Skip to main content

Crop Microbiomes Enhance Antioxidant Defense in Plants

  • Chapter
  • First Online:
Plant Holobiome Engineering for Climate-Smart Agriculture

Part of the book series: Sustainable Plant Nutrition in a Changing World ((SPNCW))

  • 25 Accesses

Abstract

The disparity between crop yields and population expansion poses problems for global crop production. The population of the world is currently 7.7 billion, according to the UN. It is anticipated that this population would increase to 9.7 billion by 2050 and 11.2 billion by the end of the century. Growing demand for resources such as food and water is linked to such rapid growth. All crop plants interact with billions of microorganisms from their environment at once, the majority of which are benign and actually helpful to the plant since they encourage plant growth and offer defense against illnesses. However, a small number of microorganisms with species-specific adaptations produce illnesses that have disastrous impacts on agricultural output. Plants have developed an innate immune system in order to prevent pathogen infection. Crop plants must use their own biological systems to withstand the negative external pressure caused by environmental and edaphic conditions. Utilizing technology and preventing further environmental harm are becoming more and more important, yet climate change could soon bring about unforeseen and significant consequences. As a result, larger-scale policies must quickly incorporate adaptive measures in order to preserve the balance between food security despite unavoidable population expansion and environmental preservation, on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent pseudomonas in the presence and absence of tryptophan. Turk J Biol 29(1):29–34

    CAS  Google Scholar 

  • Akhtar N, Ilyas N, Yasmin H, Sayyed R, Hasnain Z, Elsayed A, El Enshasy HA (2021) Role of Bacillus cereus in improving the growth and phytoextractability of Brassica nigra (L.) K. Koch in chromium contaminated soil. Molecules 26(6):1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MA, Seetharam K, Zaidi PH, Dinesh A, Vinayan MT, Nath UK (2017) Dissecting heat stress tolerance in tropical maize (Zea mays L.). Field Crop Res 204:110–119

    Article  Google Scholar 

  • Baba ZA, Hamid B, Sheikh TA, Alotaibi SH, El Enshasy HA, Ansari MJ, Zuan ATK, Sayyed R (2021) Psychrotolerant Mesorhizobium sp. isolated from temperate and cold desert regions solubilizes potassium and produces multiple plant growth promoting metabolites. Molecules 26(19):5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012) 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235

    Article  CAS  PubMed  Google Scholar 

  • Bhat BA, Tariq L, Nissar S, Islam ST, Islam SU, Mangral Z, Ilyas N, Sayyed RZ, Muthusamy G, Kim W (2022) The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J Appl Microbiol 133(5):2717–2741

    Article  CAS  PubMed  Google Scholar 

  • Bonanomi G, Lorito M, Vinale F, Woo SL (2018) Organic amendments, beneficial microbes, and soil microbiota: toward a unified framework for disease suppression. Annu Rev Phytopathol 56:1–20

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A, Takayuki T, Fernie AR, Chet I, Viterbo A, Willmitzer L (2013) Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9(3):e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang P, Gerhardt KE, Huang X-D, Yu X-M, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16(11):1133–1147

    Article  CAS  PubMed  Google Scholar 

  • Chirakkara RA, Cameselle C, Reddy KR (2016) Assessing the applicability of phytoremediation of soils with mixed organic and heavy metal contaminants. Rev Environ Sci Biotechnol 15:299–326

    Article  CAS  Google Scholar 

  • Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73(2):197–214

    CAS  PubMed  Google Scholar 

  • Cotton TA, Pétriacq P, Cameron DD, Meselmani MA, Schwarzenbacher R, Rolfe SA, Ton J (2019) Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME J 13(7):1647–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dontha S (2016) A review on antioxidant methods. Asian J Pharm Clin Res 9(2):14–32

    CAS  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:1

    Article  Google Scholar 

  • Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Sadia S, Nasim W, Adkins S, Saud S (2017) Crop production under drought and heat stress: plant responses and management options. Fron Plant Sci:1147

    Google Scholar 

  • Fatnassi IC, Chiboub M, Saadani O, Jebara M, Jebara SH (2015) Impact of dual inoculation with rhizobium and PGPR on growth and antioxidant status of Vicia faba L. under copper stress. C R Biol 338(4):241–254

    Article  PubMed  Google Scholar 

  • Fazeli-Nasab B, Sayyed R, Mojahed LS, Rahmani AF, Ghafari M, Antonius S (2022) Biofilm production: a strategic mechanism for survival of microbes under stress conditions. Biocatal Agric Biotechnol 42:102337

    Article  CAS  Google Scholar 

  • Finkel OM, Castrillo G, Paredes SH, González IS, Dangl JL (2017) Understanding and exploiting plant beneficial microbes. Curr Opin Plant Biol 38:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Gamalero E, Glick BR (2015) Bacterial modulation of plant ethylene levels. Plant Physiol 169(1):13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Glick BR, Gamalero E (2021) Recent developments in the study of plant microbiomes. Microorganisms 9(7):1533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, Amruthesh KN, Murali M, Poczai P, Gafur A (2022) Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: a review. Antioxidants 11(9):1763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamonts K, Clough TJ, Stewart A, Clinton PW, Richardson AE, Wakelin SA, O’Callaghan M, Condron LM (2013) Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiol Ecol 83(3):568–584

    Article  CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91(4):1118–1133

    Article  PubMed  Google Scholar 

  • Hoseini A, Salehi A, Sayyed R, Balouchi H, Moradi A, Piri R, Fazeli-Nasab B, Poczai P, Ansari MJ, Obaid SA (2022) Efficacy of biological agents and fillers seed coating in improving drought stress in anise. Front Plant Sci 13:955512

    Article  PubMed  PubMed Central  Google Scholar 

  • Hubbard M, Germida J, Vujanovic V (2014) Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. J Appl Microbiol 116(1):109–122

    Article  CAS  PubMed  Google Scholar 

  • Jabborova D, Kannepalli A, Davranov K, Narimanov A, Enakiev Y, Syed A, Elgorban AM, Bahkali AH, Wirth S, Sayyed R (2021) Co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Sci Rep 11(1):22081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalam S, Basu A, Ahmad I, Sayyed R, El-Enshasy HA, Dailin DJ, Suriani NL (2020) Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapadia C, Patel N, Rana A, Vaidya H, Alfarraj S, Ansari MJ, Gafur A, Poczai P, Sayyed R (2022) Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil. Front Plant Sci 13:946217

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Khan A, Sayyed R, Seifi S (2019) Rhizobacteria: legendary soil guards in abiotic stress management. In: Plant growth promoting rhizobacteria for sustainable stress management: volume 1: Rhizobacteria in abiotic stress management. pp 327–343

    Google Scholar 

  • Khan N, Ali S, Shahid MA, Mustafa A, Sayyed R, Curá JA (2021) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cell 10(6):1551

    Article  CAS  Google Scholar 

  • Khumairah FH, Setiawati MR, Fitriatin BN, Simarmata T, Alfaraj S, Ansari MJ, Enshasy HAE, Sayyed R, Najafi S (2022) Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Front Microbiol 13:905210

    Article  PubMed  PubMed Central  Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    Article  CAS  Google Scholar 

  • Kumar A, Verma JP (2018) Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiol Res 207:41–52

    Article  CAS  PubMed  Google Scholar 

  • Laino P, Limonta M, Gerna D, Vaccino P (2015) Morpho-physiological and qualitative traits of a bread wheat collection spanning a century of breeding in Italy. Biodiversity Data J 3:e4760

    Article  Google Scholar 

  • Lazcano C, Boyd E, Holmes G, Hewavitharana S, Pasulka A, Ivors K (2021) The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under field conditions. Sci Rep 11(1):1–17

    Article  Google Scholar 

  • Ling N, Zhu C, Xue C, Chen H, Duan Y, Peng C, Guo S, Shen Q (2016) Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol Biochem 99:137–149

    Article  CAS  Google Scholar 

  • Mahmoudi TR, Yu JM, Liu S, Pierson LS III, Pierson EA (2019) Drought-stress tolerance in wheat seedlings conferred by phenazine-producing rhizobacteria. Front Microbiol 10:1590

    Article  PubMed  PubMed Central  Google Scholar 

  • Mawar R, Ranawat M, Ram L, Sayyed R (2023) Harnessing drought-tolerant PGPM in arid agroecosystem for plant disease management and soil amelioration. In: Plant growth promoting microorganisms of arid region. Springer, pp 27–43

    Chapter  Google Scholar 

  • Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahu PK, Gupta VK (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirmohammadi S, Yazdani J, Etemadinejad S, Asgarinejad H (2015) A cross-sectional study on work-related musculoskeletal disorders and associated risk factors among hospital health cares. Procedia Manufact 3:4528–4534

    Article  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Natural mycorrhizal colonization in tree species growing on the reclaimed coalmine overburden dumps: case study from Jharia coalfields, India. Bioscan 3:761–770

    Google Scholar 

  • Naveed M, Hussain MB (2014) Zahir a. Zahir, birgit mitter and angela sessitsch. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Naz H, Sayyed R, Khan RU, Naz A, Wani OA, Maqsood A, Maqsood S, Fahad A, Ashraf S, Show PL (2023) Mesorhizobium improves chickpea growth under chromium stress and alleviates chromium contamination of soil. J Environ Manag 338:117779

    Article  CAS  Google Scholar 

  • Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7(3):382–395

    Article  CAS  PubMed  Google Scholar 

  • Omar AF, Abdelmageed AH, Al-Turki A, Abdelhameid NM, Sayyed R, Rehan M (2022) Exploring the plant growth-promotion of four Streptomyces strains from rhizosphere soil to enhance cucumber growth and yield. Plan Theory 11(23):3316

    CAS  Google Scholar 

  • Pandey V, Ansari MW, Tula S, Yadav S, Sahoo RK, Shukla N, Bains G, Badal S, Chandra S, Gaur A (2016) Dose-dependent response of Trichoderma harzianum in improving drought tolerance in rice genotypes. Planta 243:1251–1264

    Article  CAS  PubMed  Google Scholar 

  • Patel P, Shaikh S, Sayyed R (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil

    Google Scholar 

  • Patel P, Sayyed R, Patel H (2023) PGPR: a sustainable agricultural Mitigator for stressed agro-environments. In: Plant growth promoting microorganisms of arid region. Springer, pp 303–318

    Chapter  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci 110(16):6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162(4):1849–1866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu A-L, Ding Y-F, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432(2):203–207

    Article  CAS  PubMed  Google Scholar 

  • Rai S, Omar AF, Rehan M, Al-Turki A, Sagar A, Ilyas N, Sayyed R, Hasanuzzaman M (2023) Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture. Planta 257(2):27

    Article  CAS  Google Scholar 

  • Reise SP, Waller NG (2009) Item response theory and clinical measurement. Annu Rev Clin Psychol 5:27–48

    Article  PubMed  Google Scholar 

  • Rollins J, Habte E, Templer S, Colby T, Schmidt J, Von Korff M (2013) Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J Exp Bot 64(11):3201–3212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar A, Sayyed R, Ramteke P, Sharma S, Marraiki N, Elgorban AM, Syed A (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biol Plants 26:1847–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar A, Rai S, Ilyas N, Sayyed R, Al-Turki AI, El Enshasy HA, Simarmata T (2022) Halotolerant rhizobacteria for salinity-stress mitigation: diversity, mechanisms and molecular approaches. Sustain For 14(1):490

    Article  CAS  Google Scholar 

  • Schlaeppi K, Dombrowski N, Oter RG, Loren V, van Themaat E, Schulze-Lefert P (2014) Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci 111(2):585–592

    Article  CAS  PubMed  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc Natl Acad Sci 106(37):15594–15598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simmons C, Reddy A, Simmons B, Singer S, VanderGheynst J (2014) Effect of inoculum source on the enrichment of microbial communities on two lignocellulosic bioenergy crops under thermophilic and high-solids conditions. J Appl Microbiol 117(4):1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Trivedi P (2017) Microbiome and the future for food and nutrient security. Microb Biotechnol 10(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kumar A, Yadav S, Singh IK (2019) Reactive oxygen species-mediated signaling during abiotic stress. Plant Gene 18:100173

    Article  CAS  Google Scholar 

  • Tanveer S, Akhtar N, Ilyas N, Sayyed R, Fitriatin BN, Perveen K, Bukhari NA (2023) Interactive effects of pseudomonas putida and salicylic acid for mitigating drought tolerance in canola (Brassica napus L.). Heliyon 9(3):e14193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Voesenek L, Sasidharan R (2013) Ethylene–and oxygen signalling–drive plant survival during flooding. Plant Biol 15(3):426–435

    Article  CAS  PubMed  Google Scholar 

  • Voges MJ, Bai Y, Schulze-Lefert P, Sattely ES (2019) Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome. Proc Natl Acad Sci 116(25):12558–12565

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Wei F, Feng H, Zhang D, Feng Z, Zhao L, Zhang Y, Deakin G, Peng J, Zhu H, Xu X (2021) Composition of rhizosphere microbial communities associated with healthy and Verticillium wilt diseased cotton plants. Front Microbiol 12:618169

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J, DeVos P, Hedlund B, Dedysh S (2015) Bergey’s manual of systematics of archaea and bacteria, vol 410. Wiley Online Library

    Book  Google Scholar 

  • Xu ZZ, Zhou GS (2006) Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224:1080–1090

    Article  CAS  PubMed  Google Scholar 

  • Yadav J, Verma JP, Jaiswal DK, Kumar A (2014) Evaluation of PGPR and different concentration of phosphorus level on plant growth, yield and nutrient content of rice (Oryza sativa). Ecol Eng 62:123–128

    Article  Google Scholar 

  • Yadav AN, Kumar V, Dhaliwal HS, Prasad R, Saxena AK (2018) Microbiome in crops: diversity, distribution, and potential role in crop improvement. In: Crop improvement through microbial biotechnology. Elsevier, pp 305–332

    Google Scholar 

  • Zgadzaj R, Thiergart T, Bozsoki Z, Garrido-Oter R, Radutoiu S, Schulze-Lefert P (2019) Lotus japonicus symbiosis signaling genes and their role in the establishment of root-associated bacterial and fungal communities

    Google Scholar 

  • Zhang J, Wang L-H, Yang J-C, Liu H, Dai J-L (2015) Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil. Sci Total Environ 508:29–36

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sardar, N., Bibi, Y., Iriti, M., Hassan, A. (2024). Crop Microbiomes Enhance Antioxidant Defense in Plants. In: Sayyed, R.Z., Ilyas, N. (eds) Plant Holobiome Engineering for Climate-Smart Agriculture. Sustainable Plant Nutrition in a Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-99-9388-8_18

Download citation

Publish with us

Policies and ethics