Skip to main content

Metabolomics in the Study of Human Mitochondrial Diseases

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases

Abstract

Mitochondria are dynamic cellular organelles playing many biological roles that are fundamentally required for cellular functions. The primary role of mitochondria is ATP production through oxidative phosphorylation (OXPHOS). Mitochondria are found in nearly all cell types, and their number within cells varies in a tissue−/organ-dependent manner. Tissues/organs characterized by high-energy demands contain abundant mitochondria, and these tissues/organs are most frequently affected when their mitochondria are dysfunctional. The resulting pathologies can be generally referred to as mitochondrial diseases (MDs). MDs can be caused by nuclear or mitochondrial DNA mutations in genes encoding mitochondrial proteins, including OXPHOS proteins. Also, MDs can be developed through nongenetic mechanisms such as those involving environmental factors, mitotoxicity drugs, oxidative stress, and aging. MDs can appear over the entire life span. Patients with particular MDs present a wide range of heterogeneous phenotypes with different levels of disease severity. The wide variety of leading causes and heterogenous phenotypes of MDs make diagnosing MDs notoriously challenging. Despite these challenges, multiple diagnostic examinations and tools, including family history, phenotypic examinations, neurological imaging, biochemical tests, and genetic analyses, have collectively enhanced the diagnosis of MDs. As a result of the diagnostic limitations and drawbacks, there have been demands for developing new diagnostic approaches capable of detecting metabolic perturbations of MDs used as metabolic biosignatures. For that reason, the metabolomic approach, the study of small metabolites ≤1500 daltons, has recently garnered attention. While metabolomics offers significant advances, it is recommended that data sets be integrated with other diagnostic approaches. This chapter reviews the application of metabolomic analyses in studying human MDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ANT:

Adenine nucleotide translocase

ATP:

Adenosine triphosphate

BAT:

Brown adipose tissue

CAT:

Catalase

CE-MS:

Capillary electrophoresis-coupled mass spectrometry

CIL:

Chemical isotope labeling

CPEO:

Chronic progressive external ophthalmoplegia

DRP1:

Dynamin-related protein-1

ETF:

Electron transfer flavoprotein

FIS1:

Fission protein-1

GC-MS:

Gas chromatography-coupled mass spectrometry

GPxs:

Glutathione peroxidases

GSH:

Glutathione

IMM:

Inner mitochondrial membrane

IMS:

Intermembrane space

KSS:

Kearns-Sayre syndrome

LC-MS:

Liquid chromatography-coupled mass spectrometry

LHON:

Leber hereditary optic neuropathy

MDs:

Mitochondrial diseases

MELAS:

Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes

MERRF:

Myoclonic epilepsy with ragged-red fibers

MFF:

Mitochondrial fission factor

MFN1:

Mitofusins-1

MFN2:

Mitofusins-2

MiD49:

Mitochondrial dynamic proteins of 49 kDa

MiD51:

Mitochondrial dynamic proteins of 51 kDa

MNGIE:

Mitochondrial neurogastrointestinal encephalopathy

MS:

Mass spectrometry

mtDNA:

Mitochondrial DNA

NAC:

N-acetylcysteine

NARP:

Neuropathy, ataxia, and retinitis pigmentosa

nDNA:

Nuclear DNA

NMR:

Nuclear magnetic resonance

OMM:

Outer mitochondrial membrane

OPA1:

Optic atrophy-1

OXPHOS:

Oxidative phosphorylation

PMF:

Proton motive force

PMS:

Pearson marrow pancreas syndrome

ROS:

Reactive oxygen species

rRNA:

Ribosomal RNA

SOD:

Superoxide dismutase

SPG7:

Hereditary spastic paraplegia 7

TCA:

Tricarboxylic acid cycle

TFAM:

Transcription factor A of mitochondria

TFB2M:

Mitochondrial transcription factor B2

tRNA:

Transfer RNA

Trx:

Thioredoxin

UCP1:

Uncoupling protein-1

VUS:

Variants of uncertain significance

WES:

Whole exome sequencing

WGS:

Whole genome sequencing

References

  1. Elston T, Wang H, Oster G. Energy transduction in ATP synthase. Nature. 1998;391(6666):510–3. https://doi.org/10.1038/35185.

    Article  CAS  PubMed  Google Scholar 

  2. Veltri KL, Espiritu M, Singh G. Distinct genomic copy number in mitochondria of different mammalian organs. J Cell Physiol. 1990;143(1):160–4. https://doi.org/10.1002/jcp.1041430122.

