Skip to main content

Approved Cholinesterase Inhibitor-Based Derivatives: Synthesis and Their Biological Evaluation

  • Chapter
  • First Online:
Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease

Abstract

Discovery of therapeutics for multifactorial diseases and disorders involving multiple pathophysiological pathways is still a challenge for the researchers. Alzheimer’s disease (AD) is one such disease that involves multiple largely ambiguous pathophysiological pathways, which makes it a challenging thrust area of research around the globe. The current approved drugs for the management of the disease include rivastigmine, donepezil, galantamine (all AChE inhibitors), and memantine (NMDA receptor antagonist). Furthermore, bulk of the research on AD focuses on multi-target directed ligand (MTDL) approach which involves combining together two or more distinct pharmacophores to obtain potent MTDLs. In this chapter, we have discussed synthesis and biological evaluation of the most active novel moieties developed on the basis of the existing anti-Alzheimer’s drugs reported in the last 5 years, along with the in silico overview of their interactions with the biological targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agatonovic-Kustrin S, Kettle C, Morton DW (2018) A molecular approach in drug development for Alzheimer’s disease. Biomed Pharmacother 106:553–565

    Article  CAS  PubMed  Google Scholar 

  • Asadipour A, Alipour M, Jafari M, Khoobi M, Emami S, Nadri H, Sakhteman A, Moradi A, Sheibani V, Homayouni Moghadam F, Shafiee A, Foroumadi A (2013) Novel coumarin-3-carboxamides bearing N-benzylpiperidine moiety as potent acetylcholinesterase inhibitors. Eur J Med Chem 70:623–630. https://doi.org/10.1016/j.ejmech.2013.10.024

    Article  CAS  PubMed  Google Scholar 

  • Ashraf GM, Tarasov VV, Makhmutovа A, Chubarev VN, Avila-Rodriguez M, Bachurin SO, Aliev G (2019) The possibility of an infectious etiology of Alzheimer disease. Mol Neurobiol 56(6):4479–4491. https://doi.org/10.1007/s12035-018-1388-y

    Article  CAS  PubMed  Google Scholar 

  • Barmade M, Shidore M, Rajyaguru S, Machhi J, Murumkar P, Yadav MR (2017) Design and development of pramipexole-donepezil hybrids as potential therapeutics for Alzheimer’s disease. Amer Chemical Soc 254

    Google Scholar 

  • Bar-On P, Millard CB, Harel M, Dvir H, Enz A, Sussman JL, Silman I (2002) Kinetic and structural studies on the interaction of Cholinesterases with the anti-Alzheimer drug Rivastigmine. Biochemistry 41(11):3555–3564

    Article  CAS  PubMed  Google Scholar 

  • Benchekroun M, Ismaili L, Pudlo M, Luzet V, Gharbi T, Refouvelet B, Marco-Contelles J (2015) Donepezil-Ferulic acid hybrids as anti-Alzheimer drugs. Future Med Chem 7(1):15–21. https://doi.org/10.4155/fmc.14.148

    Article  CAS  PubMed  Google Scholar 

  • Darreh-Shori T, Kumar R, Kumar A, Murumkar P, Nag S, Jia Z, Arakawa R, Leuzy A, Lemoine L, Nordberg A, Yadav MR, Halldin C, Långström B (2019) O5-06-06: ligands of the core acetylcholine biosynthesizing enzyme, choline acetyltransferase, as novel and potential therapeutic agents and in vivo pet tracers for early diagnosis of Alzheimer’s disease. Alzheimers Dement 15(7S_Part_31):P1630–P1630. https://doi.org/10.1016/j.jalz.2019.06.4869

    Article  Google Scholar 

  • Dgachi Y, Ismaili L, Knez D, Benchekroun M (2016) Synthesis and biological assessment of racemic benzochromenopyrimidinimines as antioxidant, cholinesterase, and a b 1 À 42 aggregation inhibitors for Alzheimer’s disease. Therapy 11:1318–1327. https://doi.org/10.1002/cmdc.201500539

    Article  CAS  Google Scholar 

  • Ekiz M, Tutar A, Ökten S, Koçyi ÜM (2018) Synthesis, characterization, and SAR of arylated Indenoquinoline-based cholinesterase and carbonic anhydrase inhibitors. Arch Pharm (Weinheim) 351(9):e1800167. https://doi.org/10.1002/ardp.201800167

