Skip to main content

Advertisement

Log in

The Possibility of an Infectious Etiology of Alzheimer Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Over the past three decades, there has been constant postulation regarding the infectious etiology of Alzheimer disease (AD), which in turn suggests the vital role of various infectious agents in AD-associated inflammatory pathways. Recent findings indicate anti-microbial properties of Aβ, and suggest that Aβ production and deposition in AD might be induced by infectious agents. Several types of spirochetes have been associated to dementia, cortical atrophy, and pathological and biological hallmarks of AD. A significant association between AD spirochetes and other pathogens like HSV-1 and Chlamydia pneumonia has now become well established. In neurons infected by HSV-1 showed Aβ and hyperphosphorylated Tau accumulation. The expression of pro-inflammatory molecules have been found to be enhanced by specific bacterial ligands, and viral and bacterial DNA and RNA, thus activating the immune system. Aβ has now been established as anti-microbial peptide capable of inducing pore formation, thus justifying their infection-mediated accumulation. Thus, a proper combination of anti-inflammatory, anti-viral, and antibiotic therapeutics might potentially prevent the progression of AD. Here, we discussed the potential role of bacterial, fungi, and viral infections in AD causation and progression, and the potential-associated therapies to counter the AD condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACh:

acetylcholine

ACV:

acyclovir

AD:

Alzheimer disease

Aβ:

amyloid-β

APOE-e4:

apolipoprotein E-e4

BBB:

blood brain barrier

CNS:

central nervous system

CMV:

cytomegalovirus

HSE:

herpes simplex encephalitis

HSV:

herpes simplex virus

HD:

Huntington’s disease

HHV:

human herpesvirus

IVIG:

intravenous immunoglobulin

IAV:

influenza A virus

MS:

multiple sclerosis

NDDs:

neurodegenerative disorders

NFTs:

neurofibrillary tangles

PAMP:

pathogen-associated molecular patterns

PD:

Parkinson’s disease

PBL:

peripheral blood leukocytes

ROS:

reactive oxygen species

VZV:

varicella zoster virus

References

  1. Alzheimer’s A (2015) 2015 Alzheimer’s disease facts and figures. Alzheimers Dement 11:332–384

    Article  Google Scholar 

  2. Ansari SA, Satar R, Perveen A, Ashraf GM (2017) Current opinion in Alzheimer’s disease therapy by nanotechnology-based approaches. Curr Opin Psychiatry 30:128–135

    Article  PubMed  Google Scholar 

  3. Ashraf GM, Greig NH, Khan TA, Hassan I, Tabrez S, Shakil S, Sheikh IA, Zaidi SK et al (2014) Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets 13:1280–1293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blocq P, Marinescu G. Sur les lésions et la pathogénie de l'épilepsie dite essentielle S.L.: s.n.; 1892.

  5. Kumar A, Singh A, Ekavali N (2015) A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological reports: PR 67:195–203

    Article  CAS  PubMed  Google Scholar 

  6. Simchowicz T. Histologische Studien über die senile Demenz. Histologische und histopathologische Arbeiten über die Grosshirnrinde mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten [Texte imprimé] / herausgegeben von Franz Nissl,... 1911.

  7. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    Article  CAS  PubMed  Google Scholar 

  8. Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morphologica Academiae Scientiarum Hungaricae 19:1–8

    CAS  PubMed  Google Scholar 

  9. Mawanda F, Wallace R (2013) Can infections cause Alzheimer’s disease? Epidemiol Rev 35:161–180

    Article  PubMed  PubMed Central  Google Scholar 

  10. White MR, Kandel R, Tripathi S, Condon D, Qi L, Taubenberger J, Hartshorn KL (2014) Alzheimer’s associated β-amyloid protein inhibits influenza A virus and modulates viral interactions with phagocytes. PLoS One 9:e101364

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lim SL, Rodriguez-Ortiz CJ, Kitazawa M (2015) Infection, systemic inflammation, and Alzheimer’s disease. Microbes and Infection / Institut Pasteur 17:549–556

    Article  CAS  Google Scholar 

  12. Hardy J (1997) The Alzheimer family of diseases: many etiologies, one pathogenesis? Proc Natl Acad Sci U S A 94:2095–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li C, Zhao R, Gao K, Wei Z, Yin MY, Lau LT, Chui D, Yu ACH (2011) Astrocytes: implications for neuroinflammatory pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 8:67–80

    Article  PubMed  Google Scholar 

  14. Nagy Z (2005) The last neuronal division: a unifying hypothesis for the pathogenesis of Alzheimer’s disease. J Cell Mol Med 9:531–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aliev G, Burzynski G, Ashraf GM, Jabir NR, Cacabelos R, Benberin VV, Burzynski SR (2011) Implication of oxidative stress-induced oncogenic signaling pathways as a treatment strategy for neurodegeneration and cancer. In: Systems Biology of Free Radicals and Antioxidants. edited by Laher I. Springer Berlin Heidelberg; pp. 2325–2347.

