Skip to main content

Advertisement

Log in

Uptake and Metabolism of Iron Oxide Nanoparticles in Brain Cells

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    CAS  PubMed  Google Scholar 

  2. Treccani L, Yvonne Klein T, Meder F, Pardun K, Rezwan K (2013) Functionalized ceramics for biomedical, biotechnological and environmental applications. Acta Biomater 9:7115–7150

    CAS  PubMed  Google Scholar 

  3. Kim T, Hyeon T (2014) Applications of inorganic nanoparticles as therapeutic agents. Nanotechnology 25:012001

    PubMed  Google Scholar 

  4. Roopan SM, Surendra TV, Elango G, Kumar SH (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98:5289–5300

    CAS  PubMed  Google Scholar 

  5. Wang D, Lin B, Ai H (2014) Theranostic nanoparticles for cancer and cardiovascular applications. Pharm Res 31:1390–1406

    CAS  PubMed  Google Scholar 

  6. Singh A, Sahoo SK (2014) Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov Today 19:474–481

    CAS  PubMed  Google Scholar 

  7. Raj S, Jose S, Sumod US, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Hajipour MJ, Fromm KM, Ashkarran AA, Jimenez de Aberasturi D, de Larramendi IR, Rojo T, Serpooshan V, Parak WJ, Mahmoudi M (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    CAS  PubMed  Google Scholar 

  9. Banobre-Lopez M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18:397–400

    PubMed  Google Scholar 

  10. Hohnholt MC, Geppert M, Luther EM, Petters C, Bulcke F, Dringen R (2013) Handling of iron oxide and silver nanoparticles by astrocytes. Neurochem Res 38:227–239

    CAS  PubMed  Google Scholar 

  11. Li L, Jiang W, Luo K, Song H, Lan F, Wu Y, Gu Z (2013) Superparamagnetic iron oxide nanoparticles as MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3:595–615

    PubMed Central  PubMed  Google Scholar 

  12. Mahmoudi M, Stroeve P, Milani AS, Arbab AS (2011) Superparamagnetic iron oxide nanoparticles: synthesis, surface engineering, cytotoxicity and biomedical applications. Nova Science, New York

    Google Scholar 

  13. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, Orawa H, Budach V, Jordan A (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324

    PubMed Central  PubMed  Google Scholar 

  14. Suh WH, Suslick KS, Stucky GD, Suh YH (2009) Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87:133–170

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Weinstein JS, Varallyay CG, Dosa E, Gahramanov S, Hamilton B, Rooney WD, Muldoon LL, Neuwelt EA (2010) Superparamagnetic iron oxide nanoparticles: diagnostic magnetic resonance imaging and potential therapeutic applications in neurooncology and central nervous system inflammatory pathologies, a review. J Cereb Blood Flow Metab 30:15–35

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Winer JL, Kim PE, Law M, Liu CY, Apuzzo MLJ (2011) Visualizing the future: enhancing neuroimaging with nanotechnology. World Neurosurg 75:626–637

    PubMed  Google Scholar 

  17. Mahmoudi M, Hofmann H, Rothen-Rutishauser B, Petri-Fink A (2012) Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles. Chem Rev 112:2323–2338

    CAS  PubMed  Google Scholar 

  18. Soenen SJ, De Cuyper M, De Smedt SC, Braeckmans K (2012) Investigating the toxic effects of iron oxide nanoparticles. Methods Enzymol 509:195–224

    CAS  PubMed  Google Scholar 

  19. Hare D, Ayton S, Bush A, Lei P (2013) A delicate balance: iron metabolism and diseases of the brain. Front Aging Neurosci 5:34

    PubMed Central  PubMed  Google Scholar 

  20. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14:551–564

    CAS  PubMed  Google Scholar 

  21. Turcheniuk K, Tarasevych AV, Kukhar VP, Boukherroub R, Szunerits S (2013) Recent advances in surface chemistry strategies for the fabrication of functional iron oxide based magnetic nanoparticles. Nanoscale 5:10729–10752

