Skip to main content

From feast to famine; adaptation to nutrient availability in yeast

  • Chapter
  • First Online:
Yeast Stress Responses

Part of the book series: Topics in Current Genetics ((TCG,volume 1))

Abstract

The study of signal transduction in microorganisms has become a major research topic in molecular and cellular biology. In this era, thorough knowledge of microbial physiology is no longer the sole and exclusive interest of academic research. It is now being acknowledged as a major importance for food, feed, and nutritional R&D. Detailed investigation of the mechanisms by which cells respond to environmental stimuli is contributing largely to both our fundamental and applied understanding of microorganisms.

Baker’s yeast Saccharomyces cerevisiae has proven to be an important model organism in this respect. This budding yeast is widely used in food and feed applications and for synthesis of various useful compounds. This yeast has the remarkable capacity to thrive under a large variety of growth conditions, and can adequately adapt to rapid and profound changes in its environment. Hence, this yeast has become a fruitful model for the study of the coupling between nutrient-induced signal transduction and growth control.

In this chapter, we have tried to give a broad overview of the current knowledge and insight into the mechanistic of nutrient-induced signal transduction in Saccharomyces cerevisiae. Since over the last ten years or so, this field of research has expanded significantly, the overview is necessarily multi-focused. After a general introduction on implications of yeast growth control, the Chapter is then divided into two major parts. The first part describes our current understanding of nutrient-specific response mechanisms, covering aspects of carbon, nitrogen, phosphor and sulphur signalling, and responses to both depletion and replenishment of these basic nutritional compounds. In the second part, we describe common aspects of nutrient-induced signal transduction in yeast. Overlap and crosstalk mechanisms in signalling, signal integration, and general physiological responses enable the yeast cell to efficiently react to both large and subtle variations in its environment. Balancing and fine-tuning of physiological responses prove to be of major importance to the organism.

Detailed insight into these signal transduction cascades and networks has set the stage for future investigations where the focus will not be merely on single-file mechanisms, but more and more toward interrelations between complex signal transduction networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aerne BL, Johnson AL, Toyn JH, Johnston LH (1998) Swi5 controls a novel wave of cyclin synthesis in late mitosis. Mol Biol Cell 9:945–956

    PubMed  CAS  Google Scholar 

  • Albrecht G, Mösch H-U, Hoffmann B, Reusser U, Braus GH (1998) Monitoring the Gcn4 protein-mediated response in yeast Saccharomyces cerevisiae. J Biol Chem 273:12696–12702

    Article  PubMed  CAS  Google Scholar 

  • Alms GR, Sanz P, Carlson M, Haystead TAJ (1999) Reg1p targets protein phosphatase 1 to dephosphorylate hexokinase II in Saccharomyces cerevisiae:characterizing the effects of a phosphatase subunit on the yeast proteome. EMBO J 18:4157–4168

    Article  PubMed  CAS  Google Scholar 

  • Alonso A, C. Pascual C, Herrera L, Gancedo JM, Gancedo C (1984) Metabolic imbalance in a Saccharomyces cerevisiae mutant unable to grow on fermentable hexoses. Eur J Biochem 138:407–411

    Article  PubMed  CAS  Google Scholar 

  • Ansari K, Martin S, Farkasovsky M, Ehbrecht IM, Kuntzel H (1999) Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J Biol Chem 274:30052–30058

    Article  PubMed  CAS  Google Scholar 

  • Arndt KT, Styles C, Fink GR (1987) Multiple global regulators control HIS4 transcription in yeast. Science 237:874–880

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Salvadore C, Chiang YC, Collart MA, Liu HY, Denis CL (1999) The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4 and NOT5. Mol Cell Biol 19:6642–6651

    PubMed  CAS  Google Scholar 

  • Baker HV (1986) Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol Cell Biol 6:3774–3784

    PubMed  CAS  Google Scholar 

  • Baker RE, Masison DC (1990) Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol Cell Biol 10:2458–2467

    PubMed  CAS  Google Scholar 

  • Barbaric S, Münsterkötter M, Goding C, Hörz W (1998) Cooperative Pho2-Pho4 interactions at the PHO5 promoter are critical for binding of Pho4 to UASp1 and for efficient transactivation by Pho4 at UASp2. Mol Cell Biol 18:2629–2639

    PubMed  CAS  Google Scholar 

  • Barbaric S, Münsterkötter M, Svaren J, Hörz W (1996) The homeodomain protein Pho2 and the basic-helix-loop-helix protein Pho4 bind DNA cooperatively at the yeast PHO5 promoter. Nucleic Acids Res 24:4479–4486

    Article  PubMed  CAS  Google Scholar 

  • Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN (1996) TOR controls translation initiation and early g1 progression in yeast. Mol Biol Cell 7:25–42

    PubMed  CAS  Google Scholar 

  • Bardwell L, Cook JG, Voora D, Baggott DM, Martinez AR, Thorner J (1998) Repression of the yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev 12:2887–2898

    PubMed  CAS  Google Scholar 

  • Baroni MD, Monti P, Alberghina L (1994) Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Nature 371:339–342

    Article  PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692

    Article  PubMed  CAS  Google Scholar 

  • Beck T, Schmidt A, Hall MN (1999) Starvation induces vacuolar targeting and degradation of the tryptophan permease in yeast. J Cell Biol 146:1227–1238

    Article  PubMed  CAS  Google Scholar 

  • Behlke J, Heidrich K, Naumann M, Muller EC, Otto A, Reuter R, Kriegel T (1998) Hexokinase 2 from Saccharomyces cerevisiae:Regulation of oligomeric structure by in vivo phosphorylation at serine-15. Biochemistry 37:11989–11995

    Article  PubMed  CAS  Google Scholar 

  • Bell W, Klaassen P, Ohnacker M, Boller T, Herweijer M, Schoppink P, van der Zee P, Wiemken A (1992) Characterization of the 56 kDa subunit of the yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur J Biochem 209:951–959

    Article  PubMed  CAS  Google Scholar 

  • Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM (1998) Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem 273:33311–33319

    Article  PubMed  CAS  Google Scholar 

  • Berben G, Legrain M, Gilliquet V, Hilger F (1990) The yeast regulatory gene PHO4 encodes a helix-loop-helix motif. Yeast 6:451–454

    Article  PubMed  CAS  Google Scholar 

  • Bernard F, André B (2001a) Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Mol Microbiol 41:489–502

    Article  PubMed  CAS  Google Scholar 

  • Bernard F, André B (2001b) Ubiquitin and the SCFGrr1 ubiquitin ligase complex are involved in the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. FEBS Lett 496:81–85

    Article  PubMed  CAS  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF (2000) Tripartite regulartion of Gln3p by TOR, Ure2p and phosphatases. J Biol Chem 275:35727–35733

    Article  PubMed  CAS  Google Scholar 

  • Beullens M, Mbonyi K, Geerts L, Gladines D, Detremerie K, Jans AWH, Thevelein JM (1988) Studies on the mechanism of the glucose-induced cAMP signal in glycolysis and glucose repression mutants of the yeast Saccharomyces cerevisiae. Eur J Biochem 172:227–231

    Article  PubMed  CAS  Google Scholar 

  • Blacketer MJ, Koehler CM, Coats SG, Meyers AM, Madaule P (1993) Regulation of dimorphism in Saccharomyces cerevisiae:involvement of the novel protein kinase homolog Elm1p and protein phospatase 2A. Mol Cell Biol 13:5567–5581

    PubMed  CAS  Google Scholar 

  • Blacketer MJ, Madaule P, Meyers AM (1994) The Saccharomyces cerevisiae mutation elm4-1 facilitates pseudohyphal differentiation and interacts with a deficiency in phosphoribosylpyrophosphate synthase activity to cause constitutive pseudohyphal growth. Mol Cell Biol 14:4671–4681

    PubMed  CAS  Google Scholar 

  • Blacketer MJ, Madaule P, Meyers AM (1995a) Mutational analysis of morphologic differentiation in Saccharomyces cerevisiae. Genetics 140:1259–1275

    PubMed  CAS  Google Scholar 

  • Blacketer MJ, Madaule P, Myers AM (1995b) Mutational analysis of morphologic differentiation in saccharomyces cerevisiae. Genetics 140:1259–1275

    PubMed  CAS  Google Scholar 

  • Blom J, Teixeira de Mattos MJ, Grivell LA (2000) Redirection of the respiro-fermentative flux distribution in Saccharomyces cerevisiae by overexpression of the transcription factor Hap4. Appl Environ Microbiol 66:1970–1973

    Article  PubMed  CAS  Google Scholar 

  • Boles E, Heinisch J, Zimmermann FK (1993) Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae. Yeast 9:761–770

    Article  PubMed  CAS  Google Scholar 

  • Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111

    Article  PubMed  CAS  Google Scholar 

  • Boy-Marcotte E, Perrot M, Bussereau F, Boucherie H, Jacquet M (1998) Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180:1044–1052

    PubMed  CAS  Google Scholar 

  • Boy-Marcotte E, Tadi D, Perrot M, Boucherie H, Jacquet M (1996) High cAMP levels antagonize the reprogramming of gene expression that occurs at the diauxic shift in Saccharomyces cerevisiae. Microbiol 142:459–467

    CAS  Google Scholar 

  • Bram RJ, Kornberg RD (1987) Isolation of an S. cerevisiae centromere DNA-binding protein, its human homolog and its possible role as a transcription factor. Mol Cell Biol 7:403

    PubMed  CAS  Google Scholar 

  • Braus G, Mösch H-U, Vogel K, Hütter R (1989) Interpathway regulation of the TRP4 gene of yeast. EMBO J 8:939–945

    PubMed  CAS  Google Scholar 

  • Brazas RM, Bhoite LT, Murphy MD, Yu YX, Chen YY, Neklason DW, Stillman DJ (1995) Determining the requirements for cooperative DNA binding by Swi5p and Pho2p (Grf10p/Bas2p) at the HO promoter. J Biol Chem 270:29151–29161

    Article  PubMed  CAS  Google Scholar 

  • Broek D, Samiy N, Fasano O, Fujiyama A, Tamanoi F, Northup J, Wigler M (1985) Differential activation of yeast adenylate cyclase by wild type and mutant Ras proteins. Cell 41:763–769

    Article  PubMed  CAS  Google Scholar 

  • Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, Wigler M (1987) The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48:789–799

    Article  PubMed  CAS  Google Scholar 

  • Brondijk TH, van der Rest ME, Pluim D, de Vries Y, Stingl K, Poolman B, Konings WN (1998) Catabolite inactivation of wild type and mutatnt maltose transport proteins in Saccharomyces cerevisiae. J Biol Chem 19:15352–15357

    Article  Google Scholar 

  • Bürglin TR (1988) The yeast regulatory gene PHO2 encodes a homeo box. Cell 53:339

    Article  PubMed  Google Scholar 

  • Cafferkey R, McLaughlin MM, Young PR, Johnson RK, Livi GP (1994) Yeast TOR (DRR) proteins:amino acid sequence alignment and identification of structural motifs. Gene 14:133–136

    Article  Google Scholar 

  • Cafferkey R, Young PR, McLauglin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP (1993) Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol 13:6012–6023

    PubMed  CAS  Google Scholar 

  • Cai MJ, Davis RW (1990) Yeast Centromere-Binding Protein CBF1, of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437–446

    Article  PubMed  CAS  Google Scholar 

  • Cameron S, Levin L, Zoller M, Wigler M (1988) cAMP-independent control of sporulation, glycogen metabolism and heat shock resistance in S. cerevisiae. Cell 53:555–566

    Article  PubMed  CAS  Google Scholar 

  • Camonis JH, Kalékine M, Gondré B, Garreau H, Boy-Marcotte E, Jacquet M (1986) Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. EMBO J 5:375–380

    PubMed  CAS  Google Scholar 

  • Camus C, Boymarcotte E, Jacquet M (1994) Two subclasses of guanine exchange factor (GEF) domains revealed by comparison of activities of chimeric genes constructed from CDC25, SDC25 and BUD5 in Saccharomyces cerevisiae. Mol Gen Genet 245:167–176

    Article  PubMed  CAS  Google Scholar 

  • Cannon JF, Pringle JR, Fiechter A, Khalil M (1994) Characterization of glycogen-deficient GLC mutants of Saccharomyces cerevisiae. Genetics 136:485–503

    PubMed  CAS  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, Di Como CJ, Heitman J (1999) The Tor signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279

    Article  PubMed  CAS  Google Scholar 

  • Carlson M (1999) Glucose repression in yeast. Curr Opin Microbiol 2:202–207

    Article  PubMed  CAS  Google Scholar 

  • Carrillo D, Vicentesoler J, Fernandez J, Soto T, Cansado J, Gacto M (1995) Activation of cytoplasmic trehalase by cyclic-AMP-dependent and cyclic-AMP-independent signalling pathways in the yeast Candida utilis. Microbiol 141:679–686

    CAS  Google Scholar 

  • Celenza JL, Carlson M (1984) Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in S.cerevisiae. Mol Cell Biol 4:49–53

    PubMed  CAS  Google Scholar 

  • Celenza JL, Carlson M (1986) A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.

    Article  PubMed  CAS  Google Scholar 

  • Celenza JL, Carlson M (1989) Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and evidence for functional interaction with SNF4 protein. Mol Cell Biol 9:5034–5044

    PubMed  CAS  Google Scholar 

  • Celenza JL, Marshall-Carlson L, Carlson M (1988) The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. Proc Natl Acad Sci USA 85:2130–2134

    Article  PubMed  CAS  Google Scholar 

  • Cereghino GP, Atencio DP, Saghbini M, Beiner J, Scheffler IE (1995) Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae:Sequence elements in the 5′ untranslated region of the Ip mRNA play a dominant role. Mol Biol Cell 6:1125–1143

    PubMed  CAS  Google Scholar 

  • Cereghino GP, Scheffler IE (1996) Genetic analysis of glucose regulation in Saccharomyces cerevisiae:control of transcription versus mRNA turnover. EMBO J 15:363–374.