    Article  CAS  PubMed  Google Scholar 

  • Estrada Valencia M, Herrera-Arozamena C, de Andrés L, Pérez C, Morales-García JA, Pérez-Castillo A, Ramos E, Romero A, Viña D, Yáñez M, Laurini E, Pricl S, Rodríguez-Franco MI (2018) Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer’s disease. Eur J Med Chem 156:534–553. https://doi.org/10.1016/j.ejmech.2018.07.026

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Bao F, Gu M, Liu J, Zhang Z, Ding J, Xie SS, Ding J (2020) Design, synthesis and evaluation of quinolinone derivatives containing dithiocarbamate moiety as multifunctional AChE inhibitors for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem. 35(1):118–128. https://doi.org/10.1080/14756366.2019.1687460

    Article  CAS  PubMed  Google Scholar 

  • Galdeano C, Viayna E, Arroyo P, Bidon-Chanal A, Ramon Blas J, Munoz-Torrero D, Javier Luque F (2012) Structural determinants of the multifunctional profile of dual binding site acetylcholinesterase inhibitors as anti-Alzheimer agents. Curr Pharm Des 16(25):2818–2836. https://doi.org/10.2174/138161210793176536

    Article  Google Scholar 

  • Ge S, Cai M, Pei G (2022) Frequency distribution of the hereditary Alzheimer’s disease-related genes seems to fit Poisson distribution, why? Cell Discov 8(1):73. https://doi.org/10.1038/s41421-022-00444-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacobini E (2004) Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 50(4):433–440

    Article  CAS  PubMed  Google Scholar 

  • Gupta RC (2014) Tacrine. In: Wexler PBT (ed) Encyclopedia of toxicology (third edition). Academic Press, Oxford, pp 466–467. https://doi.org/10.1016/B978-0-12-386454-3.00198-6

    Chapter  Google Scholar 

  • Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci 90(19):9031–9035. https://doi.org/10.1073/pnas.90.19.9031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heilbronn E (1961) Inhibition of cholinesterases by tetrahydroaminacrin. Acta Chem Scand 15(6):1386–1390

    Article  CAS  Google Scholar 

  • Hoffmann M, Stiller C, Endres E, Scheiner M, Gunesch S, Sotriffer C, Maurice T, Decker M (2019) Highly selective butyrylcholinesterase inhibitors with tunable duration of action by chemical modification of transferable carbamate units exhibit pronounced neuroprotective effect in an Alzheimer’s disease mouse model. J Med Chem 62(20):9116–9140. https://doi.org/10.1021/acs.jmedchem.9b01012

    Article  CAS  PubMed  Google Scholar 

  • Jalili-baleh L, Nadri H, Moradi A, Nasir S, Burkhart A, Shakibaie M, Jafari M, Golshani M, Moghadam FH, Firoozpour L, Asadipour A, Emami S, Khoobi M, Foroumadi A (2017) New racemic annulated pyrazolo[1,2-b]phthalazines as tacrine-like AChE inhibitors with potential use in Alzheimer’s disease. Eur J Med Chem 139:280. https://doi.org/10.1016/j.ejmech.2017.07.072

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Zhang Z, Zuo J, Wu C, Zha L, Xu Y, Wang S, Shi J, Liu XH, Zhang J, Tang W (2021) Novel cannabidiol−carbamate hybrids as selective BuChE inhibitors: docking-based fragment reassembly for the development of potential therapeutic agents against Alzheimer’s disease. Eur J Med Chem 223:113735. https://doi.org/10.1016/j.ejmech.2021.113735

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Cusack B, Davies MP, Fauq A, Rosenberry TL (2003) Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate. Biochemistry 42(18):5438–5452

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Murumkar P, Kumar R, Yadav MR, Darreh-Shori T (2019) P3-108: chat potentiating ligands (Cpls): a novel therapeutic strategy for the treatment of Alzheimer’s disease. Alzheimers Dement 15(7S_Part_18):P971–P971. https://doi.org/10.1016/j.jalz.2019.06.3136

    Article  Google Scholar 

  • Lane RM, He Y (2009) Emerging hypotheses regarding the influences of Butyrylcholinesterase-K variant, APOE Ε4, and Hyperhomocysteinemia in neurodegenerative dementias. Med Hypotheses 73(2):230–250

    Article  CAS  PubMed  Google Scholar 

  • Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172. https://doi.org/10.1038/s41582-020-00435-y

    Article  PubMed  Google Scholar 

  • Lin G, Chen G, Lu C, Yeh S (2005) QSARs for peripheral anionic site of butyrylcholinesterase with inhibitions by 4-Acyloxy-biphenyl-4′-N-butylcarbamates. QSAR Comb Sci 24(8):943–952

    Article  CAS  Google Scholar 

  • Martins FCOL, Batista AD, Melchert WR (2021) Current overview and perspectives in environmentally friendly microextractions of carbamates and dithiocarbamates. Compr Rev Food Sci Food Saf 20(6):6116–6145

    Article  CAS  PubMed  Google Scholar 

  • Martorana A, Esposito Z, Koch G (2010) Beyond the cholinergic hypothesis: do current drugs work in Alzheimer’s disease? CNS Neurosci Ther 16(4):235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Pang S, Zhang W, Lin Z, Bhatt P, Chen S (2021) Insights into the microbial degradation and biochemical mechanisms of carbamates. Chemosphere 279:130500

    Article  CAS  PubMed  Google Scholar 

  • Murumkar P, Sharma M, Gupta P, Patel N, Yadav MR (2023) Selection of suitable protein structure from protein data bank: an important step in structure-based drug design studies. Mini-Rev Med Chem 23(3):246–264. https://doi.org/10.2174/1389557522666220512151454

    Article  CAS  PubMed  Google Scholar 

  • Nachon F, Masson P, Nicolet Y, Lockridge O, Fontecilla-Camps JC (2003) Comparison of the structures of butyrylcholinesterase and acetylcholinesterase. butyrylcholinesterase its. Funct Inhib:39–54

    Google Scholar 

  • Pourabdi L, Khoobi M, Nadri H, Moradi A, Homayouni F (2016) SC. Eur J Med Chem 123:298. https://doi.org/10.1016/j.ejmech.2016.07.043

    Article  CAS  PubMed  Google Scholar 

  • Rampa A, Bartolini M, Bisi A, Belluti F, Gobbi S, Andrisano V, Ligresti A, Di Marzo V (2012) The first dual ChE/FAAH inhibitors: new perspectives for Alzheimer’s disease? ACS Med Chem Lett 3(3):182–186. https://doi.org/10.1021/ml200313p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sang Z, Pan W, Wang K, Ma Q, Yu L, Yang Y, Bai P, Leng C, Xu Q, Li X, Tan Z, Liu W (2017) Design, synthesis and evaluation of novel Ferulic acid-O-Alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 130:379–392. https://doi.org/10.1016/j.ejmech.2017.02.039

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Redman AMG, Jiang X, Lockridge O, Doctor BP (1997) Differences in active site gorge dimensions of Cholinesterases revealed by binding of inhibitors to human Butyrylcholinesterase. Biochemistry 36(48):14642–14651

    Article  CAS  PubMed  Google Scholar 

  • Saxena A, Redman AMG, Jiang X, Lockridge O, Doctor BP (1999) Differences in active-site gorge dimensions of Cholinesterases revealed by binding of inhibitors to human butyrylcholinesterase. Chem Biol Interact 119:61–69

    Article  PubMed  Google Scholar 

  • Saxena A, Fedorko JM, Vinayaka CR, Medhekar R, Radić Z, Taylor P, Lockridge O, Doctor BP (2003) Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept®) to cholinesterases. Eur J Biochem 270(22):4447–4458

    Article  CAS  PubMed  Google Scholar 

  • Scheiner M, Hoffmann M, He F, Poeta E, Chatonnet A, Monti B, Maurice T, Decker M (2021) Selective pseudo-irreversible butyrylcholinesterase inhibitors transferring antioxidant moieties to the enzyme show pronounced neuroprotective efficacy in vitro and in vivo in an Alzheimer’s disease mouse model. J Med Chem 64(13):9302–9320. https://doi.org/10.1021/acs.jmedchem.1c00534

    Article  CAS  PubMed  Google Scholar 

  • Shidore M, Machhi J, Shingala K, Murumkar P, Sharma MK, Agrawal N, Tripathi A, Parikh Z, Pillai P, Yadav MR (2016) Benzylpiperidine-linked diarylthiazoles as potential anti-Alzheimer’s agents: synthesis and biological evaluation. J Med Chem 59(12):5823–5846

    Article  CAS  PubMed  Google Scholar 

  • Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from torpedo Californica: a prototypic acetylcholine-binding protein. Science 253(5022):872–879. https://doi.org/10.1126/science.1678899

    Article  CAS  PubMed  Google Scholar 

  • Szegletes T, Mallender WD, Thomas PJ, Rosenberry TL (1999) Substrate binding to the peripheral site of acetylcholinesterase initiates enzymatic catalysis. Substrate inhibition arises as a secondary effect. Biochemistry 38(1):122–133

    Article  CAS  PubMed  Google Scholar 

  • Toublet FX, Lalut J, Hatat B, Lecoutey C, Davis A, Since M, Corvaisier S, Freret T, Sopková-de Oliveira Santos J, Claeysen S, Boulouard M, Dallemagne P, Rochais C (2021) Pleiotropic prodrugs: design of a dual butyrylcholinesterase inhibitor and 5-HT6 receptor antagonist with therapeutic interest in Alzheimer’s disease. Eur J Med Chem:210. https://doi.org/10.1016/j.ejmech.2020.113059

  • Venneri A, McGeown WJ, Shanks MF (2005) Empirical evidence of neuroprotection by dual cholinesterase inhibition in Alzheimer’s disease. Neuroreport 16(2):107–110

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wang Z-M, Li X-M, Li F, Wu J-J, Kong L-Y, Wang X-B (2016) Synthesis and evaluation of multi-target-directed ligands for the treatment of Alzheimer’s disease based on the fusion of donepezil and melatonin. Bioorg Med Chem 24(18):4324–4338. https://doi.org/10.1016/j.bmc.2016.07.025

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Pistolozzi M, Liu S, Tan W (2020) Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and Butyrylcholinesterase. Bioorganic Med Chem 28(5):115324. https://doi.org/10.1016/j.bmc.2020.115324

    Article  CAS  Google Scholar 

  • Yadav MR, Barmade MA, Chikhale RV, Murumkar PR (2018) Computational modelling of kinase inhibitors as anti-Alzheimer agents. In: Roy K (ed) Computational modeling of drugs against Alzheimer’s disease, Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_14

    Chapter  Google Scholar 

  • Yadav MR, Murumkar PR, Barot R, Yadav R, Joshi K, Chauhan M (2023a) Role of computational modeling in drug discovery for Alzheimer’s disease. In: Kar S, Leszczynski J (eds) Current trends in computational modeling for drug discovery. Challenges and advances in computational chemistry and physics, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-031-33871-7_3

    Chapter  Google Scholar 

  • Yadav MR, Murumkar PR, Yadav R, Joshi K (2023b) Chapter 3 - Structure-based virtual screening in drug discovery. In: Roy K (ed) Cheminformatics, QSAR and machine learning applications for novel drug development. Academic Press, pp 69–88. https://doi.org/10.1016/B978-0-443-18638-7.00006-2. isbn:9780443186387

  • Zhang H, Wang Y, Wang Y, Li X, Wang S, Wang Z (2022) Recent advance on carbamate-based cholinesterase inhibitors as potential multifunctional agents against Alzheimer’s disease. Eur J Med Chem 240:114606. https://doi.org/10.1016/j.ejmech.2022.114606

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Sun W, Peng J, Yan H, Zhang L, Liu X, Zuo Z (2019) Design, synthesis and biological evaluation of novel copper-chelating acetylcholinesterase inhibitors with pyridine and N-benzylpiperidine fragments. Bioorg Chem 93:103322. https://doi.org/10.1016/j.bioorg.2019.103322

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, M.R., Murumkar, P.R., Joshi, K., Barot, R., Yadav, R. (2023). Approved Cholinesterase Inhibitor-Based Derivatives: Synthesis and Their Biological Evaluation. In: Sharma, A., Modi, G.P. (eds) Natural Product-based Synthetic Drug Molecules in Alzheimer's Disease. Springer, Singapore. https://doi.org/10.1007/978-981-99-6038-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6038-5_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6037-8

  • Online ISBN: 978-981-99-6038-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics