Skip to main content

Part of the book series: Nanomedicine and Nanotoxicology ((NANOMED))

  • 94 Accesses

Abstract

Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging, and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides, and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after the cellular uptake and digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of an excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. The below figure shows the topics discussed regarding the pharmacokinetics of IONPs in this chapter. The pharmacokinetics of MNPs depend on a variety of elements, including the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and others. Since pharmacokinetics depends on the resultant physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. It is crucial to keep track of developments in this area because there are new reports on the findings of studies on the pharmacokinetics of particular magnetic nanoparticles almost every year. This section discusses the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge, and technical aspects have been described.

Abstract’s hierarchical chart of the pharmacokinetics of IONPs (discussed in depth in this chapter)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19(2):164

    Google Scholar 

  • Anderson GJ, Frazer DM (2005) Hepatic iron metabolism. Semin Liver Dis. Copyright© 2005 by Thieme Medical Publishers, Inc

    Google Scholar 

  • Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J (2012) Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials 33(18):4515–4525

    Article  Google Scholar 

  • Anselmo AC, Mitragotri S (2014) Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J Control Release 190:531–541

    Article  Google Scholar 

  • Anzaldi LL, Skaar EP (2010) Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun 78(12):4977–4989

    Article  Google Scholar 

  • Arbab AS, Wilson LB, Ashari P, Jordan EK, Lewis BK, Frank JA (2005) A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging. NMR Biomed: Int J Devoted Dev Appl Magn Reson Vivo 18(6):383–389

    Article  Google Scholar 

  • Armitage AE, Eddowes LA, Gileadi U, Cole S, Spottiswoode N, Selvakumar TA, Ho L-P, Townsend AR, Drakesmith H (2011) Hepcidin regulation by innate immune and infectious stimuli. Blood, J Am Soc Hematol 118(15):4129–4139

    Google Scholar 

  • Arosio P, Ingrassia R, Cavadini P (2009) Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta (BBA)-Gen Subj 1790(7):589–599

    Google Scholar 

  • Binder FP, Ernst B (2011) E-and P-selectin: differences, similarities and implications for the design of P-selectin antagonists. Chimia 65(4):210–210

    Article  Google Scholar 

  • Borges da Silva H, Fonseca R, Pereira RM, Cassado AdA, Álvarez JM, D’Império Lima MR (2015) Splenic macrophage subsets and their function during blood-borne infections. Front Immunol 6:480

    Google Scholar 

  • Bouwens L, Baekeland M, De Zanger R, Wisse E (1986) Quantitation, tissue distribution and proliferation kinetics of Kupffer cells in normal rat liver. Hepatology 6(4):718–722

    Article  Google Scholar 

  • Brissot P, Ropert M, Le Lan C, Loréal O (2012) Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta (BBA)-Gen Subj 1820(3):403–410

    Google Scholar 

  • Buffet PA, Milon G, Brousse V, Correas J-M, Dousset B, Couvelard A, Kianmanesh R, Farges O, Sauvanet A, Paye F (2006) Ex vivo perfusion of human spleens maintains clearing and processing functions. Blood 107(9):3745–3752

    Article  Google Scholar 

  • Camaschella C, Pagani A, Nai A, Silvestri L (2016) The mutual control of iron and erythropoiesis. Int J Lab Hematol 38:20–26

    Article  Google Scholar 

  • Cappellini M, Musallam K, Taher A (2020) Iron deficiency anaemia revisited. J Intern Med 287(2):153–170

    Article  Google Scholar 

  • Carregal-Romero S, Plaza-García S, Piñol R, Murillo JL, Ruiz-Cabello J, Padro D, Millán A, Ramos-Cabrer P (2018) MRI study of the influence of surface coating aging on the in vivo biodistribution of iron oxide nanoparticles. Biosensors 8(4):127

    Article  Google Scholar 

  • Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13(5):509–519

    Article  Google Scholar 

  • Chang YK, Liu YP, Ho JH, Hsu SC, Lee OK (2012) Amine-surface-modified superparamagnetic iron oxide nanoparticles interfere with differentiation of human mesenchymal stem cells. J Orthop Res 30(9):1499–1506

    Article  Google Scholar 

  • Chen C, Paw BH (2012) Cellular and mitochondrial iron homeostasis in vertebrates. Biochim Biophys Acta (BBA)-Mol Cell Research 1823(9):1459–1467

    Google Scholar 

  • Chen J, Ning E, Wang Z, Jing Z, Wei G, Wang X, Ma P (2021) Docetaxel loaded mPEG-PLA nanoparticles for sarcoma therapy: preparation, characterization, pharmacokinetics, and anti-tumor efficacy. Drug Delivery 28(1):1389–1396

    Article  Google Scholar 

  • Chouly C, Pouliquen D, Lucet I, Jeune J, Jallet P (1996) Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. J Microencapsul 13(3):245–255

    Article  Google Scholar 

  • Cronin SJ, Woolf CJ, Weiss G, Penninger JM (2019) The role of iron regulation in immunometabolism and immune-related disease. Front Mol Biosci 6:116

    Article  Google Scholar 

  • Dadfar SM, Camozzi D, Darguzyte M, Roemhild K, Varvarà P, Metselaar J, Banala S, Straub M, Güvener N, Engelmann U (2020) Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance. J Nanobiotechnology 18(1):1–13

    Article  Google Scholar 

  • Daher R, Karim Z (2017) Iron metabolism: state of the art. Transfus Clin Biol 24(3):115–119

    Article  Google Scholar 

  • Davoodi P, Lee LY, Xu Q, Sunil V, Sun Y, Soh S, Wang C-H (2018) Drug delivery systems for programmed and on-demand release. Adv Drug Deliv Rev 132:104–138

    Article  Google Scholar 

  • de Jasmin GT, Souza RA, Louzada PH, Rosado-de-Castro R-O, Campos de Carvalho AC (2017) Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. Int J Nanomed 12:779–793

    Article  Google Scholar 

  • Dev S, Babitt JL (2017) Overview of iron metabolism in health and disease. Hemodial Int 21:S6–S20

    Article  Google Scholar 

  • Dilnawaz F, Sahoo SK (2013) Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm 85(3):452–462

    Article  Google Scholar 

  • Duez J, Holleran J, Ndour P, Pionneau C, Diakité S, Roussel C, Dussiot M, Amireault P, Avery V, Buffet P (2015) Mechanical clearance of red blood cells by the human spleen: potential therapeutic applications of a biomimetic RBC filtration method. Transfus Clin Biol 22(3):151–157

    Article  Google Scholar 

  • Eamegdool SS, Weible MW II, Pham BT, Hawkett BS, Grieve SM, Chan-ling T (2014) Ultrasmall superparamagnetic iron oxide nanoparticle prelabelling of human neural precursor cells. Biomaterials 35(21):5549–5564

    Article  Google Scholar 

  • Egawa EY, Kitamura N, Nakai R, Arima Y, Iwata H (2015) A DNA hybridization system for labeling of neural stem cells with SPIO nanoparticles for MRI monitoring post-transplantation. Biomaterials 54:158–167

    Article  Google Scholar 

  • Elkhenany H, Abd Elkodous M, Ghoneim NI, Ahmed TA, Ahmed SM, Mohamed IK, El-Badri N (2020) Comparison of different uncoated and starch-coated superparamagnetic iron oxide nanoparticles: implications for stem cell tracking. Int J Biol Macromol 143:763–774

    Article  Google Scholar 

  • Fens MH, Storm G, Pelgrim RC, Ultee A, Byrne AT, Gaillard CA, van Solinge WW, Schiffelers RM (2010) Erythrophagocytosis by angiogenic endothelial cells is enhanced by loss of erythrocyte deformability. Exp Hematol 38(4):282–291

    Article  Google Scholar 

  • Fleming RE, Ponka P (2012) Iron overload in human disease. N Engl J Med 366(4):348–359

    Article  Google Scholar 

  • Fuhrmann DC, Mondorf A, Beifuß J, Jung M, Brüne B (2020) Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol 36:101670

    Article  Google Scholar 

  • Ganz T (2013) Systemic iron homeostasis. Physiol Rev 93(4):1721–1741

    Article  Google Scholar 

  • Ganz T (2018) Iron and infection. Int J Hematol 107(1):7–15

    Article  Google Scholar 

  • Ganz T (2019) Erythropoietic regulators of iron metabolism. Free Radical Biol Med 133:69–74

    Article  Google Scholar 

  • Geissmann F, Jung S, Littman DR (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19(1):71–82

    Article  Google Scholar 

  • Geppert M, Hohnholt M, Gaetjen L, Grunwald I, Bäumer M, Dringen R (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5(3):285–293

    Article  Google Scholar 

  • Ghobril C, Popa G, Parat A, Billotey C, Taleb J, Bonazza P, Begin-Colin S, Felder-Flesch D (2013) A bisphosphonate tweezers and clickable PEGylated PAMAM dendrons for the preparation of functional iron oxide nanoparticles displaying renal and hepatobiliary elimination. Chem Commun 49(80):9158–9160

    Article  Google Scholar 

  • Giannetti AM, Björkman PJ (2004) HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface. J Biol Chem 279(24):25866–25875

    Article  Google Scholar 

  • Gifford SC, Derganc J, Shevkoplyas SS, Yoshida T, Bitensky MW (2006) A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Br J Haematol 135(3):395–404

    Article  Google Scholar 

  • Ginzburg YZ (2019) Hepcidin-ferroportin axis in health and disease (Chapter Two). In: Litwack G (ed) Vitamins and hormones, vol 110. Academic Press, San Diego, pp 17–45

    Google Scholar 

  • Girard C, Dourlat J, Savarin A, Surcin C, Leue S, Escriou V, Largeau C, Herscovici J, Scherman D (2005) Sialyl Lewisx analogs based on a quinic acid scaffold as the fucose mimic. Bioorg Med Chem Lett 15(13):3224–3228

    Article  Google Scholar 

  • Gordon T (2010) The physiology of neural injury and regeneration: the role of neurotrophic factors. J Commun Disord 43(4):265–273

    Article  Google Scholar 

  • Gu H, Xu K, Yang Z, Chang CK, Xu B (2005) Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chem Commun (34):4270–4272

    Google Scholar 

  • Gu J, Xu H, Han Y, Dai W, Hao W, Wang C, Gu N, Xu H, Cao J (2011) The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264. 7 cell. Sci China Life Sci 54:793–805

    Article  Google Scholar 

  • Guillot A, Tacke F (2019) Liver macrophages: old dogmas and new insights. Hepatol Commun 3(6):730–743

    Article  Google Scholar 

  • Gwamaka M, Kurtis JD, Sorensen BE, Holte S, Morrison R, Mutabingwa TK, Fried M, Duffy PE (2012) Iron deficiency protects against severe Plasmodium falciparum malaria and death in young children. Clin Infect Dis 54(8):1137–1144

    Article  Google Scholar 

  • Haldar M, Kohyama M, So AY-L, Wumesh K, Wu X, Briseño CG, Satpathy AT, Kretzer NM, Arase H, Rajasekaran NS (2014) Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156(6):1223–1234

    Article  Google Scholar 

  • Hamad M, Bajbouj K (2016) The re-emerging role of iron in infection and immunity. Integr Mol Med 3(5):807–810

    Article  Google Scholar 

  • Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5:34

    Article  Google Scholar 

  • Haschka D, Petzer V, Kocher F, Tschurtschenthaler C, Schaefer B, Seifert M, Sopper S, Sonnweber T, Feistritzer C, Arvedson TL (2019) Classical and intermediate monocytes scavenge non-transferrin-bound iron and damaged erythrocytes. JCI Insight 4(8).

    Google Scholar 

  • He T, Wang Y, Xiang J, Zhang H (2014) In vivo tracking of novel SPIO-Molday ION rhodamine-B™-labeled human bone marrow-derived mesenchymal stem cells after lentivirus-mediated COX-2 silencing: a preliminary study. Curr Gene Ther 14(2):136–145

    Article  Google Scholar 

  • Heideveld E, van den Akker E (2017) Digesting the role of bone marrow macrophages on hematopoiesis. Immunobiology 222(6):814–822

    Article  Google Scholar 

  • Hentze MW, Muckenthaler MU, Andrews NC (2004) Balancing acts: molecular control of mammalian iron metabolism. Cell 117(3):285–297

    Article  Google Scholar 

  • Hentze MW, Muckenthaler MU, Galy B, Camaschella C (2010) Two to tango: regulation of Mammalian iron metabolism. Cell 142(1):24–38

    Article  Google Scholar 

  • Houthuys E, Movahedi K, De Baetselier P, Van Ginderachter JA, Brouckaert P (2010) A method for the isolation and purification of mouse peripheral blood monocytes. J Immunol Methods 359(1–2):1–10

    Article  Google Scholar 

  • Huang D-M, Hsiao J-K, Chen Y-C, Chien L-Y, Yao M, Chen Y-K, Ko B-S, Hsu S-C, Tai L-A, Cheng H-Y (2009) The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 30(22):3645–3651

    Article  Google Scholar 

  • Jakubzick C, Gautier EL, Gibbings SL, Sojka DK, Schlitzer A, Johnson TE, Ivanov S, Duan Q, Bala S, Condon T (2013) Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39(3):599–610

    Article  Google Scholar 

  • Jenkins JT, Halaney DL, Sokolov KV, Ma LL, Shipley HJ, Mahajan S, Louden CL, Asmis R, Milner TE, Johnston KP (2013) Excretion and toxicity of gold–iron nanoparticles. Nanomedicine: Nanotechnol Biol Med 9(3):356–365

    Google Scholar 

  • Jin W-N, Yang X, Li Z, Li M, Shi SX-Y, Wood K, Liu Q, Fu Y, Han W, Xu Y (2016) Non-invasive tracking of CD4+ T cells with a paramagnetic and fluorescent nanoparticle in brain ischemia. J Cereb Blood Flow Metab 36(8):1464–1476

    Article  Google Scholar 

  • Johnson-Wimbley TD, Graham DY (2011) Diagnosis and management of iron deficiency anemia in the 21st century. Ther Adv Gastroenterol 4(3):177–184

    Article  Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87

    Article  Google Scholar 

  • Joshi R, Morán E, Sánchez M, Arora S (2012) Cellular iron metabolism. The IRP/IRE regulatory network. In: Iron metabolism. IntechOpen, pp 25–58

    Google Scholar 

  • Kaila N, Somers WS, Thomas BE, Thakker P, Janz K, DeBernardo S, Tam S, Moore WJ, Yang R, Wrona W (2005) Quinic acid derivatives as sialyl lewisX-mimicking selectin inhibitors: design, synthesis, and crystal structure in complex with E-selectin. J Med Chem 48(13):4346–4357

    Article  Google Scholar 

  • Karami Z, Sadighian S, Rostamizadeh K, Hosseini SH, Rezaee S, Hamidi M (2019) Magnetic brain targeting of naproxen-loaded polymeric micelles: pharmacokinetics and biodistribution study. Mater Sci Eng, C 100:771–780

    Article  Google Scholar 

  • Kautz L, Jung G, Valore EV, Rivella S, Nemeth E, Ganz T (2014) Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet 46(7):678–684

    Article  Google Scholar 

  • Kawabata H (2019) Transferrin and transferrin receptors update. Free Radical Biol Med 133:46–54

    Article  Google Scholar 

  • Kawamura S, Ohteki T (2018) Monopoiesis in humans and mice. Int Immunol 30(11):503–509

    Article  Google Scholar 

  • Khan A, Singh P, Srivastava A (2018) Synthesis, nature and utility of universal iron chelator–Siderophore: a review. Microbiol Res 212:103–111

    Article  Google Scholar 

  • Klei T, Dalimot J, Nota B, Veldthuis M, Mul F, Rademakers T, Hoogenboezem M, Nagelkerke S, van IJcken W, Oole E (2020) Hemolysis in the spleen drives erythrocyte turnover. Blood 136(14):1579–1589

    Google Scholar 

  • Klei TR, Meinderts SM, van den Berg TK, van Bruggen R (2017) From the cradle to the grave: the role of macrophages in erythropoiesis and erythrophagocytosis. Front Immunol 8:73

    Article  Google Scholar 

  • Korolnek T, Hamza I (2015) Macrophages and iron trafficking at the birth and death of red cells. Blood, J Am Soc Hematol 125(19):2893–2897

    Google Scholar 

  • Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA (2010) Dysfunction of the heme recycling system in heme oxygenase 1–deficient mice: effects on macrophage viability and tissue iron distribution. Blood, J Am Soc Hematol 116(26):6054–6062

    Google Scholar 

  • Kovtunovych G, Ghosh MC, Ollivierre W, Weitzel RP, Eckhaus MA, Tisdale JF, Yachie A, Rouault TA (2014) Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice. Blood, J Am Soc Hematol 124(9):1522–1530

    Google Scholar 

  • Kratofil RM, Kubes P, Deniset JF (2017) Monocyte conversion during inflammation and injury. Arterioscler Thromb Vasc Biol 37(1):35–42

    Article  Google Scholar 

  • Kremen TJ, Bez M, Sheyn D, Ben-David S, Da X, Tawackoli W, Wagner S, Gazit D, Pelled G (2019) In vivo imaging of exogenous progenitor cells in tendon regeneration via superparamagnetic iron oxide particles. Am J Sports Med 47(11):2737–2744

    Article  Google Scholar 

  • Kurniawan DW, Booijink R, Pater L, Wols I, Vrynas A, Storm G, Prakash J, Bansal R (2020) Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J Control Release 328:640–652

    Article  Google Scholar 

  • Kwon J-T, Hwang S-K, Jin H, Kim D-S, Minai-Tehrani A, Yoon H-J, Choi M, Yoon T-J, Han D-Y, Kang Y-W (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50(1):1–6

    Article  Google Scholar 

  • Lane D, Merlot A, Huang M-H, Bae D-H, Jansson P, Sahni S, Kalinowski D, Richardson D (2015) Cellular iron uptake, trafficking and metabolism: key molecules and mechanisms and their roles in disease. Biochim Biophys Acta (BBA)-Mol Cell Research 1853(5):1130–1144

    Google Scholar 

  • Laurent S, Saei AA, Behzadi S, Panahifar A, Mahmoudi M (2014) Superparamagnetic iron oxide nanoparticles for delivery of therapeutic agents: opportunities and challenges. Expert Opin Drug Deliv 11(9):1449–1470

    Article  Google Scholar 

  • Ledda M, Fioretti D, Lolli MG, Papi M, Di Gioia C, Carletti R, Ciasca G, Foglia S, Palmieri V, Marchese R (2020) Biocompatibility assessment of sub-5 nm silica-coated superparamagnetic iron oxide nanoparticles in human stem cells and in mice for potential application in nanomedicine. Nanoscale 12(3):1759–1778

    Article  Google Scholar 

  • Lee SH, Park DJ, Yun WS, Park J-E, Choi JS, Key J, Seo YJ (2020) Endocytic trafficking of polymeric clustered superparamagnetic iron oxide nanoparticles in mesenchymal stem cells. J Control Release 326:408–418

    Article  Google Scholar 

  • Lévy M, Lagarde F, Maraloiu V-A, Blanchin M-G, Gendron F, Wilhelm C, Gazeau F (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21(39):395103

    Article  Google Scholar 

  • Li X, Zhang Y, Zhao H, Burkhart C, Brinson LC, Chen W (2018) A transfer learning approach for microstructure reconstruction and structure-property predictions. Sci Rep 8(1):13461

    Article  Google Scholar 

  • Li J, Cao F, Yin H-L, Huang Z-J, Lin Z-T, Mao N, Sun B, Wang G (2020) Ferroptosis: past, present and future. Cell Death Dis 11(2):88

    Article  Google Scholar 

  • Liao C, Prabhu KS, Paulson RF (2018) Monocyte-derived macrophages expand the murine stress erythropoietic niche during the recovery from anemia. Blood, J Am Soc Hematol 132(24):2580–2593

    Google Scholar 

  • Liu CH, Ren JQ, You Z, Yang J, Liu C-M, Uppal R, Liu PK (2012) Noninvasive detection of neural progenitor cells in living brains by MRI. FASEB J 26(4):1652

    Article  Google Scholar 

  • Liu X, Chen Y, Li H, Huang N, Jin Q, Ren K, Ji J (2013) Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior. ACS Nano 7(7):6244–6257

    Article  Google Scholar 

  • Luther EM, Petters C, Bulcke F, Kaltz A, Thiel K, Bickmeyer U, Dringen R (2013) Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 9(9):8454–8465

    Article  Google Scholar 

  • Ma L, Li M-w, Bai Y, Guo H-h, Wang S-c, Yu Q (2017) Biological characteristics of fluorescent superparamagnetic iron oxide labeled human dental pulp stem cells. Stem Cells Int. https://doi.org/10.1155/2017/4837503

  • Magnitsky S, Walton RM, Wolfe JH, Poptani H (2008) Magnetic resonance imaging detects differences in migration between primary and immortalized neural stem cells. Acad Radiol 15(10):1269–1281

    Article  Google Scholar 

  • Mahmoudi M, Shokrgozar MA, Simchi A, Imani M, Milani AS, Stroeve P, Vali H, Häfeli UO, Bonakdar S (2009) Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly (vinyl alcohol). J Phys Chem C 113(6):2322–2331

    Article  Google Scholar 

  • Mailänder V, Lorenz MR, Holzapfel V, Musyanovych A, Fuchs K, Wiesneth M, Walther P, Landfester K, Schrezenmeier H (2008) Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imag Biol 10:138–146

    Article  Google Scholar 

  • Mardhian DF, Storm G, Bansal R, Prakash J (2018) Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J Control Release 290:1–10

    Article  Google Scholar 

  • Maurizi L, Papa A-L, Dumont L, Bouyer F, Walker P, Vandroux D, Millot N (2015) Influence of surface charge and polymer coating on internalization and biodistribution of polyethylene glycol-modified iron oxide nanoparticles. J Biomed Nanotechnol 11(1):126–136

    Article  Google Scholar 

  • Mercadante CJ, Prajapati M, Parmar JH, Conboy HL, Dash ME, Pettiglio MA, Herrera C, Bu JT, Stopa EG, Mendes P (2019) Gastrointestinal iron excretion and reversal of iron excess in a mouse model of inherited iron excess. Haematologica 104(4):678

    Google Scholar 

  • Metz S, Bonaterra G, Rudelius M, Settles M, Rummeny EJ, Daldrup-Link HE (2004) Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur Radiol 14:1851–1858

    Article  Google Scholar 

  • Muckenthaler MU, Rivella S, Hentze MW, Galy B (2017) A red carpet for iron metabolism. Cell 168(3):344–361

    Article  Google Scholar 

  • Mulens-Arias V, Rojas JM, Sanz-Ortega L, Portilla Y, Pérez-Yagüe S, Barber DF (2019) Polyethylenimine-coated superparamagnetic iron oxide nanoparticles impair in vitro and in vivo angiogenesis. Nanomedicine: Nanotechnol Biol Med 21:102063

    Google Scholar 

  • Nagelkerke SQ, Bruggeman CW, Den Haan JM, Mul EP, Van Den Berg TK, Van Bruggen R, Kuijpers TW (2018) Red pulp macrophages in the human spleen are a distinct cell population with a unique expression of Fc-γ receptors. Blood Adv 2(8):941–953

    Article  Google Scholar 

  • Nai A, Lidonnici MR, Federico G, Pettinato M, Olivari V, Carrillo F, Crich SG, Ferrari G, Camaschella C, Silvestri L (2021) NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica 106(3):795

    Google Scholar 

  • Nairz M, Haschka D, Demetz E, Weiss G (2014) Iron at the interface of immunity and infection. Front Pharmacol 5:152

    Article  Google Scholar 

  • Nairz M, Theurl I, Swirski FK, Weiss G (2017) “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels. Pflügers Arch-Eur J Physiol 469:397–418

    Article  Google Scholar 

  • Narkhede AA, Sherwood JA, Antone A, Coogan KR, Bolding MS, Deb S, Bao Y, Rao SS (2019) Role of surface chemistry in mediating the uptake of ultrasmall iron oxide nanoparticles by cancer cells. ACS Appl Mater Interfaces 11(19):17157–17166

    Article  Google Scholar 

  • Naseroleslami M, Aboutaleb N, Parivar K (2018) The effects of superparamagnetic iron oxide nanoparticles-labeled mesenchymal stem cells in the presence of a magnetic field on attenuation of injury after heart failure. Drug Deliv Transl Res 8(5):1214–1225

    Article  Google Scholar 

  • Nowak-Jary J, Machnicka B (2022) Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 20(1):1–30

    Article  Google Scholar 

  • Núñez G, Sakamoto K, Soares MP (2018) Innate nutritional immunity. J Immunol 201(1):11–18

    Article  Google Scholar 

  • Pantopoulos K (2018) Inherited disorders of iron overload. Front Nutr 5:103

    Article  Google Scholar 

  • Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895

    Article  Google Scholar 

  • Park YC, Smith JB, Pham T, Whitaker RD, Sucato CA, Hamilton JA, Bartolak-Suki E, Wong JY (2014) Effect of PEG molecular weight on stability, T2 contrast, cytotoxicity, and cellular uptake of superparamagnetic iron oxide nanoparticles (SPIONs). Colloids Surf B: Biointerfaces 119:106–114

    Article  Google Scholar 

  • Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB (2015) In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci 16(10):24417–24450

    Article  Google Scholar 

  • Peralta ME, Jadhav SA, Magnacca G, Scalarone D, Mártire DO, Parolo ME, Carlos L (2019) Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J Colloid Interface Sci 544:198–205

    Article  Google Scholar 

  • Petters C, Irrsack E, Koch M, Dringen R (2014) Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 39:1648–1660

    Article  Google Scholar 

  • Philpott CC, Jadhav S (2019) The ins and outs of iron: escorting iron through the mammalian cytosol. Free Radical Biol Med 133:112–117

    Article  Google Scholar 

  • Pilz D, Stoodley N, Golden JA (2002) Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. J Neuropathol Exp Neurol 61(1):1–11

    Article  Google Scholar 

  • Pinto JP, Arezes J, Dias V, Oliveira S, Vieira I, Costa M, Vos M, Carlsson A, Rikers Y, Rangel M (2014) Physiological implications of NTBI uptake by T lymphocytes. Front Pharmacol 5:24

    Article  Google Scholar 

  • Poeker SA, Geirnaert A, Berchtold L, Greppi A, Krych L, Steinert RE, de Wouters T, Lacroix C (2018) Understanding the prebiotic potential of different dietary fibers using an in vitro continuous adult fermentation model (PolyFermS). Sci Rep 8(1):1–12

    Article  Google Scholar 

  • Pongrac IM, Dobrivojević M, Ahmed LB, Babič M, Šlouf M, Horák D, Gajović S (2016) Improved biocompatibility and efficient labeling of neural stem cells with poly (L-lysine)-coated maghemite nanoparticles. Beilstein J Nanotechnol 7(1):926–936

    Article  Google Scholar 

  • Pouliquen D, Le Jeune J, Perdrisot R, Ermias A, Jallet P (1991) Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism. Magn Reson Imaging 9(3):275–283

    Article  Google Scholar 

  • Qiao B, Sugianto P, Fung E, del-Castillo-Rueda A, Moran-Jimenez M-J, Ganz T, Nemeth E (2012) Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metabolism 15(6):918–924

    Google Scholar 

  • Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112(11):5818–5878

    Article  Google Scholar 

  • Ren Z, Wang J, Zou C, Guan Y, Zhang YA (2011) Labeling of cynomolgus monkey bone marrow-derived mesenchymal stem cells for cell tracking by multimodality imaging. Sci China Life Sci 54(11):981–987

    Article  Google Scholar 

  • Richard KL, Kelley BR, Johnson JG (2019) Heme uptake and utilization by gram-negative bacterial pathogens. Front Cell Infect Microbiol 9:81

    Article  Google Scholar 

  • Rishi G, Subramaniam VN (2017a) The liver in regulation of iron homeostasis. Am J Physiol-Gastrointest Liver Physiol 313(3):G157–G165

    Google Scholar 

  • Rishi G, Subramaniam VN (2017b) The relationship between systemic iron homeostasis and erythropoiesis. Biosci Rep 37(6)

    Google Scholar 

  • Roemhild K, von Maltzahn F, Weiskirchen R, Knüchel R, von Stillfried S, Lammers T (2021) Iron metabolism: pathophysiology and pharmacology. Trends Pharmacol Sci 42(8):640–656

    Article  Google Scholar 

  • Rojas JM, Sanz-Ortega L, Mulens-Arias V, Gutiérrez L, Pérez-Yagüe S, Barber DF (2016) Superparamagnetic iron oxide nanoparticle uptake alters M2 macrophage phenotype, iron metabolism, migration and invasion. Nanomedicine: Nanotechnol Biol Med 12(4):1127–1138

    Google Scholar 

  • Rouault TA (2006) The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol 2(8):406–414

    Article  Google Scholar 

  • Rouault TA, Klausner RD (1996) Post-transcriptional regulation of genes of iron metabolism in mammalian cells. J Biol Inorg Chem 1:494–499

    Article  Google Scholar 

  • Sangkhae V, Nemeth E (2017) Regulation of the iron homeostatic hormone hepcidin. Adv Nutr 8(1):126–136

    Article  Google Scholar 

  • Schaible UE, Kaufmann SH (2004) Iron and microbial infection. Nat Rev Microbiol 2(12):946–953

    Article  Google Scholar 

  • Schlachter EK, Widmer HR, Bregy A, Lönnfors-Weitzel T, Vajtai I, Corazza N, Bernau VJ, Weitzel T, Mordasini P, Slotboom J (2011) Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int J Nanomedicine 6:1793–1800

    Google Scholar 

  • Schleich N, Danhier F, Préat V (2015) Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation. J Control Release 198:35–54

    Article  Google Scholar 

  • Schlorf T, Meincke M, Kossel E, Glüer C-C, Jansen O, Mentlein R (2010) Biological properties of iron oxide nanoparticles for cellular and molecular magnetic resonance imaging. Int J Mol Sci 12(1):12–23

    Article  Google Scholar 

  • Schmidt PJ (2015) Regulation of iron metabolism by hepcidin under conditions of inflammation. J Biol Chem 290(31):18975–18983

    Article  Google Scholar 

  • Schwartz AJ, Converso-Baran K, Michele DE, Shah YM (2019) A genetic mouse model of severe iron deficiency anemia reveals tissue-specific transcriptional stress responses and cardiac remodeling. J Biol Chem 294(41):14991–15002

    Article  Google Scholar 

  • Scindia Y, Leeds J, Swaminathan S (2019) Iron homeostasis in healthy kidney and its role in acute kidney injury. Semin Nephrol 39:76–84

    Google Scholar 

  • Sebastiani G, Wilkinson N, Pantopoulos K (2016) Pharmacological targeting of the hepcidin/ferroportin axis. Front Pharmacol 7:160

    Article  Google Scholar 

  • Shen W-B, Plachez C, Chan A, Yarnell D, Puche AC, Fishman PS, Yarowsky P (2013) Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B. Int J Nanomedicine 8:84593–4600

    Google Scholar 

  • Sherwood J, Lovas K, Rich M, Yin Q, Lackey K, Bolding M, Bao Y (2016) Shape-dependent cellular behaviors and relaxivity of iron oxide-based T 1 MRI contrast agents. Nanoscale 8(40):17506–17515

    Article  Google Scholar 

  • Shvartsman M, Ioav Cabantchik Z (2012) Intracellular iron trafficking: role of cytosolic ligands. Biometals 25:711–723

    Article  Google Scholar 

  • Silva B, Faustino P (2015) An overview of molecular basis of iron metabolism regulation and the associated pathologies. Biochim Biophys Acta (BBA)-Mol Basis Dis 1852(7):1347–1359

    Google Scholar 

  • Skaar EP, Raffatellu M (2015) Metals in infectious diseases and nutritional immunity. Metallomics 7(6):926–928

    Article  Google Scholar 

  • Skotland T, Sontum PC, Oulie I (2002) In vitro stability analyses as a model for metabolism of ferromagnetic particles (Clariscan™), a contrast agent for magnetic resonance imaging. J Pharm Biomed Anal 28(2):323–329

    Article  Google Scholar 

  • Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605

    Article  Google Scholar 

  • Soares MP, Hamza I (2016) Macrophages and iron metabolism. Immunity 44(3):492–504

    Article  Google Scholar 

  • Soares MP, Weiss G (2015) The Iron age of host–microbe interactions. EMBO Rep 16(11):1482–1500

    Article  Google Scholar 

  • Soenen SJ, Himmelreich U, Nuytten N, De Cuyper M (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32(1):195–205

    Article  Google Scholar 

  • Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, Li Y, Wang X, Liu G, Liu Z (2014) Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Func Mater 24(9):1194–1201

    Article  Google Scholar 

  • Song M, Schuschke DA, Zhou Z, Zhong W, Zhang J, Zhang X, Wang Y, McClain CJ (2015) Kupffer cell depletion protects against the steatosis, but not the liver damage, induced by marginal-copper, high-fructose diet in male rats. Am J Physiol-Gastrointest Liver Physiol 308(11):G934–G945

    Google Scholar 

  • Sprangers S, Vries TJd, Everts V (2016) Monocyte heterogeneity: consequences for monocyte-derived immune cells. J Immunol Res 2016:1–10

    Google Scholar 

  • Steinbicker AU, Muckenthaler MU (2013) Out of balance—systemic iron homeostasis in iron-related disorders. Nutrients 5(8):3034–3061

    Article  Google Scholar 

  • Sukhbaatar N, Weichhart T (2018) Iron regulation: macrophages in control. Pharmaceuticals 11(4):137

    Article  Google Scholar 

  • Tang H, Sha H, Sun H, Wu X, Xie L, Wang P, Xu C, Larsen C, Zhang HL, Gong Y (2013) Tracking induced pluripotent stem cells–derived neural stem cells in the central nervous system of rats and monkeys. Cell Reprogramming (Formerly “Cloning and Stem Cells”) 15(5):435–442

    Google Scholar 

  • Theurl M, Theurl I, Hochegger K, Obrist P, Subramaniam N, van Rooijen N, Schuemann K, Weiss G (2008) Kupffer cells modulate iron homeostasis in mice via regulation of hepcidin expression. J Mol Med 86:825–835

    Article  Google Scholar 

  • Tong H-I, Kang W, Shi Y, Zhou G, Lu Y (2016) Physiological function and inflamed-brain migration of mouse monocyte-derived macrophages following cellular uptake of superparamagnetic iron oxide nanoparticles—implication of macrophage-based drug delivery into the central nervous system. Int J Pharm 505(1–2):271–282

    Article  Google Scholar 

  • Umashankar A, Corenblum MJ, Ray S, Valdez M, Yoshimaru ES, Trouard TP, Madhavan L (2016) Effects of the iron oxide nanoparticle Molday ION Rhodamine B on the viability and regenerative function of neural stem cells: relevance to clinical translation. Int J Nanomed 11:1731

    Google Scholar 

  • van Furth R, Cohn ZA (1968) The origin and kinetics of mononuclear phagocytes. J Exp Med 128(3):415–435

    Article  Google Scholar 

  • van Furth R, Cohn Z, Hirsch J, Humphrey J, Spector W, Langevoort H (1972) The mononuclear phagocyte system: a new classification of macrophages, monocytes, and their precursor cells. Bull World Health Organ 46(6):845

    Google Scholar 

  • Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle-cell interactions. Small 6(1):12–21

    Google Scholar 

  • Vogt A-CS, Arsiwala T, Mohsen M, Vogel M, Manolova V, Bachmann MF (2021) On iron metabolism and its regulation. Int J Mol Sci 22(9):4591

    Article  Google Scholar 

  • Wahajuddin n, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Google Scholar 

  • Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot J-D (2014) Physiology of iron metabolism. Transfus Med Hemotherapy 41(3):213–221

    Article  Google Scholar 

  • Wallace DF (2016) The regulation of iron absorption and homeostasis. Clin Biochem Rev 37(2):51

    Google Scholar 

  • Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF, Huang YY, Xie YN (2007) Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118:233–243

    Article  Google Scholar 

  • Wang L, Cherayil BJ (2009) Ironing out the wrinkles in host defense: interactions between iron homeostasis and innate immunity. J Innate Immun 1(5):455–464

    Article  Google Scholar 

  • Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X (2010) Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomedicine 5:861–866

    Google Scholar 

  • Wang X, Wei F, Liu A, Wang L, Wang J-C, Ren L, Liu W, Tu Q, Li L, Wang J (2012) Cancer stem cell labeling using poly (L-lysine)-modified iron oxide nanoparticles. Biomaterials 33(14):3719–3732

    Article  Google Scholar 

  • Wang N, Zhao JY, Guan X, Dong Y, Liu Y, Zhou X, WuRa, Du Y, Zhao L, Zou W (2015) Biological characteristics of adipose tissue‐derived stem cells labeled with amine‐surface‐modified superparamagnetic iron oxide nanoparticles. Cell Biol Int 39(8):899–909

    Google Scholar 

  • Ward RJ, Crichton RR, Taylor DL, Corte LD, Srai SK, Dexter DT (2011) Iron and the immune system. J Neural Transm 118:315–328

    Article  Google Scholar 

  • Weed RI, Reed CF, Berg G (1963) Is hemoglobin an essential structural component of human erythrocyte membranes? J Clin Investig 42(4):581–588

    Article  Google Scholar 

  • Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC, White DL, Jacobs P, Lewis J (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. Am J Roentgenol 152(1):167–173

    Article  Google Scholar 

  • Wen X, Wang Y, Zhang F, Zhang X, Lu L, Shuai X, Shen J (2014) In vivo monitoring of neural stem cells after transplantation in acute cerebral infarction with dual-modal MR imaging and optical imaging. Biomaterials 35(16):4627–4635

    Article  Google Scholar 

  • White C, Yuan X, Schmidt PJ, Bresciani E, Samuel TK, Campagna D, Hall C, Bishop K, Calicchio ML, Lapierre A (2013) HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab 17(2):261–270

    Article  Google Scholar 

  • Wilkinson N, Pantopoulos K (2014) The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol 5:176

    Article  Google Scholar 

  • Winn NC, Volk KM, Hasty AH (2020) Regulation of tissue iron homeostasis: the macrophage “ferrostat”. JCI Insight 5(2)

    Google Scholar 

  • Wu H-Y, Chung M-C, Wang C-C, Huang C-H, Liang H-J, Jan T-R (2013a) Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part Fibre Toxicol 10(1):1–11

    Article  Google Scholar 

  • Wu J, Ding T, Sun J (2013b) Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 34:243–253

    Article  Google Scholar 

  • Wu W, Wu Z, Yu T, Jiang C, Kim W-S (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):023501

    Article  Google Scholar 

  • Wu VM, Huynh E, Tang S, Uskoković V (2019) Brain and bone cancer targeting by a ferrofluid composed of superparamagnetic iron-oxide/silica/carbon nanoparticles (earthicles). Acta Biomater 88:422–447

    Article  Google Scholar 

  • Yang C-Y, Tai M-F, Lin C-P, Lu C-W, Wang J-L, Hsiao J-K, Liu H-M (2011) Mechanism of cellular uptake and impact of ferucarbotran on macrophage physiology. PLoS ONE 6(9):e25524

    Article  Google Scholar 

  • Yang WJ, Lee JH, Hong SC, Lee J, Lee J, Han D-W (2013) Difference between toxicities of iron oxide magnetic nanoparticles with various surface-functional groups against human normal fibroblasts and fibrosarcoma cells. Materials 6(10):4689–4706

    Article  Google Scholar 

  • Yao D, Liu N-N, Mo B-W (2020) Assessment of proliferation, migration and differentiation potentials of bone marrow mesenchymal stem cells labeling with silica-coated and amine-modified superparamagnetic iron oxide nanoparticles. Cytotechnology 72(4):513–525

    Article  Google Scholar 

  • Yeo JH, Colonne CK, Tasneem N, Cosgriff MP, Fraser ST (2019) The iron islands: erythroblastic islands and iron metabolism. Biochim Biophys Acta (BBA)-Gen Subj 1863(2):466–471

    Google Scholar 

  • Yuan M, Wang Y, Qin Y-X (2019) Engineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. Nanomedicine: Nanotechnol Biol Med 21:102052

    Google Scholar 

  • Zanotelli MR, Goldblatt ZE, Miller JP, Bordeleau F, Li J, VanderBurgh JA, Lampi MC, King MR, Reinhart-King CA (2018) Regulation of ATP utilization during metastatic cell migration by collagen architecture. Mol Biol Cell 29(1):1–9

    Article  Google Scholar 

  • Zhang Y, Zhu L, Zhou Y, Chen J (2015) Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci 30:223–230

    Article  Google Scholar 

  • Zhao Z (2019) Iron and oxidizing species in oxidative stress and Alzheimer’s disease. Aging Med 2(2):82–87

    Article  Google Scholar 

  • Zhao S, Yu X, Qian Y, Chen W, Shen J (2020) Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics 10(14):6278

    Article  Google Scholar 

  • Zhou ZD, Tan E-K (2017) Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol Neurodegener 12(1):1–12

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Nabil Savari .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Savari, MN., Jabali, A. (2023). Pharmacokinetics of IONPs. In: Theranostic Iron-Oxide Based Nanoplatforms in Oncology. Nanomedicine and Nanotoxicology. Springer, Singapore. https://doi.org/10.1007/978-981-99-6507-6_5

Download citation

Publish with us

Policies and ethics