    Article  CAS  PubMed  Google Scholar 

  3. Spiegelman BM. Transcriptional control of mitochondrial energy metabolism through the PGC1 coactivators. In: Mitochondrial biology: new perspectives. Chichester: John Wiley & Sons; 2007. p. 60–9. https://doi.org/10.1002/9780470725207.ch5.

    Chapter  Google Scholar 

  4. Tzameli I. The evolving role of mitochondria in metabolism. Trends Endocrinol Metab. 2012;23(9):417–9. https://doi.org/10.1016/j.tem.2012.07.008.

    Article  CAS  PubMed  Google Scholar 

  5. Friedman JR, Nunnari J. Mitochondrial form and function. Nature. 2014;505(7483):335–43. https://doi.org/10.1038/nature12985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Herst PM, Rowe MR, Carson GM, Berridge MV. Functional mitochondria in health and disease. Front Endocrinol. 2017;8:296. https://doi.org/10.3389/fendo.2017.00296.

    Article  Google Scholar 

  7. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–60. https://doi.org/10.1016/j.cub.2006.06.054.

    Article  CAS  PubMed  Google Scholar 

  8. Shaw JM, Nunnari J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol. 2002;12(4):178–84. https://doi.org/10.1016/S0962-8924(01)02246-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Trushina E. A shape shifting organelle: unusual mitochondrial phenotype determined with three-dimensional electron microscopy reconstruction. Neural Regen Res. 2016;11(6):900–1. https://doi.org/10.4103/1673-5374.184477.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gohil VM, Greenberg ML. Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand. J Cell Biol. 2009;184(4):469–72. https://doi.org/10.1083/jcb.200901127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kühlbrandt W. Structure and function of mitochondrial membrane protein complexes. BMC Biol. 2015;13(1):89. https://doi.org/10.1186/s12915-015-0201-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowsher CG, Tobin AK. Compartmentation of metabolism within mitochondria and plastids. J Exp Bot. 2001;52(356):513–27. https://doi.org/10.1093/jexbot/52.356.513.

    Article  CAS  Google Scholar 

  13. Glancy B, Hartnell LM, Malide D, Yu Z-X, Combs CA, Connelly PS, Subramaniam S, Balaban RS. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 2015;523(7562):617–20. https://doi.org/10.1038/nature14614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glancy B, Kim Y, Katti P, Willingham TB. The functional impact of mitochondrial structure across subcellular scales. Front Physiol. 2020;11:541040. https://doi.org/10.3389/fphys.2020.541040.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yoon Y. Sharpening the scissors. Cell Biochem Biophys. 2004;41(2):193–205. https://doi.org/10.1385/CBB:41:2:193.

    Article  PubMed  Google Scholar 

  16. Ding W-X, Li M, Biazik JM, Morgan DG, Guo F, Ni H-M, Goheen M, Eskelinen E-L, Yin X-M. Electron microscopic analysis of a spherical mitochondrial structure*. J Biol Chem. 2012;287(50):42373–8. https://doi.org/10.1074/jbc.M112.413674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Navaratnarajah T, Anand R, Reichert AS, Distelmaier F. The relevance of mitochondrial morphology for human disease. Int J Biochem Cell Biol. 2021;134:105951. https://doi.org/10.1016/j.biocel.2021.105951.

    Article  CAS  PubMed  Google Scholar 

  18. Busch KB, Kowald A, Spelbrink JN. Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity? Philos Trans R Soc Lond B Biol Sci. 2014;369(1646):20130442. https://doi.org/10.1098/rstb.2013.0442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mishra P, Chan DC. Metabolic regulation of mitochondrial dynamics. J Cell Biol. 2016;212(4):379–87. https://doi.org/10.1083/jcb.201511036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ashrafi G, Schwarz TL. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 2013;20(1):31–42. https://doi.org/10.1038/cdd.2012.81.

    Article  CAS  PubMed  Google Scholar 

  21. Losón OC, Song Z, Chen H, Chan DC. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell. 2013;24(5):659–67. https://doi.org/10.1091/mbc.E12-10-0721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, Shaw JM. The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol. 1998;143(2):333–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003;160(2):189–200. https://doi.org/10.1083/jcb.200211046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell. 2009;20(15):3525–32. https://doi.org/10.1091/mbc.e09-03-0252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gustafsson CM, Falkenberg M, Larsson N-G. Maintenance and expression of mammalian mitochondrial DNA. Annu Rev Biochem. 2016;85:133. https://doi.org/10.1146/annurev-biochem-060815-014402.

    Article  CAS  PubMed  Google Scholar 

  26. Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian Fertility1. Biol Reprod. 2010;83(1):52–62. https://doi.org/10.1095/biolreprod.109.080887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, Goodman RP, Grabarek Z, Haas ME, Hung WHW, Joshi PR, Jourdain AA, Kim SH, Kotrys AV, Lam SS, McCoy JG, Meisel JD, Miranda M, Panda A, Mootha VK. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541–7. https://doi.org/10.1093/nar/gkaa1011.

    Article  CAS  PubMed  Google Scholar 

  28. D’Souza AR, Minczuk M. Mitochondrial transcription and translation: overview. Essays Biochem. 2018;62(3):309–20. https://doi.org/10.1042/EBC20170102.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Demine S, Reddy N, Renard P, Raes M, Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Meta. 2014;4(3):831–78. https://doi.org/10.3390/metabo4030831.

    Article  CAS  Google Scholar 

  30. Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. Annu Rev Pathol. 2010;5:297–348. https://doi.org/10.1146/annurev.pathol.4.110807.092314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dimroth P, Kaim G, Matthey U. Crucial role of the membrane potential for ATP synthesis by F(1)F(o) ATP synthases. J Exp Biol. 2000;203(1):51–9. https://doi.org/10.1242/jeb.203.1.51.

    Article  CAS  PubMed  Google Scholar 

  32. Mitchell P, Moyle J. Chemiosmotic hypothesis of oxidative phosphorylation. Nature. 1967;213(5072):137. https://doi.org/10.1038/213137a0.

    Article  CAS  PubMed  Google Scholar 

  33. Watmough NJ, Frerman FE. The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim Biophys Acta. 2010;1797(12):1910–6. https://doi.org/10.1016/j.bbabio.2010.10.007.

    Article  CAS  PubMed  Google Scholar 

  34. Divakaruni AS, Brand MD. The regulation and physiology of mitochondrial proton leak. Physiology (Bethesda). 2011;26(3):192–205. https://doi.org/10.1152/physiol.00046.2010.

    Article  CAS  PubMed  Google Scholar 

  35. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. https://doi.org/10.1152/physrev.00015.2003.

    Article  CAS  PubMed  Google Scholar 

  36. Mailloux RJ, Harper M-E. Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med. 2011;51(6):1106–15. https://doi.org/10.1016/j.freeradbiomed.2011.06.022.

    Article  CAS  PubMed  Google Scholar 

  37. Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab. 2005;2(2):85–93. https://doi.org/10.1016/j.cmet.2005.06.002.

    Article  CAS  PubMed  Google Scholar 

  38. Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. Biochim Biophys Acta. 2021;1862(7):148428. https://doi.org/10.1016/j.bbabio.2021.148428.

    Article  CAS  Google Scholar 

  39. Bertholet AM, Chouchani ET, Kazak L, Angelin A, Fedorenko A, Long JZ, Vidoni S, Garrity R, Cho J, Terada N, Wallace DC, Spiegelman BM, Kirichok Y. H+ transport is an integral function of the mitochondrial ADP/ATP carrier. Nature. 2019;571(7766):515–20. https://doi.org/10.1038/s41586-019-1400-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bevilacqua L, Seifert EL, Estey C, Gerrits MF, Harper M-E. Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice. Biochim Biophys Acta. 2010;1797(8):1389–97. https://doi.org/10.1016/j.bbabio.2010.02.018.

    Article  CAS  PubMed  Google Scholar 

  41. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD. A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 2003;22(16):4103–10. https://doi.org/10.1093/emboj/cdg412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Klumpe I, Savvatis K, Westermann D, Tschöpe C, Rauch U, Landmesser U, Schultheiss H-P, Dörner A. Transgenic overexpression of adenine nucleotide translocase 1 protects ischemic hearts against oxidative stress. J Mol Med (Berl). 2016;94(6):645–53. https://doi.org/10.1007/s00109-016-1413-4.

    Article  CAS  PubMed  Google Scholar 

  43. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Med Cell Longev. 2014;2014:e360438. https://doi.org/10.1155/2014/360438.

    Article  CAS  Google Scholar 

  44. Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med. 2017;107:13–34. https://doi.org/10.1016/j.freeradbiomed.2016.12.049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Davies MJ. Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun. 2003;305(3):761–70. https://doi.org/10.1016/S0006-291X(03)00817-9.

    Article  CAS  PubMed  Google Scholar 

  46. Christofidou-Solomidou M, Muzykantov VR. Antioxidant strategies in respiratory medicine. Treat Respir Med. 2006;5(1):47–78. https://doi.org/10.2165/00151829-200605010-00004.

    Article  CAS  PubMed  Google Scholar 

  47. Holzerová E, Prokisch H. Mitochondria: much ado about nothing? How dangerous is reactive oxygen species production? Int J Biochem Cell Biol. 2015;63:16–20. https://doi.org/10.1016/j.biocel.2015.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(Pt 1):1–13. https://doi.org/10.1042/BJ20081386.

    Article  CAS  PubMed  Google Scholar 

  49. Shan Y, Schoenfeld RA, Hayashi G, Napoli E, Akiyama T, Iodi Carstens M, Carstens EE, Pook MA, Cortopassi GA. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxid Redox Signal. 2013;19(13):1481–93. https://doi.org/10.1089/ars.2012.4537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sulaiman SA, Mohd Rani Z, Mohd Radin FZ, Abdul Murad NA. Advancement in the diagnosis of mitochondrial diseases. J Transl Genet Genom. 2020;4(3):159–87. https://doi.org/10.20517/jtgg.2020.27.

    Article  Google Scholar 

  51. Chinnery PF. Primary mitochondrial disorders overview. In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, Gripp KW, Amemiya A, editors. GeneReviews®. Seattle: University of Washington; 1993; http://www.ncbi.nlm.nih.gov/books/NBK1224/.

    Google Scholar 

  52. Khajuria K, Khajuria V, Sawhney V. SECONDARY MITOCHONDRIAL DYSFUNCTION. Int J Pharm Pharm Sci. 2021;14:14–9. https://doi.org/10.22159/ijpps.2021v13i3.40335.

    Article  CAS  Google Scholar 

  53. Niyazov DM, Kahler SG, Frye RE. Primary mitochondrial disease and secondary mitochondrial dysfunction: importance of distinction for diagnosis and treatment. Mol Syndromol. 2016;7(3):122–37. https://doi.org/10.1159/000446586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rötig A, Cormier V, Blanche S, Bonnefont JP, Ledeist F, Romero N, Schmitz J, Rustin P, Fischer A, Saudubray JM. Pearson’s marrow-pancreas syndrome. A multisystem mitochondrial disorder in infancy. J Clin Invest. 1990;86(5):1601–8. https://doi.org/10.1172/JCI114881.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schlieben LD, Prokisch H. The dimensions of primary mitochondrial disorders. Front Cell Dev Biol. 2020;8:1441. https://doi.org/10.3389/fcell.2020.600079.

    Article  Google Scholar 

  56. Skladal D, Halliday J, Thorburn DR. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain. 2003;126(8):1905–12. https://doi.org/10.1093/brain/awg170.

    Article  PubMed  Google Scholar 

  57. Gorman GS, Schaefer AM, Ng Y, Gomez N, Blakely EL, Alston CL, Feeney C, Horvath R, Yu-Wai-Man P, Chinnery PF, Taylor RW, Turnbull DM, McFarland R. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Ann Neurol. 2015;77(5):753–9. https://doi.org/10.1002/ana.24362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, Anselm I, Cohen BH, Falk MJ, Greene C, Gropman AL, Haas R, Hirano M, Morgan P, Sims K, Tarnopolsky M, Van Hove JLK, Wolfe L, DiMauro S. Diagnosis and management of mitochondrial disease: a consensus statement from the mitochondrial medicine society. Genet Med. 2015;17(9):689–701. https://doi.org/10.1038/gim.2014.177.

    Article  CAS  PubMed  Google Scholar 

  59. Rodenburg RJT. Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis. 2011;34(2):283–92. https://doi.org/10.1007/s10545-010-9081-y.

    Article  CAS  PubMed  Google Scholar 

  60. Al Aqeel AI, Rashid MS, Pn Ruiter J, Ijlst L, Ja Wanders R. A novel molecular defect of the carnitine acylcarnitine translocase gene in a Saudi patient. Clin Genet. 2003;64(2):163–5. https://doi.org/10.1034/j.1399-0004.2003.00117.x.

    Article  PubMed  Google Scholar 

  61. Al-Hassnan ZN, Al-Dosary M, Alfadhel M, Faqeih EA, Alsagob M, Kenana R, Almass R, Al-Harazi OS, Al-Hindi H, Malibari OI, Almutari FB, Tulbah S, Alhadeq F, Al-Sheddi T, Alamro R, AlAsmari A, Almuntashri M, Alshaalan H, Al-Mohanna FA, