Tonteri A et al (2005) Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Mol Ecol 14:137–148

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe JR, Weinig C, Ungerer M et al (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci USA 101:4712–4717

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Wang Z, Tu J et al (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114:1305–1317

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H et al (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  Google Scholar 

  • Svistoonoff S, Creff A, Reymond M et al (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39:792–796

    Article  CAS  PubMed  Google Scholar 

  • Symonds VV, Godoy AV, Alconada T et al (2005) Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169:1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Sheldon CC, Helliwell CA et al (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28:545–553

    Article  CAS  PubMed  Google Scholar 

  • Tamaoki M, Matsuyama T, Kanna M et al (2003) Differential ozone sensitivity among Arabidopsis accessions and its relevance to ethylene synthesis. Planta 216:552–560

    CAS  PubMed  Google Scholar 

  • Tan X, Meyers B, Kozik A et al (2007) Global expression analysis of nucleotide binding site-leucine rich repeat-encoding and related genes in Arabidopsis. BMC Plant Biol 7:56

    Article  PubMed  CAS  Google Scholar 

  • Teng S, Keurentjes J, Bentsink L et al (2005) Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol 139:1840–1852

    Article  CAS  PubMed  Google Scholar 

  • Tian D, Traw MB, Chen JQ et al (2003) Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature 423:74–77

    Article  CAS  PubMed  Google Scholar 

  • Tisné S, Reymond M, Vile D et al (2008) Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiol 148:1117–1127

    Article  PubMed  CAS  Google Scholar 

  • Tonsor SJ, Scheiner SM (2007) Plastic trait integration across a CO2 gradient in Arabidopsis thaliana. Am Nat 169:119–140

    Article  Google Scholar 

  • Town CD, Cheung F, Maiti R et al (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Tör M, Brown D, Cooper A et al (2004) Arabidopsis downy mildew resistance gene RPP27 encodes a receptor-like protein similar to CLAVATA2 and tomato Cf-9. Plant Physiol 135:1–13

    Article  Google Scholar 

  • Törjék O, Meyer RC, Zehnsdorf M et al (2008) Construction and analysis of 2 reciprocal arabidopsis introgression line populations. J Hered 99:396–406

    Article  PubMed  CAS  Google Scholar 

  • Törjék O, Witucka-Wall H, Meyer R et al (2006) Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor Appl Genet 113:1551–1561

    Article  PubMed  CAS  Google Scholar 

  • Vaughn MW, Tanurdić M, Lippman Z et al (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    Article  PubMed  CAS  Google Scholar 

  • Vreugdenhil D, Aarts MGM, Koornneef M et al (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ 27:828–839

    Article  CAS  Google Scholar 

  • Vuylsteke M, van Eeuwijk F, Van Hummelen P et al (2005) Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171:1267–1275

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Sajja U, Rosloski S, Humphrey T, Kim MC, Bomblies K, Weigel D, Grbic V (2007) HUA2 caused natural variation in shoot morphology of A. thaliana. Curr Biol 17:1513–1519

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang Y, Tian F et al (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765

    Article  CAS  PubMed  Google Scholar 

  • Warren RF, Henk A, Mowery P et al (1998) A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes. Plant Cell 10:1439–1452

    Article  CAS  PubMed  Google Scholar 

  • Warthmann N, Fitz J, Weigel D (2007) MSQT for choosing SNP assays from multiple DNA alignments. Bioinformatics 23:2784–2787

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis thaliana. Genome Biol 10:107

    Article  PubMed  Google Scholar 

  • Weinig C, Dorn LA, Kane NC et al (2003) Heterogeneous selection at specific loci in natural environments in Arabidopsis thaliana. Genetics 165:321–329

    CAS  PubMed  Google Scholar 

  • Weinig C, Ungerer MC, Dorn LA et al (2002) Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 162:1875–1884

    CAS  PubMed  Google Scholar 

  • Werner JD, Borevitz JO, Uhlenhaut NH et al (2005a) FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Werner JD, Borevitz JO, Warthmann N et al (2005b) Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering-time variation. Proc Natl Acad Sci USA 102:2460–2465

    Article  CAS  PubMed  Google Scholar 

  • West MAL, Kim K, Kliebenstein DJ et al (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450

    Article  CAS  PubMed  Google Scholar 

  • Wilson IW, Schiff CL, Hughes DE et al (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession Kashmir-1. Genetics 158:1301–1309

    CAS  PubMed  Google Scholar 

  • Xiao SY, Ellwood S, Calis E et al (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    Article  CAS  PubMed  Google Scholar 

  • Xiao SY, Emerson B, Ratanasut K et al (2004) Origin and maintenance of a broad-spectrum diseases resistance locus in Arabidopsis. Mol Biol Evol 21:1661–1672

    Article  CAS  PubMed  Google Scholar 

  • Yan X, Chen S (2007) Regulation of plant glucosinolate metabolism. Planta 226:1343–1352

    Article  CAS  PubMed  Google Scholar 

  • Zeng C, Han Y, Shi L et al (2008) Genetic analysis of the physiological responses to low boron stress in Arabidopsis thaliana. Plant Cell Environ 31:112–122

    CAS  PubMed  Google Scholar 

  • Zhai J, Liu J, Liu B et al (2008) Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet 4:e1000056

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Byrne PF, Pilon-Smits EAH (2006a) Mapping quantitative trait loci associated with selenate tolerance in Arabidopsis thaliana. New Phytol 170:33–42

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ober JA, Kliebenstein DJ (2006) The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524–1536

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shiu S, Cal A et al (2008) Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 4:e1000032

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Yazaki J, Sundaresan A et al (2006b) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S et al (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Gehring M, Tran RK et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen H, Kliebenstein DJ, West MAL et al (2007) Natural variation among Arabidopsis thaliana accessions for transcriptome response to exogenous salicylic acid. Plant Cell 19:2099–2110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank colleagues and coworkers who provided unpublished information and Dr Jane Parker for updating us on the R genes. We apologize to those authors whose work could not be discussed due to space limitations. Research in our laboratories was supported by the ERA-PG program grants 034B ARABRAS to MK and MR and GEN2006-27786-E/VEG to CAB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Koornneef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koornneef, M., Reymond, M., Alonso-Blanco, C. (2011). Natural Variation in Arabidopsis thaliana . In: Schmidt, R., Bancroft, I. (eds) Genetics and Genomics of the Brassicaceae. Plant Genetics and Genomics: Crops and Models, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7118-0_4

Download citation

Publish with us

Policies and ethics