    Chapter  Google Scholar 

  16. Aliev G, Priyadarshini M, Reddy VP, Grieg NH, Kaminsky Y, Cacabelos R, Ashraf GM, Jabir NR et al (2014) Oxidative stress mediated mitochondrial and vascular lesions as markers in the pathogenesis of Alzheimer disease. Curr Med Chem 21:2208–2217

    Article  CAS  PubMed  Google Scholar 

  17. Marx F, Blasko I, Pavelka M, Grubeck-Loebenstein B (1998) The possible role of the immune system in Alzheimer’s disease. Exp Gerontol 33:871–881

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Tan M-S, Jiang T, Tan L (2014) Microglia in Alzheimer’s disease. Biomed Res Int 2014:437483

    PubMed  PubMed Central  Google Scholar 

  19. Jacobs AH, Tavitian B (2012) Consortium IN. Noninvasive molecular imaging of neuroinflammation. J Cereb Blood Flow Metab 32:1393–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Całkosiński I, Dobrzyński M, Całkosińska M, Seweryn E, Bronowicka-Szydełko A, Dzierzba K, Ceremuga I, Gamian A (2009) Characterization of an inflammatory response. Postȩpy Higieny I Medycyny Doświadczalnej (Online) 63:395–408

    Google Scholar 

  21. Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol. Series A, Biol Sci Med Sci 69(Suppl 1):S4–S9

    Article  Google Scholar 

  22. Krstic D, Knuesel I (2013) Deciphering the mechanism underlying late-onset Alzheimer disease. Nat Rev Neurol 9:25–34

    Article  CAS  PubMed  Google Scholar 

  23. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science (New York, N.Y.) 217: 408–414, 1982.

    Article  CAS  PubMed  Google Scholar 

  24. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  CAS  PubMed  Google Scholar 

  25. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, Eikelenboom P et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McGeer PL, McGeer EG (2002) Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 8:529–538

    Article  CAS  PubMed  Google Scholar 

  28. Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB (2014) Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci 8(112)

  29. Schwab C, McGeer PL (2008) Inflammatory aspects of Alzheimer disease and other neurodegenerative disorders. J Alzheimer’s Dis: JAD 13:359–369

    Article  CAS  Google Scholar 

  30. Lin WR, Shang D, Wilcock GK, Itzhaki RF (1995) Alzheimer’s disease, herpes simplex virus type 1, cold sores and apolipoprotein E4. Biochem Soc Trans 23:594S

    Article  CAS  PubMed  Google Scholar 

  31. Barichello T, Generoso JS, Goularte JA, Collodel A, Pitcher MR, Simões LR, Quevedo J, Dal-Pizzol F (2015) Does infection-induced immune activation contribute to dementia? Aging Dis 6:342–348

    Article  PubMed  PubMed Central  Google Scholar 

  32. Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak H, Bullido MJ, Carter C et al (2016) Microbes and Alzheimer’s disease. J Alzheimer’s Dis: JAD 51:979–984

    Article  Google Scholar 

  33. Licastro F, Carbone I, Raschi E, Porcellini E (2014) The 21st century epidemic: infections as inductors of neuro-degeneration associated with Alzheimer’s disease. Immunity & Ageing: I & A 11(22):22

    Article  Google Scholar 

  34. Roubaud Baudron C, Varon C, Mégraud F, Salles N (2015) Alzheimer’s disease: the infectious hypothesis. Geriatrie Et Psychologie Neuropsychiatrie Du Vieillissement 13:418–424

    PubMed  Google Scholar 

  35. Ferrari CC, Tarelli R (2011) Parkinson's disease and systemic inflammation. Parkinson’s Disease 2011:e436813

    Google Scholar 

  36. Nociti V, Frisullo G, Marti A, Luigetti M, Iorio R, Patanella AK, Bianco A, Tonali PA et al (2010) Epstein-Barr virus antibodies in serum and cerebrospinal fluid from multiple sclerosis, chronic inflammatory demyelinating polyradiculoneuropathy and amyotrophic lateral sclerosis. J Neuroimmunol 225:149–152

    Article  CAS  PubMed  Google Scholar 

  37. Maheshwari P, Eslick GD (2015) Bacterial infection and Alzheimer’s disease: a meta-analysis. J Alzheimer's Dis: JAD 43:957–966

    Article  Google Scholar 

  38. Bibi F, Yasir M, Sohrab SS, Azhar EI, Al-Qahtani MH, Abuzenadah AM, Kamal MA, Naseer MI (2014) Link between chronic bacterial inflammation and Alzheimer disease. CNS Neurol Disord Drug Targets (CNS&NDDT) 13:1140–1147

    Article  CAS  Google Scholar 

  39. Miklossy J (2015) Historic evidence to support a causal relationship between spirochetal infections and Alzheimer’s disease. Front Aging Neurosci 7(46)

  40. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm 2013:480739

    Google Scholar 

  41. Miklossy J (2011) Alzheimer’s disease - a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J Neuroinflammation 8:90

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nicolson GL (2008) Chronic bacterial and viral infections in neurodegenerative and neurobehavioral diseases. Lab Med 39:291–299

    Article  Google Scholar 

  43. Riviere GR, Riviere KH, Smith KS (2002) Molecular and immunological evidence of oral Treponema in the human brain and their association with Alzheimer’s disease. Oral Microbiol Immunol 17:113–118

    Article  CAS  PubMed  Google Scholar 

  44. Olsen I, Singhrao SK (2015) Can oral infection be a risk factor for Alzheimer’s disease? J Oral Microbiol 7:29143

    Article  PubMed  CAS  Google Scholar 

  45. Miklossy J (2011) Emerging roles of pathogens in Alzheimer disease. Expert Rev Mol Med 13:e30

    Article  PubMed  CAS  Google Scholar 

  46. Abbayya K, Puthanakar NY, Naduwinmani S, Chidambar YS (2015) Association between periodontitis and Alzheimer’s disease. N Am J Med Sci 7:241–246

    Article  PubMed  PubMed Central  Google Scholar 

  47. Miklossy J (1993) Alzheimer’s disease--a spirochetosis? Neuroreport 4:841–848

    Article  CAS  PubMed  Google Scholar 

  48. Christen-Zaech S, Kraftsik R, Pillevuit O, Kiraly M, Martins R, Khalili K, Miklossy J (2003) Early olfactory involvement in Alzheimer’s disease. The Canadian Journal of Neurological Sciences Le Journal Canadien Des Sciences Neurologiques 30:20–25

    Article  CAS  PubMed  Google Scholar 

  49. MacDonald AB (1988) Concurrent neocortical borreliosis and Alzheimer’s disease. Ann N Y Acad Sci 539:468–470

    Article  Google Scholar 

  50. MacDonald AB, Miranda JM (1987) Concurrent neocortical borreliosis and Alzheimer’s disease. Hum Pathol 18:759–761

    Article  CAS  PubMed  Google Scholar 

  51. Stanek G, Wormser GP, Gray J, Strle F (2012) Lyme borreliosis. Lancet (London, England) 379:461–473

    Article  Google Scholar 

  52. Radolf JD, Goldberg MS, Bourell K, Baker SI, Jones JD, Norgard MV (1995) Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 63:2154–2163

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramesh G, Alvarez AL, Roberts ED, Dennis VA, Lasater BL, Alvarez X, Philipp MT (2003) Pathogenesis of Lyme neuroborreliosis: Borrelia burgdorferi lipoproteins induce both proliferation and apoptosis in rhesus monkey astrocytes. Eur J Immunol 33:2539–2550

    Article  CAS  PubMed  Google Scholar 

  54. MacDonald AB (2007) Alzheimer’s neuroborreliosis with trans-synaptic spread of infection and neurofibrillary tangles derived from intraneuronal spirochetes. Med Hypotheses 68:822–825

    Article  PubMed  Google Scholar 

  55. Appelt DM, Roupas MR, Way DS, Bell MG, Albert EV, Hammond CJ, Balin BJ (2008) Inhibition of apoptosis in neuronal cells infected with Chlamydophila (Chlamydia) pneumoniae. BMC Neurosci 9:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Paradowski B, Jaremko M, Dobosz T, Leszek J, Noga L (2007) Evaluation of CSF-Chlamydia pneumoniae, CSF-tau, and CSF-Abeta42 in Alzheimer’s disease and vascular dementia. J Neurol 254:154–159

    Article  CAS  PubMed  Google Scholar 

  57. Shima K, Kuhlenbäumer G, Rupp J (2010) Chlamydia pneumoniae infection and Alzheimer’s disease: a connection to remember? Med Microbiol Immunol 199:283–289

    Article  PubMed  Google Scholar 

  58. Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS, Balin BJ (2010) Immunohistological detection of Chlamydia pneumoniae in the Alzheimer’s disease brain. BMC Neurosci 11:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Pollack DV, Croteau NL, Stuart ES (2008) Uptake and intra-inclusion accumulation of exogenous immunoglobulin by Chlamydia-infected cells. BMC Microbiol 8:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Balin BJ, Gérard HC, Arking EJ, Appelt DM, Branigan PJ, Abrams JT, Whittum-Hudson JA, Hudson AP (1998) Identification and localization of Chlamydia pneumoniae in the Alzheimer’s brain. Med Microbiol Immunol 187:23–42

    Article  CAS  PubMed  Google Scholar 

  61. Albert NM (2000) Inflammation and infection in acute coronary syndrome. J Cardiovasc Nurs 15:13–26

    Article  CAS  PubMed  Google Scholar 

  62. MacIntyre A, Abramov R, Hammond CJ, Hudson AP, Arking EJ, Little CS, Appelt DM, Balin BJ (2003) Chlamydia pneumoniae infection promotes the transmigration of monocytes through human brain endothelial cells. J Neurosci Res 71:740–750

    Article  CAS  PubMed  Google Scholar 

  63. Manabe T, Mizukami K, Akatsu H, Teramoto S, Yamaoka K, Nakamura S, Ohkubo T, Kudo K et al (2016) Influence of pneumonia complications on the prognosis of patients with autopsy-confirmed Alzheimer’s disease, dementia with Lewy bodies, and vascular dementia. Psychogeriatrics 16:305–314

    Article  PubMed  Google Scholar 

  64. Dreses-Werringloer U, Bhuiyan M, Zhao Y, Gérard HC, Whittum-Hudson JA, Hudson AP (2009) Initial characterization of Chlamydophila (Chlamydia) pneumoniae cultured from the late-onset Alzheimer brain. Int J Med Microbiol: IJMM 299:187–201

    Article  CAS  PubMed  Google Scholar 

  65. Gérard HC, Dreses-Werringloer U, Wildt KS, Deka S, Oszust C, Balin BJ, Frey WH, Bordayo EZ et al (2006) Chlamydophila (Chlamydia) pneumoniae in the Alzheimer’s brain. FEMS Immunol Med Microbiol 48:355–366

    Article  PubMed  CAS  Google Scholar 

  66. Takeda S, Sato N, Morishita R (2014) Systemic inflammation, blood-brain barrier vulnerability and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis and therapy. Front Aging Neurosci 6(171)

  67. Alzforum | Networking for a cure. http://www.alzforum.org/papers/uber-eine-eigenartige-erkrankung-der-hirnrinde.

  68. Licastro F, Porcellini E (2016) Persistent infections, immune-senescence and Alzheimer’s disease. Oncoscience 3:135–142

    PubMed  PubMed Central  Google Scholar 

  69. Fischer O (1907) Miliare nekrosen mit drusigen wucherungen der neurofibrillen, eine regelmässige veränderung der hirnrinde bei seniler demenz. Monatsschr Psychiatr Neurol 22:361–372

    Article  Google Scholar 

  70. Fischer O (1910) Die presbyophrene demenz, deren anatomische grundlage und klinische abgrenzung. Z Gesamte Neurol Psychiatr 3:371–471

    Article  Google Scholar 

  71. Goeman J, Hoksbergen I, Pickut BA, Dom L, Crols R, De Deyn PP (1996) Dementia paralytica in a fifteen-year-old boy. J Neurol Sci 144:214–217

    Article  CAS  PubMed  Google Scholar 

  72. Noguchi H, Moore JW (1913) A demonstration of Treponema pallidum in the brain in cases of general paralysis. J Exp Med 17:232–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Möhle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Müller A, Lavrik IN, Buguliskis JS et al (2016) Chronic Toxoplasma gondii infection enhances β-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun 4(25):25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Pisa D, Alonso R, Rábano A, Rodal I, Carrasco L (2015) Different brain regions are infected with fungi in Alzheimer’s disease. Sci Rep 5(15015)

  75. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet (London, England) 1:1311–1315

    Article  CAS  Google Scholar 

  76. Kountouras J, Boziki M, Gavalas E, Zavos C, Deretzi G, Grigoriadis N, Tsolaki M, Chatzopoulos D et al (2009) Increased cerebrospinal fluid Helicobacter pylori antibody in Alzheimer’s disease. Int J Neurosci 119:765–777

    Article  CAS  PubMed  Google Scholar 

  77. Franceschi F, Gasbarrini A, Polyzos SA, Kountouras J (2015) Extragastric diseases and Helicobacter pylori. Helicobacter 20(Suppl 1):40–46

    Article  PubMed  Google Scholar 

  78. Polepalle T, Moogala S, Boggarapu S, Pesala DS, Palagi FB (2015) Acute phase proteins and their role in periodontitis: a review. J Clin Diagn Res 9:ZE01–ZE05

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Fenesy KE (1998) Periodontal disease: an overview for physicians. Mount Sinai J Med N Y 65:362–369

    CAS  Google Scholar 

  80. Kornhuber HH (1996) Propionibacterium acnes in the cortex of patients with Alzheimer’s disease. Eur Arch Psychiatry Clin Neurosci 246:108–109

    Article  CAS  PubMed  Google Scholar 

  81. Preza D, Olsen I, Aas JA, Willumsen T, Grinde B, Paster BJ (2008) Bacterial profiles of root caries in elderly patients. J Clin Microbiol 46:2015–2021

    Article  PubMed  PubMed Central  Google Scholar 

  82. Delahaye F, Fol S, Célard M, Vandenesch F, Beaune J, Bozio A, de Gevigney G (2005) Propionibacterium acnes infective endocarditis. Study of 11 cases and review of literature. Arch Mal Coeur Vaiss 98:1212–1218

    CAS  PubMed  Google Scholar 

  83. Kamer AR, Craig RG, Dasanayake AP, Brys M, Glodzik-Sobanska L, Inflammation d LMJ (2008) Alzheimer’s disease: possible role of periodontal diseases. Alzheimer’s Dement 4:242–250

    Article  CAS  Google Scholar 

  84. Gurav AN (2014) Alzheimer’s disease and periodontitis--an elusive link. Revista Da Associação Médica Brasileira (1992) 60:173–180

    Article  Google Scholar 

  85. Hatipoglu MG, Kabay SC, Güven G (2011) The clinical evaluation of the oral status in Alzheimer-type dementia patients. Gerodontology 28:302–306

    Article  PubMed  Google Scholar 

  86. Kamer AR, Dasanayake AP, Craig RG, Glodzik-Sobanska L, Bry M, de Leon MJ (2008) Alzheimer’s disease and peripheral infections: the possible contribution from periodontal infections, model and hypothesis. J Alzheimer’s Dis: JAD 13:437–449

    Article  CAS  Google Scholar 

  87. Ide M, Harris M, Stevens A, Sussams R, Hopkins V, Culliford D, Fuller J, Ibbett P et al (2016) Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One 11:e0151081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wu Z, Nakanishi H (2014) Connection between periodontitis and Alzheimer’s disease: possible roles of microglia and leptomeningeal cells. J Pharmacol Sci 126:8–13

    Article  CAS  PubMed  Google Scholar 

  89. Farhad SZ, Amini S, Khalilian A, Barekatain M, Mafi M, Barekatain M, Rafei E (2014) The effect of chronic periodontitis on serum levels of tumor necrosis factor-alpha in Alzheimer disease. Dental Res J 11:549–552

    Google Scholar 

  90. Kamer AR, Craig RG, Pirraglia E, Dasanayake AP, Norman RG, Boylan RJ, Nehorayoff A, Glodzik L et al (2009) TNF-alpha and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol 216:92–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Alonso R, Pisa D, Marina AI, Morato E, Rábano A, Carrasco L (2014) Fungal infection in patients with Alzheimer’s disease. J Alzheimer’s Dis: JAD 41:301–311

    Article  CAS  Google Scholar 

  92. Panackal AA, Williamson PR (2015) Fungal infections of the central nervous system. Continuum (Minneapolis, Minn) 21:1662–1678

    Google Scholar 

  93. Prandota J (2010) Autism spectrum disorders may be due to cerebral toxoplasmosis associated with chronic neuroinflammation causing persistent hypercytokinemia that resulted in an increased lipid peroxidation, oxidative stress, and depressed metabolism of endogenous and exogenous substances. Res Autism Spectr Disord 4:119–155

    Article  Google Scholar 

  94. Prandota J (2010) Neuropathological changes and clinical features of autism spectrum disorder participants are similar to that reported in congenital and chronic cerebral toxoplasmosis in humans and mice. Res Autism Spectr Disord 4:103–118

    Article  Google Scholar 

  95. Prandota J (2011) Metabolic, immune, epigenetic, endocrine and phenotypic abnormalities found in individuals with autism spectrum disorders, Down syndrome and Alzheimer disease may be caused by congenital and/or acquired chronic cerebral toxoplasmosis. Res Autism Spectr Disord 5:14–59

    Article  Google Scholar 

  96. Prandota J (2014) Possible link between Toxoplasma gondii and the anosmia associated with neurodegenerative diseases. Am J Alzheimer’s Dis Other Dementias 29:205–214

    Article  Google Scholar 

  97. Xu F, Sternberg MR, Kottiri BJ, McQuillan GM, Lee FK, Nahmias AJ, Berman SM, Markowitz LE (2006) Trends in herpes simplex virus type 1 and type 2 seroprevalence in the United States. JAMA 296:964–973

    Article  CAS  PubMed  Google Scholar 

  98. Sequiera LW, Carrasco LH, Curry A, Jennings LC, Lord MA, Sutton RNP (1979) Detection of herpes-simplex viral genome in brain tissue. Lancet 314:609–612

    Article  Google Scholar 

  99. Ball MJ (1982) Limbic predilection in Alzheimer dementia: Is reactivated herpesvirus involved? Can J Neurol Sci 9:303–306

    Article  CAS  PubMed  Google Scholar 

  100. Gannicliffe A, Sutton RN, Itzhaki RF (1986) Viruses, brain and immunosuppression. Psychol Med 16:247–249

    Article  CAS  PubMed  Google Scholar 

  101. Agostini S, Mancuso R, Baglio F, Clerici M (2017) A protective role for herpes simplex virus type-1-specific humoral immunity in Alzheimer’s disease. Expert Rev Anti-Infect Ther 15:89–91

    Article  CAS  PubMed  Google Scholar 

  102. Itzhaki RF (2014) Herpes simplex virus type 1 and Alzheimer’s disease: increasing evidence for a major role of the virus. Front Aging Neurosci 6(202)

  103. Itzhaki RF, Lin WR, Shang D, Wilcock GK, Faragher B, Jamieson GA (1997) Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet (London, England) 349:241–244

    Article  CAS  Google Scholar 

  104. Koronyo Y, Salumbides BC, Black KL, Koronyo-Hamaoui M (2012) Alzheimer’s disease in the retina: imaging retinal Aß plaques for early diagnosis and therapy assessment. Neurodegener Dis 10:285–293

    Article  CAS  PubMed  Google Scholar 

  105. Olsson J, Lövheim H, Honkala E, Karhunen PJ, Elgh F, Kok EH (2016) HSV presence in brains of individuals without dementia: the TASTY brain series. Dis Model Mech 9:1349–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Itzhaki RF, Wozniak MA (2012) Could antivirals be used to treat Alzheimer’s disease? Future Microbiol 7:307–309

    Article  CAS  PubMed  Google Scholar 

  107. Wozniak MA, Itzhaki RF, Shipley SJ, Dobson CB (2007) Herpes simplex virus infection causes cellular beta-amyloid accumulation and secretase upregulation. Neurosci Lett 429:95–100

    Article  CAS  PubMed  Google Scholar 

  108. Wozniak MA, Mee AP, Itzhaki RF (2009) Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol 217:131–138

    Article  CAS  PubMed  Google Scholar 

  109. Wozniak MA, Shipley SJ, Combrinck M, Wilcock GK, Itzhaki RF (2005) Productive herpes simplex virus in brain of elderly normal subjects and Alzheimer’s disease patients. J Med Virol 75:300–306

    Article  PubMed  Google Scholar 

  110. Lövheim H, Gilthorpe J, Johansson A, Eriksson S, Hallmans G, Elgh F (2015) Herpes simplex infection and the risk of Alzheimer’s disease: a nested case-control study. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association 11:587–592

    Article  Google Scholar 

  111. Lövheim H, Gilthorpe J, Adolfsson R, Nilsson L-G, Elgh F (2015) Reactivated herpes simplex infection increases the risk of Alzheimer’s disease. Alzheimer’s Dementia 11:593–599

    Article  PubMed  Google Scholar 

  112. Fodor PA, Levin MJ, Weinberg A, Sandberg E, Sylman J, Tyler KL (1998) Atypical herpes simplex virus encephalitis diagnosed by PCR amplification of viral DNA from CSF. Neurology 51:554–559

    Article  CAS  PubMed  Google Scholar 

  113. Rodríguez-Violante M, Ordoñez G, Bermudez JR, Sotelo J, Corona T (2009) Association of a history of varicella virus infection with multiple sclerosis. Clin Neurol Neurosurg 111:54–56

    Article  PubMed  Google Scholar 

  114. Kristen H, Santana S, Sastre I, Recuero M, Bullido MJ, Aldudo J (2015) Herpes simplex virus type 2 infection induces AD-like neurodegeneration markers in human neuroblastoma cells. Neurobiol Aging 36:2737–2747

    Article  CAS  PubMed  Google Scholar 

  115. Nimgaonkar VL, Yolken RH, Wang T, Chung-Chou HC, McClain L, McDade E, Snitz BE, Ganguli M Temporal cognitive decline associated with exposure to infectious agents in a population-based, aging cohort. Alzheimer Dis Assoc Disord 2015

  116. Biesiada G, Czepiel J, Sobczyk-Krupiarz I, Mach T, Garlicki A. [Neurological complications among patients with zoster hospitalized in Department of Infectious Diseases in Cracow in 2001–2006]. Przegla̧d Lekarski 67: 149–150, 2010.

  117. Barnes LL, Capuano AW, Aiello AE, Turner AD, Yolken RH, Torrey EF, Bennett DA (2015) Cytomegalovirus infection and risk of Alzheimer disease in older black and white individuals. J Infect Dis 211:230–237

    Article  CAS  PubMed  Google Scholar 

  118. Lurain NS, Hanson BA, Martinson J, Leurgans SE, Landay AL, Bennett DA, Schneider JA (2013) Virological and immunological characteristics of human cytomegalovirus infection associated with Alzheimer disease. J Infect Dis 208:564–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Carbone I, Lazzarotto T, Ianni M, Porcellini E, Forti P, Masliah E, Gabrielli L, Licastro F (2014) Herpes virus in Alzheimer’s disease: relation to progression of the disease. Neurobiol Aging 35:122–129

    Article  PubMed  Google Scholar 

  120. Chiu WC, Tsan YT, Tsai SL, Chang CJ, Wang JD, Chen PC, Health Data Analysis in Taiwan Research G (2014) Hepatitis C viral infection and the risk of dementia. Eur J Neurol 21:1068–1e59

    Article  PubMed  Google Scholar 

  121. Senzolo M, Schiff S, D'Aloiso CM, Crivellin C, Cholongitas E, Burra P, Montagnese S (2011) Neuropsychological alterations in hepatitis C infection: the role of inflammation. World J Gastroenterol 17:3369–3374

    Article  PubMed  PubMed Central  Google Scholar 

  122. Fletcher NF, McKeating JA (2012) Hepatitis C virus and the brain. J Viral Hepat 19:301–306

    Article  CAS  PubMed  Google Scholar 

  123. Grover VPB, Pavese N, Koh SB, Wylezinska M, Saxby BK, Gerhard A, Forton DM, Brooks DJ et al (2012) Cerebral microglial activation in patients with hepatitis C: in vivo evidence of neuroinflammation. J Viral Hepat 19:e89–e96

    Article  CAS  PubMed  Google Scholar 

  124. Blanc M, Hsieh WY, Robertson KA, Kropp KA, Forster T, Shui G, Lacaze P, Watterson S et al (2013) The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu S-Y, Aliyari R, Chikere K, Li G, Marsden MD, Smith JK, Pernet O, Guo H et al (2013) Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38:92–105

    Article  PubMed  CAS  Google Scholar 

  126. Papassotiropoulos A, Lambert J-C, Wavrant-De Vrièze F, Wollmer MA, von der Kammer H, Streffer JR, Maddalena A, Huynh K-D, Wolleb S, Lutjohann D, Schneider B, Thal DR, Grimaldi LME, Tsolaki M, Kapaki E, Ravid R, Konietzko U, Hegi T, Pasch T, Jung H, Braak H, Amouyel P, Rogaev EI, Hardy J, Hock C, Nitsch RM. Cholesterol 25-hydroxylase on chromosome 10q is a susceptibility gene for sporadic Alzheimer’s disease. Neurodegener Dis 2: 233–241, 2005.

    Article  CAS  PubMed  Google Scholar 

  127. Lathe R, Sapronova A, Kotelevtsev Y (2014) Atherosclerosis and Alzheimer--diseases with a common cause? Inflammation, oxysterols, vasculature. BMC Geriatr 14(36)

  128. Friedman JE, Zabriskie JB, Plank C, Ablashi D, Whitman J, Shahan B, Edgell R, Shieh M et al (2005) A randomized clinical trial of valacyclovir in multiple sclerosis. Multiple Sclerosis (Houndmills, Basingstoke, England) 11:286–295

    Article  CAS  Google Scholar 

  129. Wozniak MA, Itzhaki RF (2010) Antiviral agents in Alzheimer’s disease: hope for the future? Ther Adv Neurol Disord 3:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Devi G, Schultz S, Khosrowshahi L, Agnew A, Olali E (2008) A retrospective chart review of the tolerability and efficacy of intravenous immunoglobulin in the treatment of Alzheimer’s disease. J Am Geriatr Soc 56:772–774

    Article  PubMed  Google Scholar 

  131. Fillit H, Hess G, Hill J, Bonnet P, Toso C (2009) IV immunoglobulin is associated with a reduced risk of Alzheimer disease and related disorders. Neurology 73:180–185

    Article  CAS  PubMed  Google Scholar 

  132. Leszek J, Inglot AD, Janusz M, Byczkiewicz F, Kiejna A, Georgiades J, Lisowski J. Colostrinin proline-rich polypeptide complex from ovine colostrum--a long-term study of its efficacy in Alzheimer’s disease. Med Sci Monit 8: PI93–96, 2002.

  133. Leszek J, Inglot AD, Janusz M, Lisowski J, Krukowska K, Georgiades JA (1999) Colostrinin: a proline-rich polypeptide (PRP) complex isolated from ovine colostrum for treatment of Alzheimer’s disease. A double-blind, placebo-controlled study. Arch Immunol Ther Exp 47:377–385

    CAS  Google Scholar 

  134. Sochocka M, Zaczyńska E, Leszek J, Siemieniec I, Błach-Olszewska Z (2008) Effect of donepezil on innate antiviral immunity of human leukocytes. J Neurol Sci 273:75–80

    Article  CAS  PubMed  Google Scholar 

  135. Reale M, Iarlori C, Gambi F, Lucci I, Salvatore M, Gambi D (2005) Acetylcholinesterase inhibitors effects on oncostatin-M, interleukin-1 beta and interleukin-6 release from lymphocytes of Alzheimer’s disease patients. Exp Gerontol 40:165–171

    Article  CAS  PubMed  Google Scholar 

  136. Jiang L, Miao Z, Kimura RH, Liu H, Cochran JR, Culter CS, Bao A, Li P et al (2011) Preliminary evaluation of (177)Lu-labeled knottin peptides for integrin receptor-targeted radionuclide therapy. Eur J Nucl Med Mol Imaging 38:613–622

    Article  CAS  PubMed  Google Scholar 

  137. Jiang Y, Zou Y, Chen S, Zhu C, Wu A, Liu Y, Ma L, Zhu D et al (2013) The anti-inflammatory effect of donepezil on experimental autoimmune encephalomyelitis in C57 BL/6 mice. Neuropharmacology 73:415–424

    Article  CAS  PubMed  Google Scholar 

  138. Yoshiyama Y, Kojima A, Ishikawa C, Arai K (2010) Anti-inflammatory action of donepezil ameliorates tau pathology, synaptic loss, and neurodegeneration in a tauopathy mouse model. J Alzheimer's Dis: JAD 22:295–306

    Article  CAS  Google Scholar 

  139. Saxena G, Singh SP, Agrawal R, Nath C (2008) Effect of donepezil and tacrine on oxidative stress in intracerebral streptozotocin-induced model of dementia in mice. Eur J Pharmacol 581:283–289

    Article  CAS  PubMed  Google Scholar 

  140. Meunier J, Ieni J, Maurice T (2006) The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 149:998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hwang J, Hwang H, Lee H-W, Suk K (2010) Microglia signaling as a target of donepezil. Neuropharmacology 58:1122–1129

    Article  CAS  PubMed  Google Scholar 

  142. Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779

    Article  PubMed  Google Scholar 

  143. Hösli L, Hösli E, Käser H (1993) Colocalization of cholinergic, adrenergic and peptidergic receptors on astrocytes. Neuroreport 4:679–682

    Article  PubMed  Google Scholar 

  144. Kim HG, Moon M, Choi JG, Park G, Kim A-J, Hur J, Lee K-T, Oh MS (2014) Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology 40:23–32

    Article  CAS  PubMed  Google Scholar 

  145. Carnevale D, De Simone R, Minghetti L (2007) Microglia-neuron interaction in inflammatory and degenerative diseases: role of cholinergic and noradrenergic systems. CNS Neurol Dis Drug Targets 6:388–397

    Article  CAS  Google Scholar 

  146. Haddad JJ, Saadé NE, Safieh-Garabedian B (2002) Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol 133:1–19

    Article  CAS  PubMed  Google Scholar 

  147. Ashraf GM, Perveen A, Zaidi SK, Tabrez S, Kamal MA, Banu N (2015) Studies on the role of goat heart galectin-1 as an erythrocyte membrane perturbing agent. Saudi J Biol Sci 22:112–116

    Article  CAS  PubMed  Google Scholar 

  148. Szekely CA, Zandi PP (2010) Non-steroidal anti-inflammatory drugs and Alzheimer’s disease: the epidemiological evidence. CNS Neurol Disord Drug Targets 9:132–139

    Article  CAS  PubMed  Google Scholar 

  149. Yip AG, Green RC, Huyck M, Cupples LA, Farrer LA, Group MS (2005) Nonsteroidal anti-inflammatory drug use and Alzheimer’s disease risk: the MIRAGE Study. BMC Geriatr 5(2)

  150. Newman DJ, Cragg GM (2004) Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr Med Chem 11:1693–1713

    Article  CAS  PubMed  Google Scholar 

  151. Abraham J, Johnson RW (2009) Consuming a diet supplemented with resveratrol reduced infection-related neuroinflammation and deficits in working memory in aged mice. Rejuvenation Res 12:445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Korada SK, Yarla NS, Bishayee A, Aliev G, Aruna Lakshmi K, Arunasree MK, Dananajaya BL, Mishra V (2016) Can probiotics cure inflammatory bowel diseases? Curr Pharm Des 22:904–917

    Article  CAS  PubMed  Google Scholar 

  153. Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M et al (2015) Effects of probiotics on biomarkers of oxidative stress and inflammatory factors in petrochemical workers: a randomized, double-blind, placebo-controlled trial. Int J Prev Med 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I (2013) Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 24:60–65

    Article  PubMed  CAS  Google Scholar 

  155. Mallikarjuna N, Praveen K, Yellamma K (2016) Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain. BioImpacts: BI 6:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are very grateful for the animal facilities that were provided by the center for preclinical trials of IPAC RAS.

Funding

This work was supported by the Russian Academic Excellence project “5-100” for the Sechenov University, Moscow, Russian Federation. This research was also supported in part by the RSF project #14-23-00160P and the scientific projects of IPAC (topics 48.8. and 48.9). Part of this work was also supported by the project of RAS Program Fundamental Research for Biomedical Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gjumrakch Aliev.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, G.M., Tarasov, V.V., Makhmutovа, A. et al. The Possibility of an Infectious Etiology of Alzheimer Disease. Mol Neurobiol 56, 4479–4491 (2019). https://doi.org/10.1007/s12035-018-1388-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1388-y

Keywords

Navigation