Skip to main content

Effect of Interfacial Bonding Characteristics on Fatigue Behavior of Hemp Fibre Reinforced Polymer Composites

  • Chapter
  • First Online:
Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites

Abstract

Demand for eco-friendly, sustainable and biodegradable natural fiber-reinforced polymer composites (NFRPs) are continuously expanding as global environmental concerns and awareness of renewable green resources continue to grow. Due to their superior physicochemical and mechanical properties, natural fibers already occupied a significant place in the composites industry. NFRPs are widely used in the automobile, aerospace, personal protective clothing, sports, and medical industries as alternatives to costly and nonrenewable petroleum-based synthetic fiber-reinforced composite materials. Cannabis sativa L. (Hemp) has received a lot of attention because of its multipurpose usability, short production cycle, low capital demand in cultivation, possibility of carbon-negative transformation, and easy carbon sequestering material. Hemp fiber cultivation and extraction techniques, their physicochemical properties, and technical feasibility for composite structures were discussed in this chapter. In addition, diverse types of polymer matrices including synthetic polymers and biopolymers were briefly discussed. The interfacial bonding between fiber and matrix, which determines the ultimate properties of composites, has not been found satisfactory in recent studies. Therefore, a significant amount of research is currently underway to improve interfacial adhesion between natural fibers and polymer matrices. The recent techniques to improve the interfacial bonding and the effects of interfacial bonding on fatigue behavior such as stress–strain hysteresis, strain energy, viscoelasticity, and hysteretic energy dissipation properties of hemp fiber reinforced polymer composites (HFRPs) were precisely discussed. This chapter concluded by mentioning the diverse types of existing challenges associated with HFRPs and providing the necessary future research directions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAPP:

Atmospheric Air Pressure Plasma

FRPCs:

Fiber reinforced polymer composites

HFRP:

Hemp Fiber Reinforced Polymer composite

IFSS:

Interfacial Shear Strength

MA:

Maleic anhydride

MAPP:

Maleated Polypropylene

NFRP:

Natural Fiber Reinforced Polymer

PCL:

Poly Caprolactone

PMPPIC:

Polymethylene-Polyphenyl Isocyanates

PP:

Polypropylene

Tg:

Glass Transition Temperature

References

  1. Abd El-Sayed ES, El-Sakhawy M, El-Sakhawy MAM (2020) Non-wood fibers as raw material for pulp and paper industry. Nord Pulp Pap Res J 35:215–230. https://doi.org/10.1515/npprj-2019-0064

    Article  CAS  Google Scholar 

  2. Acharya SK, Mishra P, Mehar SK (2011) Effect of surface treatment on the mechanical properties of bagasse fiber reinforced polymer composite. BioResources 6:3155–3165

    Article  CAS  Google Scholar 

  3. Adanur S (2017) Future of industrial textiles. In: Wellington sears handbook of industrial textiles. Routledge, pp 757–760

    Google Scholar 

  4. Adesina I, Bhowmik A, Sharma H, Shahbazi A (2020) A review on the current state of knowledge of growing conditions, agronomic soil health practices and utilities of hemp in the United States. Agric 10.https://doi.org/10.3390/agriculture10040129

  5. Ahmed ATMF, Islam MZ, Mahmud MS et al (2022) Hemp as a potential raw material toward a sustainable world: a review. Heliyon 8:e08753. https://doi.org/10.1016/j.heliyon.2022.e08753

    Article  CAS  Google Scholar 

  6. Akter R, Neher B, Gafur MA et al (2021) Study of the physical and mechanical properties of coconut spathe fiber reinforced obsolete polymer composites. Mater Sci Appl 12:223–238. https://doi.org/10.4236/msa.2021.125015

    Article  CAS  Google Scholar 

  7. Ali W, Moiez M, Iftikhar F et al (2020) Nutritive potentials of Soybean and its significance for humans health and animal production: a Review. Eurasian J Food Sci Technol 4:41–53

    Google Scholar 

  8. Alsubari S, Zuhri MYM, Sapuan SM et al (2021) Potential of natural fiber reinforced polymer composites in sandwich structures: a review on its mechanical properties. Polymers (Basel) 13:1–20. https://doi.org/10.3390/polym13030423

    Article  CAS  Google Scholar 

  9. Amaducci S, Scordia D, Liu FH et al (2015) Key cultivation techniques for hemp in Europe and China. Ind Crops Prod 68:2–16. https://doi.org/10.1016/j.indcrop.2014.06.041

    Article  CAS  Google Scholar 

  10. Anshuman S (2018) Polymerization. Elsevier Inc.

    Google Scholar 

  11. Ashfaq A, Clochard M, Coqueret X, et al (2020) Polymerization reactions and modifications of polymers by ionizing radiation

    Google Scholar 

  12. Atmakuri A, Palevicius A, Griskevicius P, Janušas G (2019) Investigation of mechanical properties of hemp and flax fibers hybrid composites for biomedical applications. Mechanika 25:149–155. https://doi.org/10.5755/j01.mech.25.2.22712

    Article  Google Scholar 

  13. Bajpai PK, Singh I, Madaan J (2014) Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater 27:52–81. https://doi.org/10.1177/0892705712439571

    Article  CAS  Google Scholar 

  14. Baltazar-y-Jimenez A, Bistritz M, Schulz E, Bismarck A (2008) Atmospheric air pressure plasma treatment of lignocellulosic fibres: impact on mechanical properties and adhesion to cellulose acetate butyrate. Compos Sci Technol 68:215–227. https://doi.org/10.1016/j.compscitech.2007.04.028

    Article  CAS  Google Scholar 

  15. Barbière R, Touchard F, Chocinski-Arnault L et al (2021) Characterisation of interfacial adhesion in hemp composites after H2O2 and non-thermal plasma treatments. J Compos Mater 55:3751–3762. https://doi.org/10.1177/00219983211015427

    Article  CAS  Google Scholar 

  16. Barbière R, Touchard F, Chocinski-Arnault L, Mellier D (2020) Influence of moisture and drying on fatigue damage mechanisms in a woven hemp/epoxy composite: acoustic emission and micro-CT analysis. Int J Fatigue 136:105593. https://doi.org/10.1016/J.IJFATIGUE.2020.105593

    Article  Google Scholar 

  17. Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A Appl Sci Manuf 39:979–988. https://doi.org/10.1016/j.compositesa.2008.03.010

    Article  CAS  Google Scholar 

  18. Bengtsson E (2009) Obtaining high quality textile fibre from industrial hemp through organic cultivation. Individ Proj LTJ Fac SLU Alnarp Hortic Program

    Google Scholar 

  19. Bhat G, Kandagor V (2014) Synthetic polymer fibers and their processing requirements. Woodhead Publishing Limited

    Google Scholar 

  20. Bhatia S (2016) Natural polymers vs synthetic polymer. Natural Polymer Drug Delivery Systems. Springer, Cham., pp 95–118

    Chapter  Google Scholar 

  21. Bledzki AK, Mamun AA, Lucka-Gabor M, Gutowski VS (2008) The effects of acetylation on properties of flax fibre and its polypropylene composites. Express Polym Lett 2:413–422. https://doi.org/10.3144/expresspolymlett.2008.50

    Article  CAS  Google Scholar 

  22. Boz E, Nemeth AJ, Ghiviriga I, et al (2007) Precision ethylene/vinyl chloride polymers via condensation polymerization, 6545–6551

    Google Scholar 

  23. Cierpucha W, Kozłowski R, Mańkowski J et al (2004) Applicability of flax and hemp as raw materials for production of cotton-like fibres and blended yarns in Poland. Fibres Text East Eur 12:13–18

    CAS  Google Scholar 

  24. Colombani D (1997) Chain-growth control in free radical polymerization 22:1649–1720

    CAS  Google Scholar 

  25. Colonna P, Mercier C (1985) Gelatinization and melting of maize and pea starches with normal and high-amylose genotypes. Phytochemistry 24:1667–1674. https://doi.org/10.1016/S0031-9422(00)82532-7

    Article  CAS  Google Scholar 

  26. Cristaldi G, Latteri A, Recca G, Cicala G (2010) Composites based on natural fibre fabrics. In: Dubrovski PD (ed) Woven Fabric Engineering. InTech, London, p 13

    Google Scholar 

  27. Dai D, Fan M (2013) Wood fibres as reinforcements in natural fibre composites: Structure, properties, processing and applications. Woodhead Publishing Limited

    Google Scholar 

  28. Dayo AQ, Gao B, Wang J et al (2017) Natural hemp fiber reinforced polybenzoxazine composites: curing behavior, mechanical and thermal properties. Compos Sci Technol 144:114–124. https://doi.org/10.1016/j.compscitech.2017.03.024

    Article  CAS  Google Scholar 

  29. De Vasconcellos DS, Touchard F, Chocinski-Arnault L (2014) Tension-tension fatigue behaviour of woven hemp fibre reinforced epoxy composite: a multi-instrumented damage analysis. Int J Fatigue 59:159–169. https://doi.org/10.1016/j.ijfatigue.2013.08.029

    Article  CAS  Google Scholar 

  30. Diani J, Gall K (2006) Finite strain 3D thermoviscoelastic constitutive model. Society 1–10. https://doi.org/10.1002/pen

  31. Domb AJ, Kumar N, Ezra A (2011) Biodegradable polymers in clinical use and clinical development

    Google Scholar 

  32. Duque Schumacher AG, Pequito S, Pazour J (2020) Industrial hemp fiber: a sustainable and economical alternative to cotton. J Clean Prod 268.https://doi.org/10.1016/j.jclepro.2020.122180

  33. Ebewele R (2000) Polymer science and technology. CRC Press, Taylor & Francis

    Google Scholar 

  34. Feng NL, Malingam SD, Jenal R et al (2020) A review of the tensile and fatigue responses of cellulosic fibre-reinforced polymer composites. Mech Adv Mater Struct 27:645–660. https://doi.org/10.1080/15376494.2018.1489086

    Article  Google Scholar 

  35. Fotouh A, Wolodko JD, Lipsett MG (2014) Fatigue of natural fiber thermoplastic composites. Compos Part B Eng 62:175–182. https://doi.org/10.1016/j.compositesb.2014.02.023

    Article  CAS  Google Scholar 

  36. Gholampour A, Ozbakkaloglu T (2020) A review of natural fiber composites: properties, modification and processing techniques, characterization, applications. Springer, US

    Google Scholar 

  37. Gupta MK, Gond RK, Bharti A (2018) Effects of treatments on the properties of polyester based hemp composite

    Google Scholar 

  38. Gurunathan T, Mohanty S, Nayak SK (2015) A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos Part A Appl Sci Manuf 77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.007

    Article  CAS  Google Scholar 

  39. Hacker MC, Krieghoff J, Mikos AG (2019) Synthetic polymers. Elsevier Inc.

    Google Scholar 

  40. Horne MRL (2020) Bast fibres: hemp cultivation and production. Elsevier Ltd

    Google Scholar 

  41. Islam MZ, Sarker ME, Rahman MM et al (2022) Green composites from natural fibers and biopolymers: a review on processing, properties, and applications. J Reinf Plast Compos 41:526–557. https://doi.org/10.1177/07316844211058708

    Article  CAS  Google Scholar 

  42. Joshi SV, Drzal LT, Mohanty AK, Arora S (2004) Are natural fiber composites environmentally superior to glass fiber reinforced composites? Compos Part A Appl Sci Manuf 35:371–376. https://doi.org/10.1016/j.compositesa.2003.09.016

    Article  CAS  Google Scholar 

  43. Kabir MM (2012) Effects of chemical treatments on hemp fibre reinforced polyester composites by mohammad Mazedul Kabir Supervised by Assoc Prof Hao Wang Prof Alan Kin-tak Lau Assoc Prof Thiru Aravinthan A dissertation submitted for the award of Centre of Excellence in En. University of Southern Queensland

    Google Scholar 

  44. Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23. https://doi.org/10.1016/j.apsusc.2013.02.086

    Article  CAS  Google Scholar 

  45. Kalia S, Kumar A (2013) Surface modification of sunn hemp fibers using acrylation, peroxide and permanganate treatments: a study of morphology, thermal stability and crystallinity. Polym Plast Technol Eng 52:24–29. https://doi.org/10.1080/03602559.2012.717335

    Article  CAS  Google Scholar 

  46. Karaduman Y, Ozdemir H, Karaduman NS, Ozdemir G (2018) Interfacial modification of hemp fiber–reinforced composites. Nat Artif Fiber-Reinforced Compos as Renew Sources.https://doi.org/10.5772/intechopen.70519

  47. Karche T, Singh MR (2019) The application of hemp Cannabis sativa l. for a green economy: a review. Turk J Botany 43:710–723. https://doi.org/10.3906/bot-1907-15

    Article  CAS  Google Scholar 

  48. Kobayashi S (2013) Damage behavior of hemp fiber reinforced Poly(L-Lactic Acid) composites under fatigue loading. J Solid Mech Mater Eng 7:317–323. https://doi.org/10.1299/jmmp.7.317

    Article  Google Scholar 

  49. Kobayashi S, Takada K (2013) Processing of unidirectional hemp fiber reinforced composites with micro-braiding technique. Compos Part A Appl Sci Manuf 46:173–179. https://doi.org/10.1016/j.compositesa.2012.11.012

    Article  CAS  Google Scholar 

  50. Kostic M, Pejic B, Skundric P (2008) Quality of chemically modified hemp fibers. Bioresour Technol 99:94–99. https://doi.org/10.1016/j.biortech.2006.11.050

    Article  CAS  Google Scholar 

  51. Kramer LS, Kramer LS (2017) Material for the fashion bachelor thesis I summer 2017

    Google Scholar 

  52. Le Troedec M, Sedan D, Peyratout C et al (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos Part A Appl Sci Manuf 39:514–522. https://doi.org/10.1016/j.compositesa.2007.12.001

    Article  CAS  Google Scholar 

  53. Li J, Ben G, Yang J (2014) Fabrication of hemp fiber-reinforced green composites with organoclay-filled poly(butylene succinate) matrix by pultrusion process. Sci Eng Compos Mater 21:289–294. https://doi.org/10.1515/secm-2013-0031

    Article  CAS  Google Scholar 

  54. Liu W, Chen T, Qiu R (2014) Effect of fiber modification with 3-isopropenyldimethylbenzyl isocyanate (TMI) on the mechanical properties and water absorption of hemp-unsaturated polyester (UPE) composites. Holzforschung 68:265–271. https://doi.org/10.1515/hf-2013-0104

    Article  CAS  Google Scholar 

  55. Lopez JP, Vilaseca F, Barberà L et al (2012) Processing and properties of biodegradable composites based on Mater-Bi ® and hemp core fibres. Resour Conserv Recycl 59:38–42. https://doi.org/10.1016/j.resconrec.2011.06.006

    Article  Google Scholar 

  56. Lu N, Oza S (2013) Thermal stability and thermo-mechanical properties of hemp-high density polyethylene composites: Effect of two different chemical modifications. Compos Part B Eng 44:484–490. https://doi.org/10.1016/j.compositesb.2012.03.024

    Article  CAS  Google Scholar 

  57. Madsen B, Hoffmeyer P, Lilholt H (2007) Hemp yarn reinforced composites—II. Tensile properties. Compos Part A Appl Sci Manuf 38:2204–2215. https://doi.org/10.1016/J.COMPOSITESA.2007.06.002

    Article  Google Scholar 

  58. Manaia JP, Manaia AT, Rodriges L (2019) Industrial hemp fibers: an overview. Fibers 7:106. https://doi.org/10.3390/fib7120106

    Article  CAS  Google Scholar 

  59. Mishra S, Naik JB, Patil YP (2004) Studies on swelling properties of wood/polymer composites based on agro-waste and novolac. Adv Polym Technol 23:46–50. https://doi.org/10.1002/adv.10073

    Article  CAS  Google Scholar 

  60. Misnon MI, Islam MM, Epaarachchi JA et al (2018) Flammability characteristics of chemical treated woven hemp fabric reinforced vinyl ester composites. Sci Technol Mater 30:174–188. https://doi.org/10.1016/j.stmat.2018.06.001

    Article  Google Scholar 

  61. Misnon MI, Islam MM, Epaarachchi JA, et al (2018b) Water exposure, tensile and fatigue properties of treated hemp reinforced vinyl ester composites. AIP Conf Proc 1985.https://doi.org/10.1063/1.5047164

  62. Mita I, Stepto RFT, Suter UW (1994) Basic classification and definitions of polymerization reactions (IUPAC Recommendations 1994). Pure Appl Chem 66:2483–2486. https://doi.org/10.1351/pac199466122483

    Article  CAS  Google Scholar 

  63. Mohammed M, MSM R, Aeshah M. M, et al (2022) Interfacial bonding mechanisms of natural fibre-matrix composites: an overview. BioResources 17:7031–7090

    Google Scholar 

  64. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: An overview Summary of contents 1. Introduction 2. Reinforcing biofibres 2.1 Chemical constituents and structural aspects 2.2 Properties of biofibres 2.3 Degradation properties of biofibres 2.4 Cost asp. Macromol Mater Eng 276 277:1–24

    Google Scholar 

  65. Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108:131–139. https://doi.org/10.1016/j.envres.2008.07.025

    Article  CAS  Google Scholar 

  66. Mutjé P, Lòpez A, Vallejos ME et al (2007) Full exploitation of Cannabis sativa as reinforcement/filler of thermoplastic composite materials. Compos Part A Appl Sci Manuf 38:369–377. https://doi.org/10.1016/j.compositesa.2006.03.009

    Article  CAS  Google Scholar 

  67. Mutjé P, Vallejos ME, Gironès J et al (2006) Effect of maleated polypropylene as coupling agent for polypropylene composites reinforced with hemp strands. J Appl Polym Sci 102:833–840. https://doi.org/10.1002/app.24315

    Article  CAS  Google Scholar 

  68. Mwaikambo LY, Ansell MP (2006) Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. J Mater Sci 41:2483–2496. https://doi.org/10.1007/s10853-006-5098-x

    Article  CAS  Google Scholar 

  69. Mwaikambo LY, Ansell MP (2002) Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. J Appl Polym Sci 84:2222–2234. https://doi.org/10.1002/app.10460

    Article  CAS  Google Scholar 

  70. Nair AB, Joseph R (2014) Eco-friendly bio-composites using natural rubber (NR) matrices and natural fiber reinforcements

    Google Scholar 

  71. Naithani V, Tyagi P, Jameel H, et al (2020) Ecofriendly and innovative processing of hemp hurds fibers for tissue and towel paper. BioResources 15:706–720. https://doi.org/10.15376/biores.15.1.706-720

  72. Nuyken O, Pask SD (2013) Ring-opening polymerization—an introductory review, 361–403. https://doi.org/10.3390/polym5020361

  73. Oh JT, Hong JH, Ahn Y, Kim H (2012) Reliability improvement of hemp based bio-composite by surface modification. Fibers Polym 13:735–739. https://doi.org/10.1007/s12221-012-0735-2

    Article  CAS  Google Scholar 

  74. Oliver A, Joynt H (1999) Industrial hemp fact sheet. Br Columbia Minist Agric Food, Kamloops, Br Columbia, Canada

    Google Scholar 

  75. Panaitescu DM, Nicolae CA, Vuluga Z et al (2016) Influence of hemp fibers with modified surface on polypropylene composites. J Ind Eng Chem 37:137–146. https://doi.org/10.1016/j.jiec.2016.03.018

    Article  CAS  Google Scholar 

  76. Park S-J, Seo M-K (2011) Composite characterization. In: Interface science and technology. Elsevier, pp 631–738

    Google Scholar 

  77. Phinyocheep P (2014) Chemical modification of natural rubber (NR) for improved performance. In: Chemistry, manufacture and applications of natural rubber. Elsevier, pp 68–118

    Google Scholar 

  78. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos Part A Appl Sci Manuf 38:461–468. https://doi.org/10.1016/j.compositesa.2006.02.020

    Article  CAS  Google Scholar 

  79. Pickerinq KL, Li Y, Farrell RL (2007) Interfacial modification of hemp fiber reinforced composites using fungal and Alkali treatment. J Biobased Mater Bioenergy 1:109–117. https://doi.org/10.4028/www.scientific.net/kem.334-335.493

    Article  Google Scholar 

  80. Pizzi A, Kueny R, Lecoanet F et al (2009) High resin content natural matrix–natural fibre biocomposites. Ind Crops Prod 30:235–240. https://doi.org/10.1016/J.INDCROP.2009.03.013

    Article  CAS  Google Scholar 

  81. Prasad BM, Sain MM (2003) Mechanical properties of thermally treated hemp fibers in inert atmosphere for potential composite reinforcement. Mater Res Innov 7:231–238. https://doi.org/10.1007/s10019-003-0258-y

    Article  CAS  Google Scholar 

  82. Prasad BM, Sain MM, Roy DN (2005) Properties of ball milled thermally treated hemp fibers in an inert atmosphere for potential composite reinforcement. J Mater Sci 40:4271–4278. https://doi.org/10.1007/s10853-005-2799-5

    Article  CAS  Google Scholar 

  83. Rabbi MA, Rahman MM, Minami H et al (2019) Biocomposites of synthetic polymer modified microcrystalline jute cellulose particles and their hemolytic behavior. Cellulose 26:8713–8727. https://doi.org/10.1007/s10570-019-02706-4

    Article  CAS  Google Scholar 

  84. Rachel Jacob S, Mishra A, Kumari M et al (2020) A quick viability test protocol for hemp (Cannabis Sativa L.) seeds. J Nat Fibers 00:1–6. https://doi.org/10.1080/15440478.2020.1764451

    Article  CAS  Google Scholar 

  85. Ragoubi M, Bienaimé D, Molina S et al (2010) Impact of corona treated hemp fibres onto mechanical properties of polypropylene composites made thereof. Ind Crops Prod 31:344–349. https://doi.org/10.1016/j.indcrop.2009.12.004

    Article  CAS  Google Scholar 

  86. Rajak DK, Pagar DD, Menezes PL, Linul E (2019) Fiber-reinforced polymer composites: manufacturing, properties, and applications. Polymers (Basel) 11. https://doi.org/10.3390/polym11101667

  87. Ramadan R, Saad G, Awwad E et al (2017) Short-term durability of hemp fibers. Procedia Eng 200:120–127. https://doi.org/10.1016/j.proeng.2017.07.018

    Article  Google Scholar 

  88. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  89. Rouison D, Sain M, Couturier M (2006) Resin transfer molding of hemp fiber composites: optimization of the process and mechanical properties of the materials. Compos Sci Technol 66:895–906. https://doi.org/10.1016/j.compscitech.2005.07.040

    Article  CAS  Google Scholar 

  90. Sair S, Oushabi A, Kammouni A et al (2018) Mechanical and thermal conductivity properties of hemp fiber reinforced polyurethane composites. Case Stud Constr Mater 8:203–212. https://doi.org/10.1016/j.cscm.2018.02.001

    Article  Google Scholar 

  91. Sampath UGTM, Ching YC, Chuah CH et al (2016) Fabrication of porous materials from natural/synthetic biopolymers and their composites. Materials (Basel) 9:1–32. https://doi.org/10.3390/ma9120991

    Article  CAS  Google Scholar 

  92. Sauvageon T, Lavoie JM, Segovia C, Brosse N (2018) Toward the cottonization of hemp fibers by steam explosion—Part 1: defibration and morphological characterization. Text Res J 88:1047–1055. https://doi.org/10.1177/0040517517697644

    Article  CAS  Google Scholar 

  93. Sèbe G, Cetin NS, Hill CAS, Hughes M (2000) RTM hemp fibre-reinforced polyester composites. Appl Compos Mater 7:341–349. https://doi.org/10.1023/A:1026538107200

    Article  Google Scholar 

  94. Sepe R, Bollino F, Boccarusso L, Caputo F (2018) Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B Eng 133:210–217. https://doi.org/10.1016/j.compositesb.2017.09.030

    Article  CAS  Google Scholar 

  95. Shah DU (2016) Damage in biocomposites: Stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Compos Part A Appl Sci Manuf 83:160–168. https://doi.org/10.1016/j.compositesa.2015.09.008

    Article  CAS  Google Scholar 

  96. Shah DU (2013) Developing plant fibre composites for structural applications by optimising composite parameters: a critical review. J Mater Sci 48:6083–6107. https://doi.org/10.1007/s10853-013-7458-7

    Article  CAS  Google Scholar 

  97. Shah DU, Schubel PJ, Clifford MJ, Licence P (2013) Fatigue life evaluation of aligned plant fibre composites through S-N curves and constant-life diagrams. Compos Sci Technol 74:139–149. https://doi.org/10.1016/J.COMPSCITECH.2012.10.015

    Article  CAS  Google Scholar 

  98. Shahzad A (2012) Hemp fiber and its composites—a review. J Compos Mater 46:973–986. https://doi.org/10.1177/0021998311413623

    Article  CAS  Google Scholar 

  99. Shahzad A (2009) Impact and fatigue properties of natural fibre composites. Swansea University (United Kingdom)

    Google Scholar 

  100. Shahzad A (2011) Impact and fatigue properties of hemp-glass fiber hybrid biocomposites. J Reinf Plast Compos. https://doi.org/10.1177/0731684411425975

    Article  Google Scholar 

  101. Shahzad A (2012) Effects of alkalization on tensile, impact, and fatigue properties of hemp fiber composites. Polym Compos. https://doi.org/10.1002/pc.22241

    Article  Google Scholar 

  102. Sobczak L, Brüggemann O, Putz RF (2013) Polyolefin composites with natural fibers and wood-modification of the fiber/filler-matrix interaction. J Appl Polym Sci 127:1–17. https://doi.org/10.1002/app.36935

    Article  CAS  Google Scholar 

  103. Song Y, Liu J, Chen S et al (2013) Mechanical properties of Poly (Lactic Acid)/hemp fiber composites prepared with a novel method. J Polym Environ 21:1117–1127. https://doi.org/10.1007/s10924-013-0569-z

    Article  CAS  Google Scholar 

  104. Struik PC, Amaducci S, Bullard MJ et al (2000) Agronomy of fibre hemp (Cannahis satira L.) in Europe. Ind Crops Prod 11:107–118. https://doi.org/10.1016/S0926-6690(99)00048-5

    Article  Google Scholar 

  105. Sullins T, Pillay S, Komus A, Ning H (2017) Hemp fiber reinforced polypropylene composites: the effects of material treatments. Compos Part B Eng 114:15–22. https://doi.org/10.1016/j.compositesb.2017.02.001

    Article  CAS  Google Scholar 

  106. Tajvidi M, Falk RH, Hermanson JC (2006) Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J Appl Polym Sci 101:4341–4349. https://doi.org/10.1002/app.24289

    Article  CAS  Google Scholar 

  107. Venkatesh B, Sathyapal Reddy L, Sathish Kumar K, Sudheer Gupta N (2016) Fabrication and testing of hemp fibre reinforced epoxy composites. Int J Res Innov Eng Technol 02:1–8

    Google Scholar 

  108. Vigithra R, Prakash MA, Jith KA et al (2016) Procedural fabrication and characterization of hemp fiber reinforced polymer composite. Middle-East J Sci Res 24:229–231. https://doi.org/10.5829/idosi.mejsr.2016.24.S1.45

    Article  CAS  Google Scholar 

  109. Vosper J (2011) The role of industrial hemp in carbon farming. GoodEarth Resour PTY LTD 1–6

    Google Scholar 

  110. Wang B, Sain M, Oksman K (2007) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14:89–103. https://doi.org/10.1007/s10443-006-9032-9

    Article  CAS  Google Scholar 

  111. Wylie SE, Ristvey AG, Fiorellino NM (2020) Fertility management for industrial hemp production: current knowledge and future research needs. GCB Bioenergy, 1–8.https://doi.org/10.1111/gcbb.12779

  112. Xu Z, Yang L, Ni Q, et al (2019) Fabrication of high-performance green hemp/polylactic acid fibre composites. J Eng Fiber Fabr 14.https://doi.org/10.1177/1558925019834497

  113. Yilmaz ND, Powell NB, Banks-Lee P, Michielsen S (2012) Hemp-fiber based nonwoven composites: effects of alkalization on sound absorption performance. Fibers Polym 13:915–922. https://doi.org/10.1007/s12221-012-0915-0

    Article  CAS  Google Scholar 

  114. Yuanjian T, Isaac DH (2007) Impact and fatigue behaviour of hemp fibre composites. Compos Sci Technol 67:3300–3307. https://doi.org/10.1016/j.compscitech.2007.03.039

    Article  CAS  Google Scholar 

  115. Zegaoui A, Derradji M, Ma R kun, et al (2018a) Influence of fiber volume fractions on the performances of alkali modified hemp fibers reinforced cyanate ester/benzoxazine blend composites. Mater Chem Phys 213:146–156.https://doi.org/10.1016/j.matchemphys.2018.04.012

  116. Zegaoui A, Ma R, Dayo AQ et al (2018) Morphological, mechanical and thermal properties of cyanate ester/benzoxazine resin composites reinforced by silane treated natural hemp fibers. Chinese J Chem Eng 26:1219–1228. https://doi.org/10.1016/j.cjche.2018.01.008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Syduzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fahmi, F.F., Mahdi, T.H., Ferdousi, U.S., Uddin, M.B., Sarker, M., Syduzzaman, M. (2024). Effect of Interfacial Bonding Characteristics on Fatigue Behavior of Hemp Fibre Reinforced Polymer Composites. In: Krishnasamy, S., Hemath Kumar, M., Parameswaranpillai, J., Mavinkere Rangappa, S., Siengchin, S. (eds) Interfacial Bonding Characteristics in Natural Fiber Reinforced Polymer Composites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-8327-8_9

Download citation

Publish with us

Policies and ethics