    CAS  PubMed  Google Scholar 

  22. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13

    Google Scholar 

  23. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    CAS  PubMed  Google Scholar 

  24. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    CAS  PubMed  Google Scholar 

  25. Zhang L, Dong WF, Sun HB (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5:7664–7684

    CAS  PubMed  Google Scholar 

  26. Santhosh PB, Ulrih NP (2013) Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics. Cancer Lett 336:8–17

    CAS  PubMed  Google Scholar 

  27. Colombo M, Carregal-Romero S, Casula MF, Gutierrez L, Morales MP, Bohm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    CAS  PubMed  Google Scholar 

  28. Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S (2010) Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J 6:e12

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Babes L, Denizot B, Tanguy G, Le Jeune JJ, Jallet P (1999) Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J Colloid Interface Sci 212:474–482

    CAS  PubMed  Google Scholar 

  30. Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40:6315–6343

    CAS  PubMed  Google Scholar 

  31. Nel AE, Madler L, Velegol D, Xia T, Hoek EM, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    CAS  PubMed  Google Scholar 

  32. Bertorelle F, Wilhelm C, Roger J, Gazeau F, Menager C, Cabuil V (2006) Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22:5385–5391

    CAS  PubMed  Google Scholar 

  33. Ge YQ, Zhang Y, He SY, Nie F, Teng GJ, Gu N (2009) Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res Lett 4:287–295

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Petters C, Bulcke F, Thiel K, Bickmeyer U, Dringen R (2014) Uptake of fluorescent iron oxide nanoparticles by oligodendroglial OLN-93 cells. Neurochem Res 39:372–383

    CAS  PubMed  Google Scholar 

  35. Yan F, Wang Y, He SZ, Ku ST, Gu W, Ye L (2013) Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood-brain barrier. J Mater Sci Mater Med 24:2371–2379

    CAS  PubMed  Google Scholar 

  36. Agemy L, Friedmann-Morvinski D, Kotamraju VR, Roth L, Sugahara KN, Girard OM, Mattrey RF, Verma IM, Ruoslahti E (2011) Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proc Natl Acad Sci USA 108:17450–17455

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kumar M, Singh G, Arora V, Mewar S, Sharma U, Jagannathan NR, Sapra S, Dinda AK, Kharbanda S, Singh H (2012) Cellular interaction of folic acid conjugated superparamagnetic iron oxide nanoparticles and its use as contrast agent for targeted magnetic imaging of tumor cells. Int J Nanomed 7:3503–3516

    CAS  Google Scholar 

  38. Hassan EE, Gallo JM (1993) Targeting anticancer drugs to the brain. I: enhanced brain delivery of oxantrazole following administration in magnetic cationic microspheres. J Drug Target 1:7–14

    CAS  PubMed  Google Scholar 

  39. Jenkins SI, Pickard MR, Granger N, Chari DM (2011) Magnetic nanoparticle-mediated gene transfer to oligodendrocyte precursor cell transplant populations is enhanced by magnetofection strategies. ACS Nano 5:6527–6538

    CAS  PubMed  Google Scholar 

  40. Krotz F, de Wit C, Sohn HY, Zahler S, Gloe T, Pohl U, Plank C (2003) Magnetofection—a highly efficient tool for antisense oligonucleotide delivery in vitro and in vivo. Mol Ther 7:700–710

    CAS  PubMed  Google Scholar 

  41. Kumar M, Yigit M, Dai G, Moore A, Medarova Z (2010) Image-guided breast tumor therapy using a small interfering RNA nanodrug. Cancer Res 70:7553–7561

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Lam T, Pouliot P, Avti PK, Lesage F, Kakkar AK (2013) Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 199–200:95–113