    PubMed  CAS  Google Scholar 

  • Chambers A, Packham EA, Graham IR (1995) Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr Genet 29:1–9

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Huang D, Roach PJ (1997) The PIG genes:PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2. Yeast 13:1–8

    Article  PubMed  CAS  Google Scholar 

  • Cheng C, Mu J, Farkas I, Huang D, Goebl MG, Roach PJ (1995) Requirement of self-glucosylating intiator proteins Glg1p and Glg2p for glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 15:6632–6640

    PubMed  CAS  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterisation of two high affinity sulphate transporters in Saccharomyces cerevisiae. Genetics 145:627–635

    PubMed  CAS  Google Scholar 

  • Chiang H-L, Schekman R (1991) Regulated import and degradation of a cytosolic protein in the yeast vacuole. Nature 350:313–318

    Article  PubMed  CAS  Google Scholar 

  • Chiang H-L, Schekman R (1994) Site of catabolite inactivation. Nature 369:284.

    Article  Google Scholar 

  • Chiang H-L, Schekman R, Hamamoto S (1996) Selective uptake of cytosolic, peroxisomal and plasma membrane proteins by the yeast vacuole. J Biol Chem 271:9934–9941

    Article  PubMed  CAS  Google Scholar 

  • Clancy MJ, Smith LM, Magee PT (1982) Developmental regulation of a sporulation-specific enzyme activity in Saccharomyces cerevisiae. Mol Cell Biol 2:171–178

    PubMed  CAS  Google Scholar 

  • Clotet J, Posas F, Hu Z, Ronne H, Arino J (1995) Role of protein phosphatase 2A in the control of glycogen metabolism in yeast. Eur J Biochem 229:207–214

    Article  PubMed  CAS  Google Scholar 

  • Coffman JA, Rai R, Loprete DM, Cunningham T, Svetlov V, Cooper TG (1997) Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae. JBacteriol 179:3416–3429

    CAS  Google Scholar 

  • Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa M-F, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose-and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 17:3326–3341

    Article  PubMed  CAS  Google Scholar 

  • Colwill K, Field D, Moore L, Friesen J, Andrews B (1999) In vivo analysis of the domains of yeast Rvs167p suggests Rvs167p function is mediated through multiple protein interactions. Genetics 152:881–893

    PubMed  CAS  Google Scholar 

  • Cook JG, Bardwell L, Kron SJ, Thorner J (1996) Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10:2831–2848

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG. (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In Strathern, J.N., Jones, E.W. and Broach, J. (eds.), The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 39–99

    Google Scholar 

  • Cosentino GP, Schmelzle T, Haghighat A, Helliwell SB, Hall MN, Sonenberg N (2000) Eap1p, a novel eukaryotic translation initiation factor 4E-associated protein in Saccharomyces cerevisiae. Mol Cell Biol 20:4604–4613

    Article  PubMed  CAS  Google Scholar 

  • Cox KH, Rai M, Distler JR, Daugherty JA, Coffman JA, Cooper TG (2000) Saccharomyces cerevisiae GATA sequences funtion as TATA elements during nitrogen catabolite repression and when Gln3p is excluded from the nucleus by overproduction of Ure2p. J Biol Chem 275:17611–17618

    Article  PubMed  CAS  Google Scholar 

  • Crauwels M, Donaton MCV, Pernambuco MB, Winderickx J, de Winde JH, Thevelein JM (1997a) The Sch9 protein kinase in the yeast Saccharomyces cerevisiae controls cAPK activity and is required for nitrogen activation of the fermentable-growth-medium-induced (FGM) pathway. Microbiol 143:2627–2637

    Article  CAS  Google Scholar 

  • Crauwels M, Winderickx J, de Winde JH, Thevelein JM (1997b) Identification of genes with nutrient-controlled expression by PCR-mapping in the yeast Saccharomyces cerevisiae. Yeast 13:973–984

    Article  PubMed  CAS  Google Scholar 

  • Cunningham TS, Andhare R, Cooper TG (2000a) Nitrogen catabolite repression of DAL80 expression depends on the relative levels of Gat1p and Ure2p production in Saccharomyces cerevisiae. J Biol Chem 275:14408–14414

    Article  PubMed  CAS  Google Scholar 

  • Cunningham TS, Cooper TG (1991) Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression. Mol Cell Biol 11:6205–6215

    PubMed  CAS  Google Scholar 

  • Cunningham TS, Rai R, Cooper TG (2000b) The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. J Bacteriol 182:6584–6591

    Article  PubMed  CAS  Google Scholar 

  • Daignan-Fornier B, Fink GR (1992) Coregulation of purine and histidine biosynthesis by the transcriptional activators BAS1 and BAS2. Proc Natl Acad Sci USA 89:6746–6750

    Article  PubMed  CAS  Google Scholar 

  • Dang VD, Bohn C, Bolotinfukuhara M, Daignanfornier B (1996) The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178:1842–1849

    PubMed  CAS  Google Scholar 

  • Daugherty JR, Rai R, Elberry HM, Cooper TG (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3-Protein and DAL80-Protein and nitrogen catabolite repression in Saccharomyces-Cerevisiae. J Bacteriol 175:64–73

    PubMed  CAS  Google Scholar 

  • Davenport KD, Williams KE, Ullmann BD, Gustin MC (1999) Activation of the Saccharomyces cerevisiae Filamentation/invasion pathway by osmotic stress in high-osmolarity glycogen pathway mutants. Genetics 153:1091–1103

    PubMed  CAS  Google Scholar 

  • de Boer M, Bebelman JP, Goncalves PM, Maat J, Van Heerikhuizen H, Planta RJ (1998) Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol Microbiol 30:603–613

    Article  PubMed  Google Scholar 

  • de Boer M, Nielsen PS, Bebelman JP, Heerikhuizen H, Andersen HA, Planta RJ (2000) Stp1p, Stp2p and Abf1p are involved in regulation of expression of the amino acid transporter gene BAP3 of Saccharomyces cerevisiae. Nucleic Acids Res 28:974–981

    Article  PubMed  Google Scholar 

  • De Nobel JG, Klis FM, Priem J, Munnik T, van den Ende H (1990) The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae. Yeast 6:491–499

    Article  PubMed  Google Scholar 

  • De Virgilio C, Buerckert N, Bell W, Jeno P, Boller T, Wiemken A (1993) Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity. Eur J Biochem 212:315–323

    Article  PubMed  Google Scholar 

  • De Virgilio C, Buerckert N, Boller T, Wiemken A (1991) A method to study the rapid phosphorylation-related modulation of neutral trehalase activity by temperature shifts in yeast. FEBS Lett 291:355–358

    Article  PubMed  Google Scholar 

  • De Vries S, Marres CAM (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim Biophys Acta 895:205–239

    Google Scholar 

  • de Winde JH. (1992) Global regulation of mitochondrial biogenesis in the yeast Saccharomyces cerevisiae. University of Amsterdam

    Google Scholar 

  • de Winde JH, Crauwels M, Hohmann S, Thevelein JM, Winderickx J (1996) Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur J Biochem 241:633–643

    Article  PubMed  Google Scholar 

  • de Winde JH, Grivell LA (1992) Global regulation of mitochondrial biogenesis in yeast: ABF1 and CPF1 play opposite roles in regulating expression of the QCR8 gene, encoding subunit VIII of the mitochondrial ubiquinol cytochrome-c oxidoreductase. Mol Cell Biol 12:2872–2883

    PubMed  Google Scholar 

  • de Winde JH, Grivell LA (1993) Global regulation of mitochondrial biogenesis in Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol 46:51–91

    PubMed  Google Scholar 

  • de Winde JH, Grivell LA (1995) Regulation of mitochondrial biogenesis in Saccharomyces cerevisiae:Intricate interplay between general and specific transcription factors in the promoter of the QCR8 gene. Eur J Biochem 233:200–208

    Article  PubMed  Google Scholar 

  • de Winde JH, Van Leeuwen HC, Grivell LA (1993) The multifunctional regulatory proteins ABF1 and CPF1 are involved in the formation of a nuclease-hypersensitive region in the promoter of the QCR8 gene. Yeast 9:847–857

    Article  PubMed  Google Scholar 

  • Deminoff SJ, Santangelo GM (2001) Rap1p requires Gcr1p and Gcr2p homodimers to activate ribosomal protein and glycolytic genes, respectively. Genetics 158:133–143

    PubMed  CAS  Google Scholar 

  • Dennis PB, Fumagalli S, Thomas G (2001a) Target of rapamycin (TOR):balancing the opposing forces of protein synthesis and degradation. Curr Opin Genet Dev 9:49–54

    Article  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G (2001b) Mammalian TOR:a homeostatic ATP sensor. Science 294:1102–1105

    Article  PubMed  CAS  Google Scholar 

  • Destruelle M, Holzer H, Klionsky DJ (1995) Isolation and characterization of a novel yeast gene, ATH1, that is required for vacuolar acid trehalase activity. Yeast 11:1015–1025

    Article  PubMed  CAS  Google Scholar 

  • DeVit MJ, Waddle JA, Johnston M (1997) Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell 8:1603–1618

    CAS  Google Scholar 

  • De Vries S, Marres CAM (1988) The mitochondrial respiratory chain of yeast structure and biosynthesis and the role in cellular metabolism. Biochim Biophys Acta 895:205–239

    Google Scholar 

  • Dickinson JR (1994) Irreversible formation of pseudohyphae by haploid Saccharomyces cerevisiae. FEMS Microbiol Lett 119:99–104

    Article  PubMed  CAS  Google Scholar 

  • Dickinson JR (1996) ‘Fusel’ alcohols induce hyphal-like extensions and pseudohyphal formation in yeasts. Microbiol 142:1391–1397

    CAS  Google Scholar 

  • Dicomo CJ, Arndt KT (1996) Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases. Gene Dev 10:1904–1916

    Article  CAS  Google Scholar 

  • Diderich JA, Schepper M, van Hoek P, Luttik MA, van Dijken JP, Pronk JT, Klaassen P, Boelens HF, de Mattos MJ, van Dam K, Kruckeberg AL (1999) Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae. JBiolChem 274:15350–15359

    CAS  Google Scholar 

  • Didion T, Regenberg B, Jorgensen MU, KiellandBrandt MC, Andersen HA (1998) The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27:643–650

    Article  PubMed  CAS  Google Scholar 

  • Diffley JFX (1992) Global regulators of chromosome function in yeast. Anton van Leeuwenhoek International Journal for General and Molecular Microbiology 61:25–33

    Google Scholar 

  • Doorenbosch T, Mager WH, Planta RJ (1992) Multifunctional DNA-binding proteins in yeast. Gene Exp 2:193–201

    CAS  Google Scholar 

  • Dowell SJ, Tsang JSH, Mellor J (1992) The centromere and promoter factor-1 of yeast contains a dimerisation domain located carboxy-terminal to the bHLH domain. Anal Biochem 20:4229–4236

    CAS  Google Scholar 

  • Draper MP, Salvadore C, Denis CL (1995) Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex. Mol Cell Biol 15:3487–3495

    PubMed  CAS  Google Scholar 

  • Drebot MA, Barnes CA, Singer RA, Johnston GC (1990) Genetic assessment of stationary phase for cells of the yeast Saccharomyces cerevisiae. J Bacteriol 172:3584–3589

    PubMed  CAS  Google Scholar 

  • D’Souza CA, Heitman J (2001) Conserved cAMP signaling cascades regulate fungal development and virulence. FEMS Microbiol Rev 25:349–364

    Article  PubMed  CAS  Google Scholar 

  • Durnez P, Pernambuco MB, Oris E, Arguelles JC, Mergelsberg H, Thevelein JM (1994) Activation of trehalase during growth induction by nitrogen sources in the yeast Saccharomyces cerevisiae depends on the free catalytic subunits of cAMP-dependent protein kinase, but not on functional ras proteins. Yeast 10:1049–1064

    Article  PubMed  CAS  Google Scholar 

  • Ellenberger TE, Brandl CJ, Struhl K, Harrison SC (1992) The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted alpha-Helices-crystal structure of the Protein-DNA complex. Cell 71:1223–1237

    Article  PubMed  CAS  Google Scholar 

  • Entian KD, Barnett JA (1992) Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem Sci 17:506–510

    Article  PubMed  CAS  Google Scholar 

  • Entian KD, Fröhlich KU (1984) Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J Bacteriol 158:29–35

    PubMed  CAS  Google Scholar 

  • Entian KD, Kopetzki E, Fræhlich KU, Mecke D (1984) Cloning of hexokinase isoenzyme PI from Saccharomyces cerevisiae. PI transformants confirm the unique role of hexokinase isoenzyme PII for glucose repression in yeasts. Mol Gen Genet 198:50–54

    Article  PubMed  CAS  Google Scholar 

  • Entian KD, Zimmermann FK (1982) New genes involved in carbon catabolite repression and derepression in the yeast Saccharomyces cerevisiae. J Bacteriol 151:1123–1128

    PubMed  CAS  Google Scholar 

  • Eraso P, Gancedo JM (1984) Catabolite repression in yeasts is not associated with low levels of cAMP. Eur J Biochem 141:195–198

    Article  PubMed  CAS  Google Scholar 

  • Erickson JR, Johnston M (1994) Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Genetics 136:1271–1278

    PubMed  CAS  Google Scholar 

  • Espinoza FH, Ogas J, Herskowitz I, Morgan DO (1994) Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85. Science 266:1388–1391

    Article  PubMed  CAS  Google Scholar 

  • Estruch F, Carlson M (1990) Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the Snf1 protein kinase. Nucl Acids Res 18:6959–6964

    Article  PubMed  CAS  Google Scholar 

  • Estruch F, Carlson M (1993) 2 homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol Cell Biol 13:3872–3881

    PubMed  CAS  Google Scholar 

  • Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD (2001) Regulation of longevity and stress resistance by Sch9 in yeast. Science 292:288–290

    Article  PubMed  CAS  Google Scholar 

  • Farkas I, Hardy TA, De Paoli-Roach AA, Roach PJ (1990) Isolation of the GSY1 gene encoding yeast glycogen synthase and evidence for the existence of a second gene. J Biol Chem 265:20879–20886

    PubMed  CAS  Google Scholar 

  • Farkas I, Hardy TA, Goebl MG, Roach PJ (1991) Two glycogen synthase isoforms in Saccharomyces cerevisiae are coded by distinct genes that are differentially controlled. J Biol Chem 26:15601–15607

    Google Scholar 

  • Federoff HJ, Eccleshall TR, Marmur J (1983) Carbon catabolite repression of maltase synthesis in Saccharomyces carlsbergensis. J Bacteriol 156:301–307

    PubMed  CAS  Google Scholar 

  • Feng Z, Wilson SE, Peng ZY, Schlender KK, Reiman EM, Trumbly RJ (1991) The yeast GLC7 gene required for glycogen accumulation encodes a type 1 protein phosphatase. J Biol Chem 266:23796–23801

    PubMed  CAS  Google Scholar 

  • Fernandez R, Herrero P, Fernandez E, Fernandez T, Lopez-Boado YS, Moreno F (1988) Autophosphorylation of yeast hexokinase PII. J Gen Microbiol 134:2493–2498

    PubMed  CAS  Google Scholar 

  • Fisher F, Goding CR (1992) Single amino-acid substitutions alter helix-loop-helix protein specificity for bases flanking the core CANNTG motif. EMBO J 11:4103–4109

    PubMed  CAS  Google Scholar 

  • Flick JS, Johnston M (1991) GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol Cell Biol 11:5101–5112

    PubMed  CAS  Google Scholar 

  • Flikweert MT, Kuyper M, van Maris AJ, Kotter P, van Dijken JP, Pronk JT (1999) Steady-state and transient-state analysis of growth and metabolite production in Saccharomyces cerevisiae strain with reduced pyruvate-decarboxylase activity. Biotechnol Bioeng 66:42–50

    Article  PubMed  CAS  Google Scholar 

  • Forsberg H, Gilstring F, Zargari A, Martinez P, Ljungdahl PO (2001a) The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol Microbiol 42:215–228

    Article  PubMed  CAS  Google Scholar 

  • Forsberg H, Hammer M, Andréasson C, Molinér A, Ljungdahl PO (2001b) Suppressors of ssy1 and ptr3 null mutants define novel Amino Acid Sensor Independent (ASI) genes in Saccharomyces cerevisiae. Genetics 158:973–988

    PubMed  CAS  Google Scholar 

  • Forsberg H, Ljundahl PO (2001) Sensors of extracellular nutrients in Saccharomyces cerevisiae. Curr Genet 40:91–109

    Article  PubMed  CAS  Google Scholar 

  • Forsberg H, Ljungdahl PO (2001) Genetic and biochemical analysis of the yeast plasma membrane Ssy1pPtr3p-Ssy5p sensor of extracellular amino acids. Mol Cell Biol 21:814–826

    Article  PubMed  CAS  Google Scholar 

  • Forsburg SL, Guarente L (1989a) Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae. Ann Rev Cell Biol 5:153–180

    PubMed  CAS  Google Scholar 

  • Forsburg SL, Guarente L (1989b) Identification and characterization of HAP4:a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3:1166–1178

    Article  PubMed  CAS  Google Scholar 

  • Fraenkel D. (1982) Carbohydrate Metabolism. In Arathern, J.N., Jones, E.W. and Broach, J.R. (eds.), The Molecular Biology of the Yeast Saccharomyces:Metabolism and Gene Expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 1–37

    Google Scholar 

  • Francisco L, Wang W, Chan CSM (1994) Type 1 protein phosphatase acts in opposition to Ipl1 protein kinase in regulating yeast chromosome segregation. Mol Cell Biol 14:4731–4740

    PubMed  CAS  Google Scholar 

  • François J, Neves MJ, Hers HG (1991) The control of trehalose biosynthesis in Saccharomyces cerevisiae- evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeast 7:575–587

    Article  PubMed  Google Scholar 

  • François J, Parrou JL (2001a) Reserve carbohydrate metabolism in the yeast Saccharomyces cerevisiae. Fems microbiology reviews 25:125–145

    PubMed  Google Scholar 

  • François J, Parrou JL (2001b) Reserve carbohydrate metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25:125–145

    Article  PubMed  Google Scholar 

  • François J, Villanueva ME, Hers HG (1988) The control of glycogen metabolism in yeast. 1. Interconversion in vivo of glycogen synthase and glycogen phosphorylase induced by glucose, a nitrogen source or uncouplers. Eur JBiochem 174:551–559

    Article  Google Scholar 

  • François JM, Eraso P, Gancedo C (1987) Changes in the concentration of cAMP, fructose-2,6-bisphosphate and related metabolites and enzymes in Saccharomyces cerevisiae during growth on glucose. Eur J Biochem 164:369–373

    Article  PubMed  Google Scholar 

  • François JM, Thompson-Jaeger S, Skroch JZ, U., Spevak Wea (1992) GAC1 may encode a regulatory subunit for protein phosphatase type 1 in Saccharomyces cerevisiae. EMBO J 11:87–96

    PubMed  Google Scholar 

  • Fujita A, Tonouchi A, Hiroko T, Ínose F, Nagashima T, Satoh R, Tanaka S (1999) Hsl7p, a negative regulator of ste20p protein kinase in the Saccharomyces cerevisiae filamentous growth-signaling pathway. Proc Natl Acad Sci USA 96:8522–8527

    Article  PubMed  CAS  Google Scholar 

  • Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999a) Divergent regulation of the evolutionary closely related promotors of the Saccharomyces cerevisiae STA2 and MUC1 genes. J Bacteriol 181:6497–6508

    PubMed  CAS  Google Scholar 

  • Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999b) Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2 regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31:103–116

    Article  PubMed  CAS  Google Scholar 

  • Gagiano M, Vandyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999c) Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31:103–116

    Article  PubMed  CAS  Google Scholar 

  • Gancedo C (1971) Inactivation of fructose-1,6-bisphosphatase by glucose in yeast. J Bacteriol 107:401–405

    PubMed  CAS  Google Scholar 

  • Gancedo JM (1992) Carbon catabolite repression in yeast. Eur J Biochem 206:297–313

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM (1998) Yeast carbon catabolite repression. Microbiol Mol Biol Rev 62:334–361

    PubMed  CAS  Google Scholar 

  • Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123

    Article  PubMed  CAS  Google Scholar 

  • Gancedo JM, Gancedo C (1979) Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae. Eur J Biochem 101:455–460

    Article  PubMed  CAS  Google Scholar 

  • Garret S, Broach J (1989) Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruption of a new kinase gene, YAK1, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev 3:1336–1348

    Article  Google Scholar 

  • Garret S, Menold MM, Broach JR (1991) The Saccharomycse cerevisiae YAK1 gene encodes a protein kinase that is induced by arrest early in the cell cycle. Mol Cell Biol 11:4045–4052

    Google Scholar 

  • Gavrias V, Andrianopoulos A, Gimeno CJ, Timberlake WE (1996) Saccharomyces cervisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19:1255–1263

    Article  PubMed  CAS  Google Scholar 

  • Geyskens I, Shanta KHMC, Donaton MCV, Bergsma JCT, Thevelein JM, Wera S. (2000) Expression of mammalian PKB partially complements deletion of the yeast protein kinase Sch9. IOS Press

    Google Scholar 

  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth:regulation by starvation and RAS. Cell 68:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Goldberg D, Segal M, Levitzki A (1994) Cdc25 is not the signal receiver for glucose induced cAMP response in S. cerevisiae. FEBS Lett 356:249–254

    Article  PubMed  CAS  Google Scholar 

  • Gonçalves P, Planta RJ (1998) Starting uo yeast glycolysis. Trends Microbiol 6:314–319

    Article  PubMed  Google Scholar 

  • Gonzalez MI, Stucka R, Blazquez MA, Feldmann H, Gancedo C (1992) Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. Yeast 8:183–192

    Article  PubMed  CAS  Google Scholar 

  • Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C (1998) Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 10:1516–1531

    Google Scholar 

  • Gorner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis S, Schuller C (1998) Nuclear localization of the C2H2 zinc finger protein is regulated by stress and protein kinase A activity. Genes Dev 12:586–597

    PubMed  CAS  Google Scholar 

  • Griffioen G, Anghileri P, Imre E, Baroni MD, Ruis H (2000) Nutritional control of nucleo-cytoplasmic localization of cAMP-dependent protein kinase catalytic and regulatory subunits in Saccharomyces cerevisiae. J Biol Chem 275:1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Griffioen G, Branduardi P, Ballarini A, Anghieri P, Norbeck J, Baroni MD, Ruis H (2001) Nucleocytoplasmic distribution of budding yeast protein kinase A regulatory subunit BCY1 requires Zds1 and is regulated by Yak 1-dependent phosphorylation of its targetting domain. Mol Cell Biol 21:511–523

    Article  PubMed  CAS  Google Scholar 

  • Griffioen G, Laan RJ, Mager WH, Planta RJ (1996) Ribosomal protein gene transcription in Saccharomyces cerevisiae shows a biphasic response to nutritional changes. Microbiol 142:2279–2287

    CAS  Google Scholar 

  • Griffioen G, Mager WH, Planta RJ (1994) Nutritional upshift response of ribosomal protein gene transcription in Saccharomyces cerevisiae. FEMS Microbiol Lett 123:137–144

    Article  PubMed  CAS  Google Scholar 

  • Grivell LA (1995) Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit Rev Biochem Molec Biol 30:121–164

    CAS  Google Scholar 

  • Grundmann O, Mösch H-U, Braus GH (2001) Repression of GCN4 mRNA translation by nitrogen starvation in Saccharomyces cerevisiae. J Biol Chem 276:25661–25671

    Article  PubMed  CAS  Google Scholar 

  • Hansen J, Johannesen PF (2000) Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae. Mol Gen Genet 263:535–542

    Article  PubMed  CAS  Google Scholar 

  • Hardie DG, Carling D (1997) The AMP-activated protein kinase-fuel gauge of the mammalian cell? Eur J Biochem 246:259–273

    Article  PubMed  CAS  Google Scholar 

  • Hardwick JS, Kuruvilla FG, Tong JK, Shamij AF, Schreiber SL (1999) Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by Tor proteins. Proc Natl Acad Sci USA 96:14866–14870

    Article  PubMed  CAS  Google Scholar 

  • Hardy TA, Huang DQ, Roach PJ (1994) Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J Biol Chem 269:27907–27913

    PubMed  CAS  Google Scholar 

  • Hardy TA, Roach PJ (1993) Control of yeast glycogen synthase-2 by COOH-terminal phosphorylation. J Biol Chem 268:23799–23805

    PubMed  CAS  Google Scholar 

  • Hartley AD, Ward MP, Garrett S (1994) The yak1 protein kinase of Saccharomyces cerevisiae moderates thermotolerance and inhibits growth by an Sch9 protein kinase-independent mechanism. Genetics 136:465–474

    PubMed  CAS  Google Scholar 

  • Hata H, Mitsui H, Lui H, Bai Y, Denis CL, Shimizu Y, Sakai A (1998) Dhh1, a putative RNA helicase, associates with the general transcription factors Pop2 and Ccr4 from Saccharomyces cerevisiae. Genetics 148:571–579

    PubMed  CAS  Google Scholar 

  • Healy AM, Zolnierowiez S, Stapleton AE, Goebl M, DePaoli-Roach AA, Pringle JR (1991) CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis:identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol Cell Biol 11:5767–5780

    PubMed  CAS  Google Scholar 

  • Hedges D, Proft M, Entian KD (1995) CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol Cell Biol 15:1915–1922

    PubMed  CAS  Google Scholar 

  • Heidrich K, Otto A, Behlke J, Rush J, Wenzel K-W, Kriegel T (1997) Autophosphorylation-inactivation site of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 36:1960–1964

    Article  PubMed  CAS  Google Scholar 

  • Heitman J, Movva NR, Hall MN (1991a) Targets for cell cycle arrest by the immunosup-pressant rapamycin in yeast. Science 253:905–909

    Article  PubMed  CAS  Google Scholar 

  • Heitman J, Movva NR, Hiestand PC, Hall MN (1991b) FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:1948–1952

    Article  PubMed  CAS  Google Scholar 

  • Helliwell SB, Howald I, Barbet N, Hall MN (1998a) TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148:99–112

    PubMed  CAS  Google Scholar 

  • Helliwell SB, Schmidt A, Ohya Y, Hall MN (1998b) The Rho1 effector Pkc1, but not Bni1, mediates signalling from Tor2 to the actin skeleton. Curr Biol 8:1211–1214

    Article  PubMed  CAS  Google Scholar 

  • Helliwell SB, Wagner P, Kunz J, Deuterreinhard M, Henriquez R, Hall MN (1994) Tor1 and tor2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast. Mol Biol Cell 5:105–118

    PubMed  CAS  Google Scholar 

  • Herrero P, Fernandez R, Moreno F (1989) The hexokinase isoenzyme PII of Saccharomyces cerevisiae is a protein kinase. J Gen Microbiol 135:1209–1216

    PubMed  CAS  Google Scholar 

  • Herrero P, Martinez Campa C, Moreno F (1998) The hexokinase 2 protein participates in regulatory DNA-protein complexes necessary for glucose repression of the SUC2 gene in Saccharomyces cerevisiae. FEBS Lett 434:71–76

    Article  PubMed  CAS  Google Scholar 

  • Hiesinger M, Roth S, Meissner E, Schuller HJ (2001) Contribution of Cat8 and Sip4 to the transcriptional activation of yeast gluconeogenic genes by carbon-source responsive elements. Curr Genet 39:68–76

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch AG (1988) Mechanisms of gene regulation in the general control of aminoacid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52:248–273

    PubMed  CAS  Google Scholar 

  • Hirimburegama K, Durnez P, Keleman J, Oris E, Vergauwen R, Mergelsberg H, Thevelein JM (1992) Nutrient-induced activation of trehalase in nutrient-starved cells of the yeast Saccharomyces cerevisiae:cAMP is not involved as second messenger. J Gen Microbiol 138:2035–2043

    PubMed  CAS  Google Scholar 

  • Hirst K, Fisher F, Mcandrew PC, Goding CR (1994) The transcription factor, the Cdk, its cyclin and their regulator:Directing the transcriptional response to a nutritional signal. EMBO J 13:5410–5420

    PubMed  CAS  Google Scholar 

  • Hoffman CS, Winston F (1991) Glucose repression of transcription of the Schizosaccharo-mycespombe fbp1 gene occurs by a cAMP signaling pathway. Genes Dev 5:561–571

    Article  PubMed  CAS  Google Scholar 

  • Hoffman M, Chiang HL (1996) Isolation of degradation-deficient mutants defective in the targeting of fructose-1,6-bisphosphatase into the vacuole for degradation in Saccharomyces cerevisiae. Genetics 143:1555–1566

    PubMed  CAS  Google Scholar 

  • Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35–73

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Van Dijck P, Luyten K, Thevelein JM (1994) The byp1-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi copy suppressor tRNAGLN (CAG):Ggs1/Tps1 protein levels restraining growth on fermentable sugars and trehalose accumulation. Curr Genet 26:295–301

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S, Winderickx J, de Winde JH, Valckx D, Cobbaert P, Luyten K, de Meirsman C, Ramos J, Thevelein JM (1999) Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Microbiol 145:703–714

    Article  CAS  Google Scholar 

  • Holzer H (1976) Catabolite inactivation in yeast. Trend Biochem Sci 1:178

    CAS  Google Scholar 

  • Holzer H. (1984) Mechanism and function of reversible phosphorylation of fructose-1,6-bisphosphatase in yeast. In Cohen, P. (ed.) Molecular aspects of cellular regulation. Elsevier, Amsterdam, Vol. 3, pp. 143–154

    Google Scholar 

  • Hope IA, Struhl K (1986) Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894

    Article  PubMed  CAS  Google Scholar 

  • Hu YM, Cooper TG, Kohlhaw GB (1995a) The Saccharomyces cerevisiae Leu3 protein activates expression of GDH1, a key gene in nitrogen assimilation. Mol Cell Biol 15:52–57

    PubMed  CAS  Google Scholar 

  • Hu Z, Nehlin JO, Ronne H, Michels CA (1995b) MIG1-dependent and MIG1-independent glucose regulation of MAL gene expression in Saccharomyces cerevisiae. Curr Genet 28:258–266

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Farkas I, Roach PJ (1996a) Pho85p, a cyclin-dependent protein kinase, and the Snf1p protein kinase act antagonistically to control glycogen accumulation in Saccharomyces cerevisiae. Mol Cell Biol 16:4357–4365

    PubMed  CAS  Google Scholar 

  • Huang D, Moffat J, Wilson WA, Moore L, Cheng C, Roach PJ, Andrews B (1998) Cyclin partners determine Pho85 protein kinase substrate spezcificity in vitro and in vivo:control of glycogen biosynthesis by Pcl8 and Pcl10. Mol Cell Biol 18:3289–3299

    PubMed  CAS  Google Scholar 

  • Huang DQ, Chun KT, Goebl MG, Roach PJ (1996b) Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Genetics 143:119–127

    PubMed  CAS  Google Scholar 

  • Hubbard EJA, Yang X, Carlson M (1992) Relationship of the cAMP-dependent protein kinase pathway to the SNF1 protein kinase and invertase expression in Saccharomyces cerevisiae. Genetics 130:71–80

    PubMed  CAS  Google Scholar 

  • Hudak Slekar K, Kosman DJ, Cizewski Culotta V (1996) The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J Biol Chem 271:28831–28836

    Article  Google Scholar 

  • Hunter T (1995) Protein kinases and phosphatases:The yin and yang of protein phosphorylation and signaling. Cell 80:225–236

    Article  PubMed  CAS  Google Scholar 

  • Hwang PK, Tugendreich S, Fletterick RJ (1989) Molecular analysis of GPH1, the gene encoding glycogen phosphorylase in Saccharomyces cerevisiae. Mol Cell Biol 9:1659–1666

    PubMed  CAS  Google Scholar 

  • Iraqui I, Vissers S, Bernard F, DeCraene JO, Boles E, Urrestarazu A, Andre B (1999) Amino acid signaling in Saccharomyces cerevisiae:a permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19:989–1001

    PubMed  CAS  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98:4569–4574

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1996) Longevity, genes, and aging. Science 273:54–59

    Article  PubMed  CAS  Google Scholar 

  • Jazwinski SM (1999) Molecular mechanisms of yeast longevity. Trends Microbiol 7:247–252

    Article  PubMed  CAS  Google Scholar 

  • Jeffery DA, Springer M, King DS, O’Shea EK (2001) Multi-site phosphorylation of Pho4 by the cyclin-CDK Pho80-Pho85 is semi-processive with site preference. J Mol Biol 306:997–1010

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Medintz I, Zhang B, Michels CA (2000) Metabolic signals trigger glucose-induced inactivation of maltose permease in Saccharomyces. J Bacteriol 182:647–654

    Article  PubMed  CAS  Google Scholar 

  • Jiang R, Carlson M (1996) Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev 10:3105–3115

    Article  PubMed  CAS  Google Scholar 

  • Jiang R, Carlson M (1997) The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol Cell Biol 17:2099–2106

    PubMed  CAS  Google Scholar 

  • Jiang Y, Broach JR (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 18:2782–2792

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Davis C, Broach JR (1998) Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway. EMBO J 17:6942–6951

    Article  PubMed  CAS  Google Scholar 

  • Jin M, Fujita M, Culley BM, Apolinario E, Yamamoto M, Maundrell K, Hoffman CS (1995) sck1, a high copy number suppressor of defects in the cAMP-dependent protein kinase pathway in fission yeast, encodes a protein homologous to the Saccharomyces cerevisiae SCH9 kinase. Genetics 140:457–467

    PubMed  CAS  Google Scholar 

  • Johnston M (1999) Feasting, fasting and fermenting-glucose sensing in yeast and other cells. Trends Genet 15:29–33

    Article  PubMed  CAS  Google Scholar 

  • Johnston M, Carlson M. (1992a) Regulation of carbon and phosphate utilization. In Jones, E.W., Pringle, J.R. and Broach, J.R. (eds.), The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Vol. 2, pp. 193–281

    Google Scholar 

  • Johnston M, Carlson M. (1992b) Regulation of carbon and phosphate utilization. In Jones, E.W., Pringle, J.R. and Broach, J.R. (eds.), The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Vol. 2, pp. 193–281

    Google Scholar 

  • Johnston M, Flick JS, Pexton T (1994) Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Mol Cell Biol 14:3834–3841

    PubMed  CAS  Google Scholar 

  • Jones EW, Fink GR. (1982) Regulation of amino acid and nucleotide biosynthesis in yeast. In Strathern, J.N., Jones, E.W. and Broach, J.R. (eds.), The molecular biology of the yeast Saccharomyces; metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 191–299

    Google Scholar 

  • Jones ME (1980) Pyrimidine nucleotide biosynthesis in animals. Genes, enzymes and regulation of UMP biosynthesis. Ann Rev Biochem 49:253–279

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Vignais M-L, Broach JR (1991) The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to RAS. Mol Cell Biol 11:2641–2646

    PubMed  CAS  Google Scholar 

  • Jorgenson MU, Gjermansen C, Andersen HA, Kielland-Brandt MC (1997) STP1, a gene involved in pre-tRNA processing in yeast, is important for amino-acid uptake and transcription of the permease gene Bap2. Curr Genet 31:241–247

    Article  Google Scholar 

  • Kaffman A, Herskowitz I, Tjian R, O’Shea EK (1994) Phosphorylation of the transcription factor PHO4 by a cyclin-cdk complex, PHO80-PHO85. Science 263:1153–1156

    Article  PubMed  CAS  Google Scholar 

  • Kaffman A, Rank NM, O’Neill EM, Huang LS, O’Shea EK (1998a) The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396:482–486

    Article  PubMed  CAS  Google Scholar 

  • Kaffman A, Rank NM, O’Shea EK (1998b) Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev 12:2673–2683

    PubMed  CAS  Google Scholar 

  • Kaiser P, Flick K, Wittenberg C, Reed SI (2000) Regulation of transcription by ubiquitination without proteolysis:Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102:303–314

    Article  PubMed  CAS  Google Scholar 

  • Kataoka T, Broek D, Wigler M (1985) DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43:493–505

    Article  PubMed  CAS  Google Scholar 

  • Keith CT, Schreiber SL (1995) PIK-related kinases:DNA repair, recombination, and cell cycle checkpoints. Science 270:50–51

    Article  PubMed  CAS  Google Scholar 

  • Kelly BL, Wolfe KG, Roberts JM (1998) Identification of a substrate-targeting domain in cyclin E necessary for phosphorylation of the retinoblastoma protein. Proc Natl Acad Sci USA 95:2535–2540

    Article  PubMed  CAS  Google Scholar 

  • Kent NA, Tsang JSH, Crowther DJ, Mellor J (1994) Chromatin structure modulation in Saccharomyces cerevisiae by Centromere and Promoter Factor 1. Mol Cell Biol 14:5229–5241

    PubMed  CAS  Google Scholar 

  • Kishi T, Seno T, Yamao F (1998) Grr1 functions in the ubiquitin pathway in Saccharomyces cerevisiae through association with Skp1. Mol Gen Genet 257:143–148

    Article  PubMed  CAS  Google Scholar 

  • Klasson H, Fink GR, Ljungdahl PO (1999) Ssy1p and Ptr3p are plasma membrane components of a yeast system that senses extracellular amino acids. Mol Cell Biol 19:5405–5416

    PubMed  CAS  Google Scholar 

  • Klein CJL, Olsson L, Ronnow B, Mikkelsen JD, Nielsen J (1996) Alleviation of glucose repression of maltose metabolism by MIG1 disruption in Saccharomyces cerevisiae. Appl Environ Microbiol 62:4441–4449

    PubMed  CAS  Google Scholar 

  • Kobayashi O, Suda H, Ohtani T, Sone H (1996) Molecular cloning of the dominant flocculation gene FLO8 fram Saccharomyces cerevisiae. Mol Gen Genet 251:707–715

    PubMed  CAS  Google Scholar 

  • Komeili A, O’Shea EK (1999) Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977–980

    Article  PubMed  CAS  Google Scholar 

  • Komeili A, Wedaman KP, O’Shea EK, Powers T (2000) Mechanism of metabolic control. Target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors. J Cell Biol 151:863–878

    Article  PubMed  CAS  Google Scholar 

  • Kopp M, Muller H, Holzer H (1993) Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem 268:4766–4774

    PubMed  CAS  Google Scholar 

  • Kopp M, Nwaka S, Holzer H (1994) Corrected sequence of the yeast neutral trehalase-encoding gene (NTH1):biological implications. Gene 150:403–404

    Article  PubMed  CAS  Google Scholar 

  • Koser PL, Eng WK, Bossard MJ, McLaughlin MM, Cafferkey R, Sathe GM, Faucette L, Levy MA, Johnson RK, Bergsma DJ (1993) The tyrosine89 residue of yeast FKBP12 is required for rapamycin binding. Gene 129:159–165

    Article  PubMed  CAS  Google Scholar 

  • Kraakman L, Lemaire K, Ma P, Teunissen AWRH, Donaton MCV, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM (1999a) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP Pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012

    Article  PubMed  CAS  Google Scholar 

  • Kraakman LS, Winderickx J, Thevelein JM, de Winde JH (1999b) Structure-function analysis of yeast hexokinase:structural requirements for triggering cAMP signalling and catabolite repression. Biochem J 343:159–168

    Article  PubMed  CAS  Google Scholar 

  • Kriegel TM, Rush J, Vojtek AB, Clifton D, Fraenkel DG (1994) In vivo posphorylation site Of hexokinase 2 in Saccharomyces cerevisiae. Biochemistry 33:148–152

    Article  PubMed  CAS  Google Scholar 

  • Kron SJ (1997) Filamentous growth in budding yeast. Trends Microbiol. 5:450–451

    Article  PubMed  CAS  Google Scholar 

  • Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292

    Article  PubMed  CAS  Google Scholar 

  • Kubler E, Mosch HU, Rupp S, Lisanti MP (1997) Gpa2p, a G-protein alpha-subunit, regulates growth and pseudohyphal development in Saccharomyces cerevisiae via a cAMP-dependent mechanism. J Biol Chem 272:20321–20323

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Ota K, Sakaki Y, Ito T (2001) Budding yeast GCN1 binds the GI domain to activate The eIF2æ kinase GCN2. J Biol Chem 276:17591–17596

    Article  PubMed  CAS  Google Scholar 

  • Kubota H, Sakaki Y, Ito T (2000) GI domain-mediated association of the eukaryotic inita-Tion factor 2æ kinase GCN2 with its activator GCN1 is required for general amino acid control in budding yeast. J Biol Chem 275:20243–20246

    Article  PubMed  CAS  Google Scholar 

  • Kulkarni AA, Abul-Hamd A, Rai R, El Berry H, Cooper TG (2001) Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276:32136–32144

    Article  PubMed  CAS  Google Scholar 

  • Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN (1993) Target Of rapamycin in yeast, TOR2 is an essential phosphatidylinositol kinase homolog Required for G1 progression. Cell 73:585–596

    Article  PubMed  CAS  Google Scholar 

  • Kuras L, cherest H, Surdin-Kerjan Y, Thomas D (1996) A heteromeric complex containing The centromere binding factor 1 and two basic leucine zipper factors, Met4 and Met28, Mediates the transcripton activation of yeast sulfur metabolism. EMBO J 15:2519–2529

    PubMed  CAS  Google Scholar 

  • Kuruvilla FG, Shamji AF, Schreiber SL (2001) Carbon-and nitrogen-quality signaling to Translation are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci USA 98:7283–7288

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996a) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci USA 93:8419–8424

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996b) Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci USA USA 93:8419–8424

    Article  CAS  Google Scholar 

  • Leberer E, Wu C, Leeuw T, Fourest-Lieuvin A, Segall JW, Thomas DY (1997) Functional characterisation of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J 16:83–97

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Colwill K, Aneliunas V, Tennyson C, Moore L, Ho Y, Andrews B (1998) Interaction Of yeast Rvs167 and Pho85 cyclin-dependent kinase complexes may link the cell cycle To the actin cytoskeleton. Curr Biol 8:1310–1321

    Article  PubMed  CAS  Google Scholar 

  • Lemire JM, Willcocks T, Halvorson HO, Bostian KA (1985) Regulation of repressible acid Phosphatase gene transcription in Saccharomyces cerevisiae. Mol Cell Biol 5:2131–2141

    PubMed  CAS  Google Scholar 

  • Lenburg ME, O’Shea EK (1996) Signaling phosphate starvation. TIBS 21:383–387

    PubMed  CAS  Google Scholar 

  • Lesage P, Yang XL, Carlson M (1994) Analysis of the sip3 protein identified in a Two-Hybrid screen for interaction with the snf1 protein kinase. Nucleic Acids Res 22:597–603

    Article  PubMed  CAS  Google Scholar 

  • Lesage P, Yang XL, Carlson M (1996) Yeast Snf1 protein kinase interacts with Sip4, a C-6 Zinc cluster transcriptional activator: a new role for Snf1 in the glucose reponse. Mol Cell Biol 16:1921–1928

    PubMed  CAS  Google Scholar 

  • Li FN, Johnston M (1997) Grr1 of Saccharomyces cerevisiae is connected to the ubiquitin Proteolysis machinery through Skp1:coupling glucose sensing to gene expression and The cell cycle. EMBO J 16:5629–5638

    Article  PubMed  CAS  Google Scholar 

  • Liang H, Gaber RF (1996) A novel signal transduction pathway in Saccharomyces cere-Visiae defined by Snf3-regulated expression of HXT6. Mol Biol Cell 7:1953–1966

    PubMed  CAS  Google Scholar 

  • Lillie SH, Pringle JR (1980) Reserve carbohydrate metabolism in Saccharomyces cere- Visiae:responses to nutrient limitation. J Bacteriol 143:1384–1394

    PubMed  CAS  Google Scholar 

  • Liu C, Yang Z, Yang J, Xia Z, Ao S (2000) Regulation of the yeast transcriptional factor PHO2 activity by phosphorylation. J Biol Chem 275:31972–31978

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene requiredfor filamentous growth. Genetics 145:671–674

    Google Scholar 

  • Liu HP, Styles CA, Fink GR (1993) Elements of the yeast pheromone response pathway Required for filamentous growth of diploids. Science 262:1741–1744

    Article  PubMed  CAS  Google Scholar 

  • Liu HY, Badarinarayana V, Audino DC, Rappsilber J, Mann M, Denis CL (1998) The NOT Proteins are part of the CCR4 transcriptional complex and affect gene expression both Positively and negatively. EMBO J 17:1096–1106

    Article  PubMed  CAS  Google Scholar 

  • Lo W-S, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohy-Phae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:161–171

    PubMed  CAS  Google Scholar 

  • Lodi T, Donnini C, Ferrero I (1991) Catabolite repression by galactose in overexpressed GAL4 strains of Saccharomyces cerevisiae. J Gen Microbiol 137:1039–1044

    PubMed  CAS  Google Scholar 

  • Lohr D, Lopez J (1995) GAL4/GAL80-dependent nucleosome disruption/deposition on the Upstream regions of the yeast GAL1-10 and GAL80 genes. J Biol Chem 270:27671–27678

    Article  PubMed  CAS  Google Scholar 

  • Londesborough J, Vuorio OE (1993) Purification of trehalose synthase from baker’s yeast-its temperature-dependent activation by fructose-6-phosphate and inhibition by phosphate. Eur J Biochem 216:841–848

    Article  PubMed  CAS  Google Scholar 

  • Lopez MC, Baker HV (2000) Understanding the growth phenotype of the yeast gcr1 mutant in Terms of global genomic expression patterns. J Bacteriol 182:4920–4978

    Google Scholar 

  • Lopez-Boado YS, Herrero P, Fernandez T, Fernandez R, Moreno F (1988) Glucose-Stimulated phosphorylation of yeast isocitrate lyase in vivo. J Gen Microbiol 134:2499–2505

    PubMed  CAS  Google Scholar 

  • Lorenz MC, Heitman J (1997) Yeast pseudohyphal growth is regulated by GPA2, a G protein a homolog. EMBO J 16:7008–7018

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Heitman J (1998a) The MEP2 ammonium permease regulates pseudohyphal DIFFERENTIATION in Saccharomyces cerevisiae. EMBO J 17:1236–1247

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Heitman J (1998b) Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease Mutant strains. Genetics 150:1443–1457

    PubMed  CAS  Google Scholar 

  • Lorenz MC, Pan X, Harashima T, Cardenas ME, Xue Y, Hirsch JP, Heitman J (2000) The G protein-coupled receptor Gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Genetics 154:609–622

    PubMed  CAS  Google Scholar 

  • Lucero P, Herweijer M, Lagunas R (1993) Catabolite inactivation of the yeast maltose Transporter is due to proteolysis. FEBS Lett 333:165–168

    Article  PubMed  CAS  Google Scholar 

  • Ludin K, Jiang R, Carlson M (1998) Glucose-regulated interaction of a regulatory subunit Of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 95:6245–6250

    Article  PubMed  CAS  Google Scholar 

  • Lundin M, Nehlin JO, Ronne H (1994) Importance of a flanking at-Rich region in target Site recognition by the GC Box-Binding zinc finger protein mig1. Mol Cell Biol 14:1979–1985

    PubMed  CAS  Google Scholar 

  • Lutfiyya L, Iyer VR, DeRisi J, De Vit MJ, Brown PO, Johnston M (1998) Characterization Of three related glucose repressors and genes they regulate in Saccharomyces cere-Visiae. Genetics 150:1377–1391

    PubMed  CAS  Google Scholar 

  • Lutfiyya LL, Johnston M (1996) Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression. Mol Cell Biol 16:4790–4797

    PubMed  CAS  Google Scholar 

  • Ma H, Bloom LM, Walsh CT, Botstein D (1989) The residual enzymatic phosphorylation activity of hexokinase II mutants is correlated with glucose repression in Saccharomyces cerevisiae. Mol Cell Biol 9:5643–5649

    PubMed  CAS  Google Scholar 

  • Ma P, Wera S, Van Dijck P, Thevelein JM (1999) The PDE1 encoded low-affinity phos-Phodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signalling. Mol Biol Cell 10:91–104

    PubMed  CAS  Google Scholar 

  • Madhani HD, Fink GR (1998a) The control of filamentous differentiation and virulence in fungi. Trends Cell Biol 8:348–353

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Fink GR (1998b) The riddle of MAP kinase signaling specificty. Trends Genet 14:151–155

    Article  PubMed  CAS  Google Scholar 

  • Madhani HD, Galitski T, Lander ES, Fink GR (1999) Effectors of a deveopmental mitogen-activated protein kinase cascade revealed by expression signatures of signaling mutants. ProcNat Acad Sci USA 96:12530–12535

    Article  CAS  Google Scholar 

  • Madhani H-D, Fink GR (1997) Combinatorial control required for the specificity of yeast MAPK signaling. Science 275:1314–1317

    Article  PubMed  CAS  Google Scholar 

  • Magasanik B. (1992) Regulation of nitrogen utilization. In Jones, E.W., Pringle, J.R. and Broach, J. (eds.), The molecular and cellular biology of the yeast Saccharomyces:Gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 283–317

    Google Scholar 

  • Magbanua JPV, Ogawa N, Harashima S, Oshima Y (1997) The transcriptional activators of The PHO regulon, Pho4p and Pho2p, interact directly with each other and with components Of the basal transcription machinery in Saccharomyces cerevisiae. J. Biochem. (Tokyo) 121:1182–1189

    CAS  Google Scholar 

  • Mager WH, de Kruijff AJJ (1995) Stress-induced transcriptional activation. Microbiol Rev 59:506

    PubMed  CAS  Google Scholar 

  • Mager WH, Ferreira PM (1993) Stress response of yeast. Biochem J 290:1–13

    PubMed  CAS  Google Scholar 

  • Mager WH, Planta RJ (1991) Coordinate expression of ribosomal protein genes in yeast as a function of cellular growth rate. Mol Cell Biochem 104:181–187

    Article  PubMed  CAS  Google Scholar 

  • Maillet L, Tu C, Hong YK, Shuster EO, Collart MA (2000) The essential function of Not1 Lies within the Ccr4-Not complex. J Mol Biol 303:131–143

    Article  PubMed  CAS  Google Scholar 

  • Markwardt DD, Garrett JM, Eberhardy S, Heideman W (1995) Activation of the Ras/cyclic AMP pathway in the yeast Saccharomyces cerevisiae does not prevent G(1) arrest in Response to nitrogen starvation. J Bacteriol 177:6761–6765

    PubMed  CAS  Google Scholar 

  • Martinez P, Zvyagilskaya R, Allard P, Persson BL (1998) Physiological regulation of the derepressible phosphate transporter in Saccharomyces cerevisiae. J Bacteriol 180:2253–2256

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1984) Identification of the structural gene and nonsense alleles for adenylate cyclase in Saccharomyces cerevisiae. J Bacteriol 157:277–282

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1985) Genetic analysis of the role of cAMP in yeast. Yeast 1:15–24

    Article  PubMed  CAS  Google Scholar 

  • Mayordomo I, Sanz P (2001) Hexokinase PII: structural analysis and glucose signalling in The yeast Saccharomyces cerevisiae. Yeast 18:923–930

    Article  PubMed  CAS  Google Scholar 

  • Mbonyi K, Beullens M, Detremerie K, Geerts L, Thevelein JM (1988) Requirement of one functional RAS gene and inability of an oncogenic ras-variant to mediate the glucose-induced cAMP signal in the yeast Saccharomyces cerevisiae. Mol Cell Biol 8:3051–3057

    PubMed  CAS  Google Scholar 

  • Mbonyi K, Van Aelst L, Argüelles JC, Jans AWH, Thevelein JM (1990) Glucose-induced hyperaccumulation of cyclic AMP and defective glucose repression in yeast strains With reduced activity of cyclic AMP-dependent protein kinase. Mol Cell Biol 10:4518–4523

    PubMed  CAS  Google Scholar 

  • Mc Cartney RR, Schmidt MC (2001) Regulation of Snf1 kinase:Activation requires phos-Phorylation of threonine 210 by an upstream kinase as well as a distinct step mediated by the Snf4 subunit. J Biol Chem 276:36460–36466

    Article  Google Scholar 

  • Mc Nabb DS, Xing YY, Guarente L (1995) Cloning of yeast HAP5:A novel subunit of a heterotrimeric complex required for CCAAT binding. Gene Develop 9:47–58

    Article  Google Scholar 

  • McBride HJ, Brazas RM, Yu Y, Nasmyth K, Stillman DJ (1997) Long-range interactions at The HO promoter. Mol Cell Biol 17:2669–2678

    PubMed  CAS  Google Scholar 

  • McKenzie EA, Kent NA, Dowell SJ, Moreno F, Bird LE, Mellor J (1993) The centromere and promoter factor-1, CPF1, of Saccharomyces cerevisiae modulates gene activity Through a family of factors including SPT21, RPD1 (SIN3), RPD3 and CCR4. Mol Gen Genet 240:374–386

    PubMed  CAS  Google Scholar 

  • Measday V, Moore L, Ogas J, Tyers M, Andrews B (1994) The PCL2 (ORFD)-PHO85 cyclin-dependent kinase complex:a cell cycle regulator in yeast. Science 266:1391–1395

    Article  PubMed  CAS  Google Scholar 

  • Measday V, Moore L, Retnakaran R, Lee J, Donoviel M, Neiman AM, Andrews B (1997) A family of cyclin-like proteins that interact with the Pho85 cyclin-dependent kinase. Mol Cell Biol 17:1212–1223

    PubMed  CAS  Google Scholar 

  • Mellor J, Jiang W, Funk M, Ratjen J, Barnes CA, Hinz T, Hegemann JH, Philippsen P (1990) CPF1, a yeast protein which functions in centromeres and promoters. EMBO J 12:4017–4026

    Google Scholar 

  • Mellor J, Rathjen J, Jiang W, Dowell SJ (1991) DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. Nucleic Acids Res 19:2961–2969

    Article  PubMed  CAS  Google Scholar 

  • Mercado JJ, Smith R, Sagliocco FA, Brown AJP, Gancedo JM (1994) The levels of yeast gluconeogenic mRNAs respond to environmental factors. Eur J Biochem 224:473–481

    Article  PubMed  CAS  Google Scholar 

  • Moehle, Jones (1990) Consequences of growth media, gene copy number and regulatory Mutations on the expression of the PRB1 gene of Saccharomyces cerevisiae. Genetics 124:39–55

    PubMed  CAS  Google Scholar 

  • Moffat J, Huang D, Andrews B (2000) Functions of Pho85 cyclin-dependent kinases in budding yeast. Prog Cell Cycle Res 4:97–106

    PubMed  CAS  Google Scholar 

  • Morgan DO (1997) Cyclin-dependent kinases:engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261–291

    Article  PubMed  CAS  Google Scholar 

  • Moriya H, Shimizu Y, Omori A, Iwahita S, Katoh M, Sakai A (2001) Yak1p, a Dyrk family Kinase, translocates to the nucleus and phosphorylates yeast Pop2 in response to a glucose Signal. Genes Dev 15:1217–1228

    Article  PubMed  CAS  Google Scholar 

  • Mosch HU, Kubler E, Krappmann S, Fink GR, Braus GH (1999) Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10:1325–1335

    PubMed  CAS  Google Scholar 

  • Mosch HU, Roberts RL, Fink GR (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93:5352–5356

    Article  PubMed  CAS  Google Scholar 

  • Moskvina E, Schuller C, Maurer CTC, Mager WH, Ruis H (1998) A search in the genome Of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast 14:1041–1050

    Article  PubMed  CAS  Google Scholar 

  • Mountain HA, Byström HS, Tang Larsen J, Korch C (1991) Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cere-Visiae. Yeast 7:781–803

    Article  PubMed  CAS  Google Scholar 

  • Muller J, Boller T, Wiemken A (1995a) Trehalose and trehalase in plants: recent developments. Plant Sci 112:1–9

    Article  Google Scholar 

  • Muller S, Boles E, May M, Zimmermann FK (1995b) Different internal metabolites trigger The induction of glycolytic gene expression in Saccharomyces cerevisiae. J Bacteriol 177:4517–4519

    PubMed  CAS  Google Scholar 

  • Munder T, Küntzel H (1989) Glucose-induced cAMP signaling in Saccharomyces cerevisiae is mediated by the CDC25 protein. FEBS Lett 242:341–345

    Article  PubMed  CAS  Google Scholar 

  • Nakafuku M, Obara T, Kaibuchi K, Miyajima I, Miyajima A, Itoh H, Nakamura S, Arai K, Matsumoto K, Kaziro Y (1988) Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein:studies on its Structure and possible functions. Proc Natl Acad Sci USA 85:1374–1378

    Article  PubMed  CAS  Google Scholar 

  • Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368

    Article  PubMed  CAS  Google Scholar 

  • Needleman R (1991) Control of maltase synthesis. Mol Microbiol 5:2079–2084

    Article  PubMed  CAS  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1991) Control of yeast GAL genes by MIG1 repressor:a Transcriptional cascade in the glucose response. EMBO J 10:3373–3377

    PubMed  CAS  Google Scholar 

  • Nehlin JO, Carlberg M, Ronne H (1992) Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res 20:5271–5278

    Article  PubMed  CAS  Google Scholar 

  • Nehlin JO, Ronne H (1990) Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J 9:2891–2898

    PubMed  CAS  Google Scholar 

  • Neuman-Silberberg FS, Bhattacharya S, Broach JR (1995) Nutrient availability and the RAS/cyclic AMP pathway both induce expression of ribosomal protein genes in Saccharomyces cerevisiae but by different mechanisms. Mol Cell Biol 15:3187–3196

    PubMed  CAS  Google Scholar 

  • Neves MJ, Hohmann S, Bell W, Dumortier F, Luyten K, Ramos J, Cobbaert P, Dekoning W, Kaneva Z, Thevelein JM (1995) Control of glucose influx into glycolysis and plei-Otropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet 27:110–122

    Article  PubMed  CAS  Google Scholar 

  • Nikawa J, Cameron S, Toda T, Ferguson KW, Wigler M (1987) Rigorous feedback control Of cAMP levels in Saccharomyces cerevisiae. Genes Dev 1:931–937

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa M, Kawasumi M, Fujino M, Toh-e A (1998) Phosphorylation of sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its Prompt degradation. Mol Cell Biol 9:2393–2405

    CAS  Google Scholar 

  • Nocero M, Isshiki T, Yamamoto M, Hoffman CS (1994) Glucose repression offbp1 transcription in Schizosaccharomyces pombe is partially regulated by adenylate cyclase activation by a G protein alpha subunit encoded by gpa2 (git8). Genetics 138:39–45

    PubMed  CAS  Google Scholar 

  • Nogae I, Johnston M (1990) Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 96:161–169

    Article  PubMed  CAS  Google Scholar 

  • Nurse P (1992) Eukaryotic Cell-Cycle Control. Biochem Soc Trans 20:239–242

    PubMed  CAS  Google Scholar 

  • Nwaka S, Holzer H (1998) Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Progr Nucl Acid Res Molec Biol 58:197–237

    CAS  Google Scholar 

  • Nwaka S, Kopp M, Holzer H (1995a) Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Biol Chem 270:10193–10198

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Mechler B, Destruelle M, Holzer H (1995b) Phenotypic features of trehalase mutants in Saccharomyces cevevisiae. FEBS Lett 360:286–290

    Article  PubMed  CAS  Google Scholar 

  • Nwaka S, Mechler B, Holzer H (1996) Deletion of the ATH1 gene in Saccharomyces cerevisiae Prevents growth on trehalose. FEBS Lett 386:235–238

    Article  PubMed  CAS  Google Scholar 

  • O’Connell KF, Baker RE (1992) Possible cross-regulation of phosphate and sulphate metabolism in Saccharomyces cerevisiae. Genetics 132:63–73

    PubMed  CAS  Google Scholar 

  • Oechsner U, Bandlow W (1996) Interactions of the yeast centromere and promoter factor, Cpf1p, with the cytochrome c(1) upstream region and functional implications on regulated gene expression. Nucleic Acids Res 24:2395–2403

    Article  PubMed  CAS  Google Scholar 

  • Oehlen LJWM, Scholte ME, de Koning W, van Dam K (1993) Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity Which is independent of cAMP levels. J Gen Microbiol 139:2091–2100

    PubMed  CAS  Google Scholar 

  • Oehlen LJWM, van Doorn J, Scholte ME, Postma PW, van Dam K (1990) Changes in the incorporation of carbon derived from glucose into cellular pools during the cell cycle of Saccharomyces cerevisiae. J Gen Microbiol 136:413–418

    PubMed  CAS  Google Scholar 

  • Ogawa N, Noguchi K, Sawai H, Yamashita Y, Yompakdee C, Oshima Y (1995) Functional domains of Pho81p, an inhibitor of Pho85p protein kinase, in the transduction pathway Of Pi signals in Saccharomyces cerevisiae. Mol Cell Biol 15:997–1004

    PubMed  CAS  Google Scholar 

  • Olesen JT, Guarente L (1990) The HAP2 subunit of yeast CCAAT transcriptional activator contains adjacent domains for subunit association and DNA recognition:model for the HAP2/3/4 complex. Genes Dev 4:1714–1729

    Article  PubMed  CAS  Google Scholar 

  • Oliphant AR, Brandl CJ, Struhl K (1989) Defining the sequence specificity of DNA-binding proteins by selecting binding sites from random-sequence oligonucleo-Tides:analysis of yeast GCN4 protein. Mol Cell Biol 9:2944–2949

    PubMed  CAS  Google Scholar 

  • O’Neill EM, Kaffman A, Jolly ER, O’Shea EK (1996) Regulation of PHO4 nuclear localization by the PHO80-PHO85 cyclin-CDK complex. Science 271:209–212

    Article  PubMed  CAS  Google Scholar 

  • Ono BI, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszawski A (1999) Cys-Teine biosynthesis in Saccharomyces cerevisiae:a new outlook on the pathway and Regulation. Yeast 15:1365–1375

    Article  PubMed  CAS  Google Scholar 

  • Ordiz I, Herrero P, Rodicio R, Moreno F (1995) Glucose-induced inactivation of isocitrate Lyase in Saccharomyces cerevisiae is mediated by an internal decapeptide sequence. FEBS Lett 367:219–222

    Article  PubMed  CAS  Google Scholar 

  • O’Roucke SM, Herskowitz I (1998) The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. Genes Dev 12:2874–2886

    Google Scholar 

  • Oshima Y. (1982) Regulatory circuits for gene expression: the metabolism of galactose and Phosphate. In Strathern, J.N., Jones, E.W. and Broach, J.R. (eds.)+, The molecular biology Of the yeast Saccharomyces; metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 159–180

    Google Scholar 

  • Oshima Y (1997) The phosphatase system in Saccharomyces cerevisiae. Genes Genet Syst 72:323–334

    Article  PubMed  CAS  Google Scholar 

  • Östling J, Ronne H (1998) Negative control of the Mig1p repressor by Snf1p-dependent Phosphorylation in the absence of glucose. Eur J Biochem 252:162–168

    Article  PubMed  Google Scholar 

  • Özcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573

    Article  PubMed  Google Scholar 

  • Özcan S, Dover J, Rosenwald AG, Wlfl S, Johnston M (1996a) Two glucose transporters in S. cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA93:12428–12432

    Article  PubMed  Google Scholar 

  • Özcan S, Freidel K, Leuker A, Ciriacy M (1993) Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae. J Bacteriol 175:5520–5528

    PubMed  Google Scholar 

  • Özcan S, Johnston M (1995) Three different regulatory mechanisms enable yeast hexose Transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol 15:1564–1572

    PubMed  Google Scholar 

  • Özcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569

    PubMed  Google Scholar 

  • Özcan S, Leong T, Johnston M (1996b) Rgt1p of Saccharomyces cerevisiae, a key regulator Of glucose-induced genes, is both an activator and a repressor of transcription. Mol Cell Biol 16:6419–6426

    PubMed  Google Scholar 

  • Pan X, Harashima T, Heitman J (2000) Signal transduction cascades regulating pseudohy-Phal differentiation of Saccharomyces cerevisiae. Curr Opin Microbiol 3:567–572

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Heitman J (2000) Sok2 regulates yeast pseudohyphal differentiation via a transcrip-Tional factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20:8364–8372

    Article  PubMed  CAS  Google Scholar 

  • Pan XW, Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19:4874–4887

    PubMed  CAS  Google Scholar 

  • Parrou JL, Teste MA, François J (1997) Effects of various types of stress on metabolism of Reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiol 143:1891–1900

    CAS  Google Scholar 

  • Patton EE, Peyraud C, Rouillon A, Surdin-Kerjan Y, Tyers M, Thomas D (2000) SCF(met30)-mediated control of the transcriptional activator Met4 is required for the G(1)-S transition. EMBO J 19:1613–1624

    Article  PubMed  CAS  Google Scholar 

  • Patton EE, Willems AR, Sa D, Kuras L, Thomas D, Craig KL, Teyers M (1998) Cdc53 is a Scaffold protein for multiple Cdc34/Skp1/F-box protein complex that regulate cell division and methionine biosynthesis in yeast. Genes Dev 12:692–705

    PubMed  CAS  Google Scholar 

  • Pedruzzi I, Burckert N, Egger P, De Virgilio C (2000) Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription Through the zinc finger protein Gis1. EMBO J 19:2569–2579

    Article  PubMed  CAS  Google Scholar 

  • Pernambuco MB, Winderickx J, Crauwels M, Griffioen G, Mager WH, Thevelein JM (1996) Glucose-triggered signalling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on glucose and those grown an Non-fermentable carbon sources. Microbiol 142:1775–1782

    CAS  Google Scholar 

  • Peter M, Neiman AM, Park H-OvL, M., Herskowitz I (1996) Functional analysis of the interaction between the small GTP binding Cdc42 and the Ste20 protein kinase in yeast. EMBO J 15:7046–7059

    PubMed  CAS  Google Scholar 

  • Petit T, Diderich JA, Kruckeberg AL, Gançedo C, van Dam K (2000) Hexokinase regulates Kinetics of glucose transport and expression of genes encoding hexose transporters in Saccharomyces cerevisiae. J. Bacteriol 182:6815–6818

    Article  PubMed  CAS  Google Scholar 

  • Pinkham JL, Guarente L (1985) Cloning and molecular analysis of the HAP2 locus: a global Regulator of respiratory genes in S. cerevisiae. Mol Cell Biol 5:3410–3416

    PubMed  CAS  Google Scholar 

  • Pinkham JL, Olesen JT, Guarente LP (1987) Sequence and nuclear localisation of the S.cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol 7:578–585

    PubMed  CAS  Google Scholar 

  • Plesset J, Ludwig J, Cox B, McLaughlin C (1987) Effect of cell cycle position on thermo-Tolerance in Saccharomyces cerevisiae. J Bacteriol 169:779–784

    PubMed  CAS  Google Scholar 

  • Polakis ES, Bartley W (1965) Changes in the enzyme activities of Saccharomyces cere-Visiae during aerobic growth on different carbon sources. Biochem J 97:284

    PubMed  CAS  Google Scholar 

  • Posas F, Clotet J, Arino J (1991) Saccharomyces cerevisiae gene SIT4 is involved in the control of glycogen metabolism. FEBS Lett 279:341–345

    Article  PubMed  CAS  Google Scholar 

  • Powers T, Walter P (1999) Regulation of ribosome biogenesis by the rapamycin-SensitiveTOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell 10:987–1000

    Google Scholar 

  • Pringle JR, Hartwell LH. (1981) The Saccharomyces cerevisiae cell cycle. In Strathern, J.N., Jones, E.W. and Broach, J.R. (eds.), The molecular biology of the yeast Saccharomyces cerevisiae; Life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 97–142

    Google Scholar 

  • Rahner A, Scholer A, Martens E, Gollwitzer B, Schuller HJ (1996) Dual influence of the Yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation Of gluconeogenic genes by the regulatory gene CAT8. Nucleic Acids Res 24:2331–2337

    Article  PubMed  CAS  Google Scholar 

  • Ramaswarmy NT, Li L, Khalil M, Cannon JF (1998) Regulation of yeast glycogen metabolism and sporulation by Glc7 protein phosphatase. Genetics 149:57–72

    Google Scholar 

  • Randez-Gil F, Bojunga N, Proft M, Entian KD (1997) Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p. Mol Cell Biol 17:2502–2510

    PubMed  CAS  Google Scholar 

  • Randez-Gil F, Herrero P, Sanz P, Prieto JA, Moreno F (1998a) Hexokinase PII has a double cytosolic-nuclear localisation in Saccharomyces cerevisiae. FEBS Lett 425:475–478

    Article  PubMed  CAS  Google Scholar 

  • Randez-Gil F, Sanz P, Entian KD, Prieto JA (1998b) Carbon source-dependent phosphorylation Of hexokinase PII and its role in the glucose-signaling response in yeast. Mol Cell Biol 18:2940–2948

    PubMed  CAS  Google Scholar 

  • Raught B, A.C. G, Sonenberg N (2001) The target of rapamycin (TOR) proteins. Proc Natl Acad Sci USA USA 98:7039–7044 Reinders A, Burckert N, Boller T, Wiemken A, De Virgilio C (1998) Saccharomyces cerevisiae cAMP-dependent protein kinase controls entry into stationary phase through the Rim15p protein kinase. Genes Dev 12:2943-2955

    Google Scholar 

  • Reinders A, Burckert N, Hohmann S, Thevelein JM, Boller T, Wiemken A, De Virgilio C (1997) Structural analysis of the subunits of the trehalose-6-phosphate syn-Thase/phosphatase complex in Saccharomyces cerevisiae and their function during heat Shock. Mol Microbiol 24:687–695

    Article  PubMed  CAS  Google Scholar 

  • Riballo E, Herweijer M, Wolf DH, Lagunas R (1995) Catabolite inactivation of the yeast Maltose transporter occurs in the vacuole after internalization by endocytosis. J Bacte-Riol 177:5622–5627

    CAS  Google Scholar 

  • Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci USA 95:13783–13787

    Article  PubMed  CAS  Google Scholar 

  • Rohde J, Heitman J, Cardenas ME (2001) The TOR kinases link nutrient sensing to cell growth. J Biol Chem 276:398–403

    Article  Google Scholar 

  • Rolfes RJ, Zhang F, Hinnebusch AG (1997) The transcriptional activators Bas1, Bas2, and Abf1 bind positive regulatory sites as the critical elements for adenine regulation of ADE5,7. J Biol Chem 272:13343–13354

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, de Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing Process. Mol Microbiol 38:348–358

    Article  PubMed  CAS  Google Scholar 

  • Rolland F, Wanke V, Cauwenberg L, Ma P, Boles E, Vanoni M, de Winde JH, Thevelein JM, Winderickx J (2001) The role of hexose transport and phosphorylation in cAMP Signalling in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 1403:1–13

    Google Scholar 

  • Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17

    Article  PubMed  CAS  Google Scholar 

  • Rose M, Entian KD, Hoffmann L, Vogel RF (1988) Irreversible inactivation of Saccharomyces cerevisiae fructose-1,6-bisphosphatase independent of protein phosphorylation at Ser1 1. FEBS Lett 241:55–59.

    Article  PubMed  CAS  Google Scholar 

  • Rouillon A, Barbey R, Patton EE, Tyers M, Thomas D (2000) Feedback-regulated degradation Of the transcriptional activator Met4 is triggered by th SVCF(Met30) complex. EMBO J 19:282–294

    Article  PubMed  CAS  Google Scholar 

  • Rowen DW, Meinke M, LaPorte DC (1992) GLC3 and GHA1 of Saccharomyces cerevisiae are allelic and encode the glycogen branching enzyme. Mol Cell Biol 12:2–29

    Google Scholar 

  • Rudoni S, Colombo S, Coccetti P, Martegani E (2001) Role of guanine nucleotides in the Regulation of the Ras/cAMP pathway in Saccharomyces cerevisiae. Biochim Biophys Acta 1538:181–189

    Article  PubMed  CAS  Google Scholar 

  • Ruis H, Schuller C (1995) Stress signaling in yeast. Bioessays 17:959–965

    Article  PubMed  CAS  Google Scholar 

  • Rupp S, Summers E, Lo HJ, Madhani H, Fink GR (1999) MAP kinase and cAMP filamentation Signaling pathways converge on the unusual large promotor of the yeast FLO11 gene. EMBO J 18:1257–1269

    Article  PubMed  CAS  Google Scholar 

  • Sakai A, Chibazakura T, Shimizu Y, Hishinuma F (1992) Molecular analysis of POP2 gene, a gene required for glucose-derepression of gene expression in Saccharomyces cerevisiae. Nucl Acids Res 20:6227–6233

    Article  PubMed  CAS  Google Scholar 

  • Sanz P, Alms GR, Haystead TA, Carlson M (2000a) Regulatory interactions between the Reg1-Glc7 protein phosphatase and the Snf1 protein kinase. Mol Cell Biol 20:1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Sanz P, Ludin K, Carlson M (2000b) Sip5 interacts with both the Reg1/Glc7 protein phosphatase and the Snf1 protein kinase of Saccharomyces cerevisiae. Genetics 154:99–107

    PubMed  CAS  Google Scholar 

  • Scheffler IE, delaCruz BJ, Prieto S (1998) Control of mRNA turnover as a mechaism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 30:1175–1193

    Article  PubMed  CAS  Google Scholar 

  • Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Beck T, Koller A, Kunz J, Hall MN (1998) The TOR nutrient signalling pathway Phosphorylates NPR1 and inhibits turnover of the tryptophan permease. EMBO J 17:6924–6931

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Bickle M, Beck T, Hall MN (1997) The yeast phosphatidylinositol kinase homolog TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542

    Google Scholar 

  • Schmidt A, Kunz J, Hall MN (1996) TOR2 is required for organization of the actin cy-Toskeleton in yeast. Proc Natl Acad Sci USA 93:13780–13785

    Article  PubMed  CAS  Google Scholar 

  • Schneider KR, Smith RL, O’Shea EK (1994) Phosphate-regulated inactivation of the kinase PHO80-PHO85 by the CDK inhibitor PHO81. Science 266:122–126

    Article  PubMed  CAS  Google Scholar 

  • Schork SM, Bee G, Thumm M, Wolf DH (1994) Catabolite inactivation of fructose-1,6-bisphosphatase in yeast is mediated by the proteasome. FEBS Lett 349:270–274

    Article  PubMed  CAS  Google Scholar 

  • Schork SM, Thumm M, Wolf DH (1995) Catabolite inactivation of fructose-1,6-bisphosphatase of saccharomyces cerevisiae-degradation occurs via the ubiquitin Pathway. J Biol Chem 270:26446–26450

    Article  PubMed  CAS  Google Scholar 

  • Schulman BA, Lindstrom DL, Harlow E (1998) Substrate recruitment to cyclin-dependent Kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci USA 95:10453–10458

    Article  PubMed  CAS  Google Scholar 

  • Scott EW, Baker HV (1993) Concerted action of the transcriptional activators REB1, RAP1, and GCR1 in the High-Level expression of the glycolytic gene TPI. Mol Cell Biol 13:543–550

    PubMed  CAS  Google Scholar 

  • Sengstag C, Hinnen A (1988) A 28-bp segment of the S.cerevisiae PHO5 upstream activator Sequence confers phosphate control to the CYC1-lacZ gene fusion. Cell 67:223

    CAS  Google Scholar 

  • Shamji AF, Kuruvilla FG, Schreiber SL (2000) Partioning the transcriptional program induced by rapamycin among the effectors of Tor proteins. Curr Biol 10:1574–1581

    Article  PubMed  CAS  Google Scholar 

  • Shao D, Creasy CL, Bergmane LW (1996) Interaction of Saccharomyces cerevisiae Pho2 With Pho4 increases the accessibility of the activation domain of Pho4. Mol Gen Genet 251:358–364

    PubMed  CAS  Google Scholar 

  • Shu YM, Yang HF, Hallberg E, Hallberg R (1997) Molecular genetic analysis of Rts1p, a B’ regulatory subunit of Saccharomyces cerevisiae protein phosphatase 2A. Mol Cell Biol 17:3242–3253

    PubMed  CAS  Google Scholar 

  • Skroch-Stuart J, Frederick DL, Varner CM, Tatchell K (1994) The mutant type 1 protein Phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively With the GAC1-encoded regulatory subunit. Mol Cell Biol 14:896–905

    Google Scholar 

  • Smith A, Ward MP, Garrett S (1998) Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J 17:3556–3564

    Article  PubMed  CAS  Google Scholar 

  • Sneddon AA, Cohen PT, Stark MJ (1990) Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes. EMBO J 9:4339–4346

    PubMed  CAS  Google Scholar 

  • Song W, Carlson M (1998) Srb mediator proteins interact functionally and physically with Transcriptional reprssor Sfl1. EMBO J 17:5757–5765

    Article  PubMed  CAS  Google Scholar 

  • Soto T, Fernandez J, Cansado J, Vicentesoler J, Gacto M (1995a) Glucose-induced, cyclic-AMP-independent signalling pathway for activation of neutral trehalase in the fission Yeast Schizosaccharomyces pombe. Microbiol 141:2665–2671

    CAS  Google Scholar 

  • Soto T, Fernandez J, Cansado J, VicenteSoler J, Gacto M (1997) Protein kinase Sck1 is involved in trehalase activation by glucose and nitrogen source in the fission yeast Schizosaccharomyces pombe. Microbiol 143:2457–2463

    CAS  Google Scholar 

  • Soto T, Fernandez J, Vicentesoler J, Cansado J, Gacto M (1995b) Activation of neutral trehalase by glucose and nitrogen source in Schizosaccharomyces pombe strains deficient in cAMP-dependent protein kinase activity. FEBS Lett 367:263–266

    Article  PubMed  CAS  Google Scholar 

  • Soto T, Fernandez J, Vicentesoler J, Cansado J, Gacto M (1996) Posttranslational regulatory control of trehalase induced by nutrients, metabolic inhibitors and physical agents in Pachysolen tannophilus. Fungal Genet Biol 20:143–151

    Article  CAS  Google Scholar 

  • Stanbrough M, Rowen DW, Magasanik B (1995) The role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci USA 92:9450–9454

    Article  PubMed  CAS  Google Scholar 

  • Stanhill A, Schick N, Engelberg D (1999) The yeast Ras2/cyclic AMP pathway induces invasive growth by suppressing the cellular stress response. Mol Cell Biol 19:7529–7538

    PubMed  CAS  Google Scholar 

  • Stapleton D, Gao GA, Michell BJ, Widmer J, Mitchelhill K, Teh T, House CM, Witters LA, Kemp BE (1994) Mammalian 5′-AMP-activated protein kinase non-catalytic sub-Units are homologs of proteins that interact with yeast Snf1 protein kinase. J Biol Chem 269:29343–29346

    PubMed  CAS  Google Scholar 

  • Stark MJR (1996) yeast protein serine/threonine phosphatases: multiple roles and diverse Regulation. Yeast 12:1647–1675

    Article  PubMed  CAS  Google Scholar 

  • Sugajska E, Swiatek W, Zabrocki P, Geyskens I, Thevelein JM, Zolnierowicz S, Wera S (2001) Multiple effects of protein phosphatase 2A on nutrient-induced signalling in the Yeast Saccharomyces cerevisiae. Mol Microbiol 40:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Suomalainen H, Oura E. (1971) Yeast nutrition and solute uptake. In Rose, A.H. and Harrison, J.H. (eds.), The Yeasts. Academic Press, N.Y., New York, Vol. 2

    Google Scholar 

  • Tadi D, Hasan RN, Bussereau F, Boy-Marcotte E, Jacquet M (1999) Selection of genes repressed by cAMP that are induced by nutritional limitation in Saccharomyces cere-Visiae. Yeast 15:1733–1745

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kaziro Y, Toh-e A (1990) S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803–807

    Article  PubMed  CAS  Google Scholar 

  • Tatchell K. (1993) RAS genes in the budding yeast Saccharomyces cerevisiae. In Kurjan, J. and Taylor, B.J. (eds.), Signal Transduction. Prokaryotic and Simple Eukaryotic Systems. Academic Press, San Diego, pp. 147–188

    Google Scholar 

  • Tennyson CN, Lee J, Andrews BJ (1998) A role for the Pcl9-Pho85 cyclin-cdk complex at The M/G1 boundary in Saccharomyces cerevisiae. Mol Microbiol 28:69–79

    Article  PubMed  CAS  Google Scholar 

  • Ter Schure EG, van Riel NAW, Verrips (2000) The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83

    PubMed  Google Scholar 

  • Thevelein JM (1984) Regulation of trehalose mobilization in fungi. Microbiol Rev 48:42–59

    PubMed  CAS  Google Scholar 

  • Thevelein JM (1991) Fermentable sugars and intracellular acidification as specific activators Of the Ras-adenylate cyclase signalling pathway in yeast: the relationship to nutrient-induced cell cycle control. Mol Microbiol 5:1301–1307

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM (1994) Signal transduction in yeast. Yeast 10:1753–1790

    Article  PubMed  CAS  Google Scholar 

  • Thevelein JM. (1996) Regulation of trehalose metabolism and its relevance to cell growth and function. In Brambl/Marzluf (ed.) The Mycota III; Biochemistry and molecular biology. Springer verlag, Berlin-Heidelberg, pp. 395–420

    Google Scholar 

  • Thevelein JM, Beullens M, Honshoven F, Hoebeeck G, Detremerie K, Griewel B, den Hollander JA, Jans AWH (1987) Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: the glucose-induced cAMP signal is not mediated by a transient drop in The intracellular pH. J Gen Microbiol 133:2197–2205

    PubMed  CAS  Google Scholar 

  • Thevelein JM, Cauwenberg L, Colombo S, de Winde JH, Donaton M, Dumortier F, Kraakman L, Lemaire K, Ma P, Nauwelaers D, Rolland F, Teunissen A, Van Dijck P, Versele M, Wera S, Winderickx J (2000) Nutrient-induced signal transduction through The protein kinase A pathway and its role in the control of metabolism, stress resistance and growth in yeast. Enzyme Microbial Technol 26:819–825

    Article  CAS  Google Scholar 

  • Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-Protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 32:1002–1012

    Article  PubMed  Google Scholar 

  • Thomas D, Cherest H, Surdin-Kerjan Y (1989) Elements involved in S-adenosyl methionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Mol Cell Biol 9:3292–3298

    PubMed  CAS  Google Scholar 

  • Thomas D, Cherest H, Surdin-Kerjan Y (1991) Identification of the structural gene for glucose-6-phosphate dehydrogenase in yeast. Inactivation leads to a nutritional requirement for organic sulfur. EMBO J 10:547–553

    PubMed  CAS  Google Scholar 

  • Thomas D, Jaquemin I, Surdin-Kerjan Y (1992) MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol Cell Biol 12:1719–1727

    PubMed  CAS  Google Scholar 

  • Thomas D, Kuras L, Barbey R, Cherest H, Blaiseau PL, Surdin-Kerjan Y (1995) Met30p, a Yeast transcriptional inhibitor that responds to S-adenosylmethionine, is an essential Protein with WD40 repeats. Mol Cell Biol 15:6526–6534

    PubMed  CAS  Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    PubMed  CAS  Google Scholar 

  • Thompson-Jaeger S, Francois J, Gaughran JP, Tatchell K (1991) Deletion of SNF1 affects The nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129:697–706

    Google Scholar 

  • Thon VJ, Vigneron-Lesens C, Marianne-Pepin T, Montreuil J, Decq A (1992) Coordinate Regulation of glycogen metabolsm in the yeast Saccharomyces cerevisiae: induction of glycogen branching enzyme. J Biol Chem 267:15224–15228

    PubMed  CAS  Google Scholar 

  • Timblin BK, Tatchell K, Bergman LW (1996) Deletion of the gene encoding the cyclin-dependent protein kinase Pho85 alters glycogen metabolism in Saccharomyces cerevisiae. Genetics 143:57–66

    PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Wigler M (1988) SCH9, a gene of Saccharomyces cerevisiae That encodes a protein distinct from, but functionally and structurally related to cAMP-dependent protein kinase catalytic subunits. Genes Dev 2:517–527

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Scott JD, McBullen B, Hurwitz M, Krebs EG, Wigler M (1987a) Cloning and characterization of BCY1, a locus encoding a regulatory Subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7:1371–1377

    PubMed  CAS  Google Scholar 

  • Toda T, Cameron S, Sass P, Zoller M, Wigler M (1987b) Three different genes in Saccharomyces cerevisiae encode the catalytic subunits of the cAMP-dependent protein Kinase. Cell 50:277–287

    Article  PubMed  CAS  Google Scholar 

  • Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsu-Moto K, Wigler M (1985) In yeast, Ras proteins are controlling elements of adenylate cyclase. Cell 40:27–36

    Article  PubMed  CAS  Google Scholar 

  • Toh-E A, Tanaka K, Uesono Y, Wickner R (1988) PHO85, a negative regulator of the PHO System, is a homolog of the protein kinase gene, CDC28, of Saccaromyces cerevisiae. Mol Gen Genet 214:162–164

    Article  PubMed  CAS  Google Scholar 

  • Tokiwa G, Tyers M, Volpe T, Futcher B (1994) Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Nature 371:342–345

    Article  PubMed  CAS  Google Scholar 

  • Treitel MA, Carlson M (1995) Repression by SSN6-TUP1 is directed by MIG1, a repressor activator protein. Proc Natl Acad Sci USA 92:3132–3136

    Article  PubMed  CAS  Google Scholar 

  • Treitel MA, Kuchin S, Carlson M (1998) Snf1 Protein Kinase Regulates Phosphorylation of The Mig1 Repressor in Saccharomyces cerevisiae. Mol Cell Biol 18:6373–6380

    Google Scholar 

  • Trumbly R (1992) Glucose repression in the yeast Saccharomyces cerevisiae. Mol Microbiol 6:15–21

    Article  PubMed  CAS  Google Scholar 

  • Tu JL, Song WJ, Carlson M (1996) Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol Cell Biol 16:4199–4206

    PubMed  CAS  Google Scholar 

  • Tung KS, Hopper AK (1995) The glucose repression and RAS-cAMP signal transduction Pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis Of a reporter protein. Mol Gen Genet 247:48–54

    Article  PubMed  CAS  Google Scholar 

  • Türkel S, Bisson LF (1999) Transcription of the HXT4 gene is regulated by Gcr1 and Gcr2 in the yeast Saccharomyces cerevisiae. Yeast 15:1045–1057

    Article  PubMed  Google Scholar 

  • Uemura H, Jigami Y (1992) Role of GCR2 in transcriptional activation of yeast glycolytic genes. Mol Cell Biol 12:3834–3842

    PubMed  CAS  Google Scholar 

  • Uemura H, Jigami Y (1995) Mutations in GCR1, a transcriptional activator of Saccharomyces cerevisiae glycolytic genes, function as suppressors of gcr2 mutations. Genetics 139:511–521

    PubMed  CAS  Google Scholar 

  • Uno I, Matsumoto K, Adachi K, Ishikawa T (1983) Genetic and biochemical evidence that Trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem 258:10867–10872

    PubMed  CAS  Google Scholar 

  • Vallier LG, Carlson M (1994) Synergistic release from glucose repression by mig1 and SSN mutations in saccharomyces cerevisiae. Genetics 137:49–54

    PubMed  CAS  Google Scholar 

  • Vallier LG, Coons D, Bisson LF, Carlson M (1994) Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of saccharomyces cerevisiae. Genetics 136:1279–1285

    PubMed  CAS  Google Scholar 

  • Van Aelst L, Hohmann S, Bulaya B, de Koning W, Sierkstra L, Neves MJ, Luyten K, Alijo R, Ramos J, Coccetti P, Martegani E, de Magalhaes-Rocha NM, Brandao RL, Van Dijck P, Vanhalewyn M, Durnez P, Jans AWH, Thevelein JM (1993) Molecular cloning Of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol Microbiol 8:927–943

    Google Scholar 

  • Van Aelst L, Jans AWH, Thevelein JM (1991) Involvement of the CDC25 gene product in The signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in The yeast Saccharomyces cerevisiae. J Gen Microbiol 137:341–349

    PubMed  Google Scholar 

  • Van der Plaat JB (1974) Cyclic 3′,5′-adenosine monophosphate stimulates trehalose degradation in baker’s yeast. Biochem. Biophys. Res. Commun. 56:580–587

    Article  PubMed  Google Scholar 

  • Van Zyl W, Huang W, Sneddon AA, Stark M, Carnier S, Werer M, Marck C, Sentenac A, Broach JR (1992) Inactivation of the protein phosphatase 2 A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae. Mol Cell Biol 12:4946–4959

    PubMed  Google Scholar 

  • Vandenbol M, Jauniaux J-C, Grenson M (1990) The Saccharomyces cerevisiae NPR1 gene Required for the activity of ammonia-sensitive amino acid permeases encodes a protein Kinase homologue. Mol Gen Genet 222:393–399

    Article  PubMed  CAS  Google Scholar 

  • Vanoni M, Sollitti P, Goldenthal M, Marmur J (1989) structure and regulation of the multigene family controlling maltose fermentation in budding yeast. Progress Nucl Acid Res Mol Biol 37:281–322

    Article  CAS  Google Scholar 

  • Venturi GM, Bloecher A, WilliamsHart T, Tatchell K (2000) Genetic interactions between GLC7, PPZ1 and PPZ2 in Saccharomyces cerevisiae. Genetics 155:69–83

    PubMed  CAS  Google Scholar 

  • Versele M, de Winde JH, Thevelein JM (1999) A novel regulator of G-protein signalling in Yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J 18:5577–5591

    Article  PubMed  CAS  Google Scholar 

  • Vincent AC, Struhl K (1992) ACR1, a yeast ATF/CREB repressor. Mol Cell Biol 12:5934–5405

    Google Scholar 

  • Vincent O, Carlson M (1998) Sip4, a Snf1 kinase dependent transcriptional activator binds To the carbon source-responsive elements of gluconeogenic genes. EMBO J 17:7002–7008

    Article  PubMed  CAS  Google Scholar 

  • Vincent O, Carlson M (1999) Gal83 mediates the interaction of the Snf1 kinase complex With the transcription activator Sip4. EMBO J 18:6672–6681

    Article  PubMed  CAS  Google Scholar 

  • Vogel K, Hörz W, Hinnen A (1989) The two positively acting regulatory proteins PHO2 and PHO4 physically interact with PHO5 upstream activation regions. Mol Cell Biol 9:2050–2057

    PubMed  CAS  Google Scholar 

  • Vojtek AB, Fraenkel DG (1990) Phosphorylation of yeast hexokinases. Eur J Biochem 190:371–375

    Article  PubMed  CAS  Google Scholar 

  • Vuorio OE, Kalkkinen N, Londesborough J (1993) Cloning of two related genes encoding The 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur J Biochem 216:849–861

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Hopper AK (1998) Isolation of a yeast gene involved in species-specific pre-TRNA processing. Mol Cell Biol 8:5140–5149

    Google Scholar 

  • Ward MP, Garrett S (1994) Suppression of a yeast cyclic AMP-dependent protein kinase defect by overexpression of SOK1, a yeast gene exhibiting sequence similarity to a de-Velopmentally regulated mouse gene. Mol Cell Biol 14:5619–5627

    PubMed  CAS  Google Scholar 

  • Ward MP, Gimeno CJ, Fink GR, Garrett S (1995) SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing Transcription. Mol Cell Biol 15:6854–6863

    PubMed  CAS  Google Scholar 

  • Wek RC, Cannon JF, Dever TE, Hinnebusch AG (1992) Truncated protein phosphatase GLC7 restores translational activation of GCN4 expression in yeast mutants defective for the eIF-2alpha kinase GCN2. Mol Cell Biol 12:5700–5710

    Google Scholar 

  • Werner-Washburne M, Braun E, Johnston GC, Singer RA (1993) Stationary phase in the Yeast Saccharomyces cerevisiae. Microbiol Rev 57:383–401

    Google Scholar 

  • Werner-Washburne M, Braun EL, Crawford ME, Peck VM (1996) Stationary phase in Saccharomyces cerevisiae. Mol Microbiol 19:1159–1166

    Article  PubMed  CAS  Google Scholar 

  • Werner-Washburne M, Brown D, Braun E (1991) Bcy1, the regulatory subunit of cAMP-dependent protein kinase in yeast, is differentially modified in response to the physiological Status of the cell. J Biol Chem 266:19704–19709

    PubMed  CAS  Google Scholar 

  • Wickner RB (1994) [ure3] as an altered ure2 protein-evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569

    Article  PubMed  CAS  Google Scholar 

  • Wills C (1990) Regulation of sugar and ethanol metabolism in Saccharomyces cerevisiae. Crit Rev Biochem Mol Biol 25:245–280

    PubMed  CAS  Google Scholar 

  • Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding Yeast: SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP: ATP ratio. Curr Biol 6:1426–1434

    Article  PubMed  CAS  Google Scholar 

  • Wilson WA, Hawley SA, Hardie DG (1996) Glucose repression/derepression in budding yeast:SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol 6:1426–1434

    Article  PubMed  CAS  Google Scholar 

  • Winderickx J, de Winde JH, Crauwels M, Hino A, Hohmann S, Van Dijck P, Thevelein JM (1996) Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae:novel variations of STRE-mediated transcription control ? Mol Gen Genet 252:470–482

    PubMed  CAS  Google Scholar 

  • Woods A, Munday MR, Scott J, Yang X, Carlson M, Carling D (1994) Yeast SNF1 is functionally related to mammalian AMP-activated protein kinase and regulates acetyl-CoA carboxylase in vivo. J Biol Chem 269:19509–19515

    PubMed  CAS  Google Scholar 

  • Woollard A, Nurse P (1995) G(1) regulation and checkpoints operating around START in fission yeast. Bioessays 17:481–490

    Article  PubMed  CAS  Google Scholar 

  • Wright RM, Repine T, Repine JE (1993) Reversible pseudohyphal growth in haploid Saccharomyces cerevisiae is an aerobic process. Curr Genet 23:388–391

    Article  PubMed  CAS  Google Scholar 

  • Xue Y, Batlle M, Hirsch JP (1998) GPR1 encodes a putative G protein-coupled receptor that associates with the Gpa2p G subunit and functions in a Ras-independent pathway. EMBOJ 17:1996–2007

    Article  CAS  Google Scholar 

  • Yang J, Wu JS, Ao SZ (1995) Analysis of activation activity of yeast PHO2, PHO4 protein and their interaction. Acta Biochim Biophy Sin 27:165–172

    CAS  Google Scholar 

  • Yang XL, Jiang R, Carlson M (1994) A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J 13:5878–5886

    PubMed  CAS  Google Scholar 

  • Yin Z, Hatton L, Brown AJ (2000) Differential post-transcriptional regulation of yeast mRNAs in response to high and low glucose concentrations. Mol Microbiol 35:553–565

    Article  PubMed  CAS  Google Scholar 

  • Yin ZK, Smith RJ, Brown AJP (1996) Multiple signalling pathways trigger the exquisite sensitivity of yeast gluconeogenic mRNAs to glucose. Mol Microbiol 20:751–764

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Ogawa N, Oshima Y (1989) Function of the PHO regulatory genes for repressible acid phosphatase synthesis in S. cerevisiae. Mol Gen Genet 217:40–46

    Article  PubMed  CAS  Google Scholar 

  • Yun CW, Tamaki H, Nakayama R, Yamamoto K, Kumagai H (1998) Gpr1p, a putative G-protein coupled receptor, regulates glucose-dependent cellular cAMP level in yeast Saccharomyces cerevisiae. Biochem Biophys Res Commun 252:29–33

    Article  PubMed  CAS  Google Scholar 

  • Zabrocki P, Van Hoof C, Goris J, Thevelein JM, Winderickx J, Wera S (2002) Protein phosphatase 2A on track for nutrient-induced signalling in yeast. Mol Microbiol 43:835–842

    Article  PubMed  CAS  Google Scholar 

  • Zähringer H, Thevelein JM, Nwaka S (2000) Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors:variations of PKA effect during stress and growth. Mol Microbiol 35:397–406

    Article  PubMed  Google Scholar 

  • Zaragoza D, Ghavidel A, Heitman J, Schultz MC (1998) Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 18:4463–4470

    PubMed  CAS  Google Scholar 

  • Zaragoza O, Gancedo JM (2000) Pseudohyphal growth is induced in Saccharomyces cerevisiae by a combination of stress and cAMP signalling. Ant Leeuwenhoek 78:187–194

    Article  CAS  Google Scholar 

  • Zheng XF, Florentino D, Chen J, Crabtree GR, Schreiber SL (1995) TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin. Cell 82:121–130

    Article  PubMed  CAS  Google Scholar 

  • Zitomer RS, Montgomery DL, Nichols DL, Hall BD (1979) Transcriptional regulation of the yeast cytochrome c gene. Proc Natl Acad Sci USA 76:3627–3631

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winderickx, J., Holsbeeks, I., Lagatie, O., Giots, F., Thevelein, J., de Winde, H. (2003). From feast to famine; adaptation to nutrient availability in yeast. In: Hohmann, S., Mager, W.H. (eds) Yeast Stress Responses. Topics in Current Genetics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45611-2_7

Download citation

  • DOI: https://doi.org/10.1007/3-540-45611-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-43926-4

  • Online ISBN: 978-3-540-45611-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics