Skip to main content
Log in

Mechanical Properties of Poly (Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This research dealt with a novel method of fabricating green composites with biodegradable poly (lactic acid) (PLA) and natural hemp fiber. The new preparation method was that hemp fibers were firstly blending-spun with a small amount of PLA fibers to form compound fiber pellets, and then the traditional twin-screw extruding and injection-molding method were applied for preparing the composites containing 10–40 wt% hemp fibers with PLA pellets and compound fiber pellets. This method was very effective to control the feeding and dispersing of fibers uniformly in the matrix thus much powerful for improving the mechanical properties. The tensile strength and modulus were improved by 39 and 92 %, respectively without a significant decrease in elongation at break, and the corresponding flexural strength and modulus of composites were also improved by 62 and 90 %, respectively, when the hemp fiber content was 40 wt%. The impact strength of composite with 20 wt% hemp fiber was improved nearly 68 % compared with the neat PLA. The application of the silane coupling agent promoted further the mechanical properties of composites attributed to the improvement of interaction between fiber and resin matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276:1–24

    Article  Google Scholar 

  2. Beckermann GW, Pickering KL (2008) Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A Appl Sci 39:979–988

    Article  Google Scholar 

  3. Pilla S, Gong SQ, O’Neill E, Yang LQ, Rowell RM (2009) Polylactide-recycled wood fiber composites. J Appl Polym Sci 111:37–47

    Article  CAS  Google Scholar 

  4. Taib RM, Ramarad S, Ishak ZAM, Todo M (2010) Properties of kenaf fiber/polylactic acid biocomposites plasticized with polyethylene glycol. Polym Compos 31:1213–1222

    CAS  Google Scholar 

  5. van den Oever MJA, Beck B, Mussig J (2010) Agrofibre reinforced poly(lactic acid) composites: effect of moisture on degradation and mechanical properties. Compos Part A Appl Sci 41:1628–1635

    Article  Google Scholar 

  6. Graupner N (2009) Improvement of the mechanical properties of biodegradable hemp fiber reinforced poly(lactic acid) (PLA) composites by the admixture of man-made cellulose fibers. J Compos Mater 43:689–702

    Article  CAS  Google Scholar 

  7. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  8. Kostic M, Pejic B, Skundric P (2008) Quality of chemically modified hemp fibers. Bioresource Technol 99:94–99

    Article  CAS  Google Scholar 

  9. Pandey JK, Ahn SH, Lee CS, Mohanty AK, Misra M (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295:975–989

    Article  CAS  Google Scholar 

  10. Pickering KL, Beckermann GW, Alam SN, Foreman NJ (2007) Optimising industrial hemp fibre for composites. Compos Part A Appl Sci 38:461–468

    Article  Google Scholar 

  11. Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M (2007) Composites of poly(L-lactide) with hemp fibers: morphology and thermal and mechanical properties. J Appl Polym Sci 105:255–268

    Article  CAS  Google Scholar 

  12. Hu R, Lim JK (2007) Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites. J Compos Mater 41:1655–1669

    Article  CAS  Google Scholar 

  13. Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—mechanical, water absorption and thermal properties. J Appl Polym Sci 103:2432–2441

    Article  CAS  Google Scholar 

  14. Madsen B, Hoffmeyer P, Lilholt H (2007) Hemp yarn reinforced composites—II. Tensile properties. Compos Part A Appl Sci 38:2204–2215

    Article  Google Scholar 

  15. Plackett D, Andersen TL, Pedersen WB, Nielsen L (2003) Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol 63:1287–1296

    Article  CAS  Google Scholar 

  16. Huda MS, Drzal LT, Mohanty AK, Misra M (2008) Effect of fiber surface-treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Compos Sci Technol 68:424–432

    Article  CAS  Google Scholar 

  17. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67:462–470

    Article  CAS  Google Scholar 

  18. Mohanty AK, Khan MA, Sahoo S, Hinrichsen G (2000) Effect of chemical modification on the performance of biodegradable jute yarn-Biopol (R) composites. J Mater Sci 35:2589–2595

    Article  CAS  Google Scholar 

  19. Bax B, Mussig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68:1601–1607

    Article  CAS  Google Scholar 

  20. Cao Y, Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments. Compos Part A Appl Sci 37:423–429

    Article  Google Scholar 

  21. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites applications in automotive. JOM 58:80–86

    Article  CAS  Google Scholar 

  22. Nyambo C, Mohanty AK, Misra M (2010) Polylactide-based renewable green composites from agricultural residues and their hybrids. Biomacromolecules 11:1654–1660

    Article  CAS  Google Scholar 

  23. Thunwall M, Boldizar A, Rigdahl M, Banke K, Lindstrom T, Tufvesson H, Hogman S (2008) Processing and properties of mineral-interfaced cellulose fibre composites. J Appl Polym Sci 107:918–929

    Article  CAS  Google Scholar 

  24. Chen F, Liu LS, Cooke PH, Hicks KB, Zhang JW (2008) Performance enhancement of poly(lactic acid) and sugar beet pulp composites by improving interfacial adhesion and penetration. Ind Eng Chem Res 47:8667–8675

    Article  CAS  Google Scholar 

  25. Keller A (2003) Compounding and mechanical properties of biodegradable hemp fibre composites. Compos Sci Technol 63:1307–1316

    Article  CAS  Google Scholar 

  26. Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  27. Li Y, Pickering KL (2008) Hemp fibre reinforced composites using chelator and enzyme treatments. Compos Sci Technol 68:3293–3298

    Article  CAS  Google Scholar 

  28. Ouajai S, Shanks RA (2005) Morphology and structure of hemp fibre after bioscouring. Macromol Biosci 5:124–134

    Article  CAS  Google Scholar 

  29. Xin-xing F, Jian-yong C, Hua-peng Z (2008) Effect of high temperature alkali cooking on the constituents, structure and thermal degradation of hemp fiber. J Appl Polym Sci 108:4058–4064

    Article  Google Scholar 

  30. Wen GQ, Sun XY, Hao FM (2000) Study and development of the textile of hemp fiber. Beijing Tex 21:40–42

    Google Scholar 

  31. Kalia S, Kaith BS, Kaur I (2009) Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polym Eng Sci 49:1253–1272

    Article  CAS  Google Scholar 

  32. Le Troedec M, Sedan D, Peyratout C, Bonnet JP, Smith A, Guinebretiere R, Gloaguen V, Krausz P (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos Part A Appl Sci 39:514–522

    Article  Google Scholar 

  33. Dobreva T, Perena JM, Perez E, Benavente R, Garcia M (2010) Crystallization behavior of poly(L-lactic acid)-based ecocomposites prepared with kenaf fiber and rice straw. Polym Compos 31:974–984

    Article  CAS  Google Scholar 

  34. Wang Y, Mano JF (2005) Influence of melting conditions on the thermal behaviour of poly(l-lactic acid). Eur Polym J 41:2335–2342

    Article  CAS  Google Scholar 

  35. Lee SH, Wang SQ (2006) Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Compos Part A Appl Sci 37:80–91

    Article  CAS  Google Scholar 

  36. Colom X, Carrasco F, Pages P, Canavate J (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63:161–169

    Article  CAS  Google Scholar 

  37. Wong S, Shanks R, Hodzic A (2004) Interfacial improvements in poly(3-hydroxybutyrate)-flax fibre composites with hydrogen bonding additives. Compos Sci Technol 64:1321–1330

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (NSFC) program (No. 21074016). Authors also gratefully appreciate Xinyi Textile Co., Ltd. for providing the materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuezhen Bin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Y., Liu, J., Chen, S. et al. Mechanical Properties of Poly (Lactic Acid)/Hemp Fiber Composites Prepared with a Novel Method. J Polym Environ 21, 1117–1127 (2013). https://doi.org/10.1007/s10924-013-0569-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-013-0569-z

Keywords

Navigation