    PubMed  Google Scholar 

  43. Pai AB, Garba AO (2012) Ferumoxytol: a silver lining in the treatment of anemia of chronic kidney disease or another dark cloud? J Blood Med 3:77–85

    PubMed Central  PubMed  Google Scholar 

  44. McCormack PL (2012) Ferumoxytol: in iron deficiency anaemia in adults with chronic kidney disease. Drugs 72:2013–2022

    CAS  PubMed  Google Scholar 

  45. Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433

    CAS  PubMed  Google Scholar 

  46. Maurizi L, Bisht H, Bouyer F, Millot N (2009) Easy route to functionalize iron oxide nanoparticles via long-term stable thiol groups. Langmuir 25:8857–8859

    CAS  PubMed  Google Scholar 

  47. He X, Wu X, Cai X, Lin S, Xie M, Zhu X, Yan D (2012) Functionalization of magnetic nanoparticles with dendritic–linear–brush-like triblock copolymers and their drug release properties. Langmuir 28:11929–11938

    CAS  PubMed  Google Scholar 

  48. Amiri H, Bordonali L, Lascialfari A, Wan S, Monopoli MP, Lynch I, Laurent S, Mahmoudi M (2013) Protein corona affects the relaxivity and MRI contrast efficiency of magnetic nanoparticles. Nanoscale 5:8656–8665

    CAS  PubMed  Google Scholar 

  49. Mu QX, Li ZW, Li X, Mishra SR, Zhang B, Si ZK, Yang L, Jiang W, Yan B (2009) Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells. J Phys Chem C 113:5390–5395

    CAS  Google Scholar 

  50. Jansch M, Stumpf P, Graf C, Ruhl E, Muller RH (2012) Adsorption kinetics of plasma proteins on ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles. Int J Pharm 428:125–133

    CAS  PubMed  Google Scholar 

  51. Saptarshi SR, Duschl A, Lopata AL (2013) Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol 11:26–37

    CAS  Google Scholar 

  52. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    CAS  PubMed  Google Scholar 

  53. Monopoli MP, Aberg C, Salvati A, Dawson KA (2012) Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 7:779–786

    CAS  PubMed  Google Scholar 

  54. Mahmoudi M, Meng J, Xue X, Liang XJ, Rahman M, Pfeiffer C, Hartmann R, Gil PR, Pelaz B, Parak WJ, Del Pino P, Carregal-Romero S, Kanaras AG, Tamil Selvan S (2014) Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnol Adv 32:679–692

    CAS  PubMed  Google Scholar 

  55. Bajaj A, Samanta B, Yan HH, Jerry DJ, Rotello VM (2009) Stability, toxicity and differential cellular uptake of protein passivated-Fe3O4 nanoparticles. J Mater Chem 19:6328–6331

    CAS  Google Scholar 

  56. Geppert M, Petters C, Thiel K, Dringen R (2013) The presence of serum alters the properties of iron oxide nanoparticles and lowers their accumulation by cultured brain astrocytes. J Nanopart Res 15:1349–1363

    Google Scholar 

  57. Safi M, Courtois J, Seigneuret M, Conjeaud H, Berret JF (2011) The effects of aggregation and protein corona on the cellular internalization of iron oxide nanoparticles. Biomaterials 32:9353–9363

    CAS  PubMed  Google Scholar 

  58. Wang B, Feng WY, Wang M, Shi JW, Zhang F, Ouyang H, Zhao YL, Chai ZF, Huang YY, Xie YN, Wang HF, Wang J (2007) Transport of intranasally instilled fine Fe2O3 particles into the brain: micro-distribution, chemical states, and histopathological observation. Biol Trace Elem Res 118:233–243

    CAS  PubMed  Google Scholar 

  59. Wu J, Ding TT, Sun J (2013) Neurotoxic potential of iron oxide nanoparticles in the rat brain striatum and hippocampus. Neurotoxicology 34:243–253

    CAS  PubMed  Google Scholar 

  60. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347

    CAS  PubMed  Google Scholar 

  61. Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6

    PubMed  Google Scholar 

  62. Liu CH, Ren JQ, You Z, Yang J, Liu CM, Uppal R, Liu PK (2012) Noninvasive detection of neural progenitor cells in living brains by MRI. FASEB J 26:1652–1662

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V (2008) Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharm 5:316–327

    CAS  PubMed  Google Scholar 

  64. Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, Cheng J, Jin N, Zhou Y, Li X, Tang M, Wang XM (2010) Pharmacokinetic parameters and tissue distribution of magnetic Fe(3)O(4) nanoparticles in mice. Int J Nanomed 5:861–866

    CAS  Google Scholar 

  65. Ku S, Yan F, Wang Y, Sun Y, Yang N, Ye L (2010) The blood-brain barrier penetration and distribution of PEGylated fluorescein-doped magnetic silica nanoparticles in rat brain. Biochem Biophys Res Commun 394:871–876

    CAS  PubMed  Google Scholar 

  66. Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE (1987) Receptor-mediated transcytosis of transferrin across the blood–brain-barrier. J Neurosci Res 18:299–304

    CAS  PubMed  Google Scholar 

  67. Dan M, Cochran DB, Yokel RA, Dziubla TD (2013) Binding, transcytosis and biodistribution of anti-PECAM-1 iron oxide nanoparticles for brain-targeted delivery. PLoS One 8:e81051

    PubMed Central  PubMed  Google Scholar 

  68. Cupaioli FA, Zucca FA, Boraschi D, Zecca L (2014) Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol (in press)

  69. Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M (2013) Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev 113:1877–1903

    CAS  PubMed  Google Scholar 

  70. Hoff D, Sheikh L, Bhattacharya S, Nayar S, Webster TJ (2013) Comparison study of ferrofluid and powder iron oxide nanoparticle permeability across the blood–brain barrier. Int J Nanomed 8:703–710

    Google Scholar 

  71. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, Visser GM, Moos T (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4:1352–1360

    CAS  PubMed  Google Scholar 

  72. Kenzaoui BH, Bernasconi CC, Hofmann H, Juillerat-Jeanneret L (2012) Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine 7:39–53

    CAS  PubMed  Google Scholar 

  73. Weise G, Stoll G (2012) Magnetic resonance imaging of blood brain/nerve barrier dysfunction and leukocyte infiltration: closely related or discordant? Front Neurol 3:178

    PubMed Central  PubMed  Google Scholar 

  74. Mejias R, Perez-Yague S, Roca AG, Perez N, Villanueva A, Canete M, Manes S, Ruiz-Cabello J, Benito M, Labarta A, Batlle X, Veintemillas-Verdaguer S, Morales MP, Barber DF, Serna CJ (2010) Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles. Nanomedicine (Lond) 5:397–408

    CAS  Google Scholar 

  75. Taschner CA, Wetzel SG, Tolnay M, Froehlich J, Merlo A, Radue EW (2005) Characteristics of ultrasmall superparamagnetic iron oxides in patients with brain tumors. Am J Roentgenol 185:1477–1486

    Google Scholar 

  76. van Landeghem FKH, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, Thiesen B, Bruck W, von Deimling A (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57

    PubMed  Google Scholar 

  77. Zimmer C, Weissleder R, Oconnor D, Lapointe L, Brady TJ, Enochs WS (1995) Cerebral iron-oxide distribution: in vivo mapping with MR imaging. Radiology 196:521–527

    CAS  PubMed  Google Scholar 

  78. Wang Y, Wang B, Zhu MT, Li M, Wang HJ, Wang M, Ouyang H, Chai ZF, Feng WY, Zhao YL (2011) Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure. Toxicol Lett 205:26–37

    CAS  PubMed  Google Scholar 

  79. Kumari M, Rajak S, Singh SP, Murty US, Mahboob M, Grover P, Rahman MF (2013) Biochemical alterations induced by acute oral doses of iron oxide nanoparticles in Wistar rats. Drug Chem Toxicol 36:296–305

    CAS  PubMed  Google Scholar 

  80. Muldoon LL, Sandor M, Pinkston KE, Neuwelt EA (2005) Imaging, distribution, and toxicity of superparamagnetic iron oxide magnetic resonance nanoparticles in the rat brain and intracerebral tumor. Neurosurgery 57:785–796

    PubMed  Google Scholar 

  81. Wang FH, Kim DK, Yoshitake T, Johansson SM, Bjelke B, Muhammed M, Kehr J (2011) Diffusion and clearance of superparamagnetic iron oxide nanoparticles infused into the rat striatum studied by MRI and histochemical techniques. Nanotechnology 22:015103

    CAS  PubMed  Google Scholar 

  82. Neuwelt EA, Várallyay P, Bagó AG, Muldoon LL, Nesbit G, Nixon R (2004) Imaging of iron oxide nanoparticles by MR and light microscopy in patients with malignant brain tumours. Neuropathol Appl Neurobiol 30:456–471

    CAS  PubMed  Google Scholar 

  83. Kim Y, Kong SD, Chen LH, Pisanic TR 2nd, Jin S, Shubayev VI (2013) In vivo nanoneurotoxicity screening using oxidative stress and neuroinflammation paradigms. Nanomedicine 9:1057–1066

    CAS  PubMed  Google Scholar 

  84. Dobson J (2001) Nanoscale biogenic iron oxides and neurodegenerative disease. FEBS Lett 496:1–5

    CAS  PubMed  Google Scholar 

  85. An L, Liu S, Yang Z, Zhang T (2012) Cognitive impairment in rats induced by nano-CuO and its possible mechanisms. Toxicol Lett 213:220–227

    CAS  PubMed  Google Scholar 

  86. Hu R, Gong X, Duan Y, Li N, Che Y, Cui Y, Zhou M, Liu C, Wang H, Hong F (2010) Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles. Biomaterials 31:8043–8050

    CAS  PubMed  Google Scholar 

  87. Sharma HS, Sharma A (2012) Neurotoxicity of engineered nanoparticles from metals. CNS Neurol Disord Drug Targets 11:65–80

    CAS  PubMed  Google Scholar 

  88. Levy M, Lagarde F, Maraloiu VA, Blanchin MG, Gendron F, Wilhelm C, Gazeau F (2010) Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 21:395103

    PubMed  Google Scholar 

  89. Voinov MA, Pagan JOS, Morrison E, Smirnova TI, Smirnov AI (2011) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133:35–41

    CAS  PubMed  Google Scholar 

  90. Tulpule K, Hohnholt MC, Hirrlinger J, Dringen R (2014) Primary cultures of astrocytes and neurons as model systems to study the metabolism and metabolite export from brain cells. In: Waagepetersen H, Hirrlinger J (eds) Neuromethods: brain energy metabolism. Springer, Heidelberg (in press)

  91. Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588

    CAS  PubMed  Google Scholar 

  92. Hohnholt MC, Dringen R (2013) Uptake and metabolism of iron and iron oxide nanoparticles in brain astrocytes. Biochem Soc Trans 41:1588–1592

    CAS  PubMed  Google Scholar 

  93. Sun ZZ, Yathindranath V, Worden M, Thliveris JA, Chu S, Parkinson FE, Hegmann T, Miller DW (2013) Characterization of cellular uptake and toxicity of aminosilane-coated iron oxide nanoparticles with different charges in central nervous system-relevant cell culture models. Int J Nanomed 8:961–970

    Google Scholar 

  94. Lamkowsky MC, Geppert M, Schmidt MM, Dringen R (2012) Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes. J Biomed Mater Res A 100A:323–334

    CAS  Google Scholar 

  95. Kenzaoui BH, Vila MR, Miquel JM, Cengelli F, Juillerat-Jeanneret L (2012) Evaluation of uptake and transport of cationic and anionic ultrasmall iron oxide nanoparticles by human colon cells. Int J Nanomed 7:1275–1286

    CAS  Google Scholar 

  96. Schweiger C, Hartmann R, Zhang F, Parak WJ, Kissel TH, Rivera Gil P (2012) Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. J Nanobiotechnology 10:28–38

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Geppert M, Hohnholt M, Gaetjen L, Grunwald I, Baumer M, Dringen R (2009) Accumulation of iron oxide nanoparticles by cultured brain astrocytes. J Biomed Nanotechnol 5:285–293

    CAS  PubMed  Google Scholar 

  98. Geppert M, Hohnholt MC, Thiel K, Nurnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22:145101

    PubMed  Google Scholar 

  99. Pickard MR, Jenkins SI, Koller CJ, Furness DN, Chari DM (2010) Magnetic nanoparticle labeling of astrocytes derived for neural transplantation. Tissue Eng Part C Methods 17:89–99

    Google Scholar 

  100. Geppert M, Hohnholt MC, Nurnberger S, Dringen R (2012) Ferritin up-regulation and transient ROS production in cultured brain astrocytes after loading with iron oxide nanoparticles. Acta Biomater 8:3832–3839

    CAS  PubMed  Google Scholar 

  101. Pinkernelle J, Calatayud P, Goya GF, Fansa H, Keilhoff G (2012) Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci 13:32–48

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Fleige G, Nolte C, Synowitz M, Seeberger F, Kettenmann H, Zimmer C (2001) Magnetic labeling of activated microglia in experimental gliomas. Neoplasia 3:489–499

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Luther EM, Petters C, Bulcke F, Kaltz A, Thiel K, Bickmeyer U, Dringen R (2013) Endocytotic uptake of iron oxide nanoparticles by cultured brain microglial cells. Acta Biomater 9:8454–8465

    CAS  PubMed  Google Scholar 

  104. Wu HY, Chung MC, Wang CC, Huang CH, Liang HJ, Jan TR (2013) Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Part Fibre Toxicol 10:46–56

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Jenkins SI, Pickard MR, Furness DN, Yiu HH, Chari DM (2013) Differences in magnetic particle uptake by CNS neuroglial subclasses: implications for neural tissue engineering. Nanomedicine (Lond) 8:951–968

    CAS  Google Scholar 

  106. Pickard MR, Chari DM (2010) Robust uptake of magnetic nanoparticles (MNPs) by central nervous system (CNS) microglia: implications for particle uptake in mixed neural cell populations. Int J Mol Sci 11:967–981

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402

    CAS  PubMed  Google Scholar 

  108. Xue Y, Wu J, Sun J (2012) Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro. Toxicol Lett 214:91–98

    CAS  PubMed  Google Scholar 

  109. Cengelli F, Maysinger D, Tschudi-Monnet F, Montet X, Corot C, Petri-Fink A, Hofmann H, Juillerat-Jeanneret L (2006) Interaction of functionalized superparamagnetic iron oxide nanoparticles with brain structures. J Pharmacol Exp Ther 318:108–116

    CAS  PubMed  Google Scholar 

  110. Richter-Landsberg C, Heinrich M (1996) OLN-93: a new permanent oligodendroglia cell line derived from primary rat brain glial cultures. J Neurosci Res 45:161–173

    CAS  PubMed  Google Scholar 

  111. Hohnholt M, Geppert M, Dringen R (2010) Effects of iron chelators, iron salts, and iron oxide nanoparticles on the proliferation and the iron content of oligodendroglial OLN-93 cells. Neurochem Res 35:1259–1268

    CAS  PubMed  Google Scholar 

  112. Hohnholt MC, Dringen R (2011) Iron-dependent formation of reactive oxygen species and glutathione depletion after accumulation of magnetic iron oxide nanoparticles by oligodendroglial cells. J Nanopart Res 13:6761–6774

    CAS  Google Scholar 

  113. Hohnholt MC, Geppert M, Dringen R (2011) Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater 7:3946–3954

    CAS  PubMed  Google Scholar 

  114. Kim JA, Lee N, Kim BH, Rhee WJ, Yoon S, Hyeon T, Park TH (2011) Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials 32:2871–2877

    CAS  PubMed  Google Scholar 

  115. Deng M, Huang Z, Zou Y, Yin G, Liu J, Gu J (2014) Fabrication and neuron cytocompatibility of iron oxide nanoparticles coated with silk-fibroin peptides. Colloids Surf B Biointerfaces 116C:465–471

    Google Scholar 

  116. Pisanic TR 2nd, Blackwell JD, Shubayev VI, Finones RR, Jin S (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28:2572–2581

    CAS  PubMed  Google Scholar 

  117. Soenen SJ, Himmelreich U, Nuytten N, De Cuyper M (2011) Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labelling. Biomaterials 32:195–205

    CAS  PubMed  Google Scholar 

  118. Rivet CJ, Yuan Y, Borca-Tasciuc DA, Gilbert RJ (2012) Altering iron oxide nanoparticle surface properties induce cortical neuron cytotoxicity. Chem Res Toxicol 25:153–161

    CAS  PubMed  Google Scholar 

  119. Gramowski A, Flossdorf J, Bhattacharya K, Jonas L, Lantow M, Rahman Q, Schiffmann D, Weiss DG, Dopp E (2010) Nanoparticles induce changes of the electrical activity of neuronal networks on microelectrode array neurochips. Environ Health Perspect 118:1363–1369

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Winer JL, Liu CY, Apuzzo MLJ (2012) The use of nanoparticles as contrast media in neuroimaging: a statement on toxicity. World Neurosurg 78:709–711

    PubMed  Google Scholar 

  121. Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M (2011) Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell “vision” versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276

    CAS  PubMed  Google Scholar 

  122. Urrutia PJ, Mena NP, Nunez MT (2014) The interplay between iron accumulation, mitochondrial dysfunction, and inflammation during the execution step of neurodegenerative disorders. Front Pharmacol 5:38

    PubMed Central  PubMed  Google Scholar 

  123. Wong BX, Duce JA (2014) The iron regulatory capability of the major protein participants in prevalent neurodegenerative disorders. Front Pharmacol 5:81

    PubMed Central  PubMed  Google Scholar 

  124. Singh N, Pillay V, Choonara YE (2007) Advances in the treatment of Parkinson’s disease. Prog Neurobiol 81:29–44

    CAS  PubMed  Google Scholar 

  125. Wankhede M, Bouras A, Kaluzova M, Hadjipanayis CG (2012) Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy. Expert Rev Clin Pharmacol 5:173–186

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Lee Titsworth W, Murad GJ, Hoh BL, Rahman M (2014) Fighting fire with fire: the revival of thermotherapy for gliomas. Anticancer Res 34:565–574

    PubMed  Google Scholar 

  127. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Waldoefner N, Teichgraeber U, Pinkernelle J, Bruhn H, Neumann F, Thiesen B, von Deimling A, Felix R (2006) The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol 78:7–14

    CAS  PubMed  Google Scholar 

  128. Ding J, Tao K, Li J, Song S, Sun K (2010) Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles. Colloids Surf B Biointerfaces 79:184–190

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would very much like to thank Dr. Thomas Frederichs (University of Bremen) and Dr. Karsten Thiel (IFAM, Bremen) for their support in the characterization of our IONPs.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petters, C., Irrsack, E., Koch, M. et al. Uptake and Metabolism of Iron Oxide Nanoparticles in Brain Cells. Neurochem Res 39, 1648–1660 (2014). https://doi.org/10.1007/s11064-014-1380-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1380-5

Keywords

Navigation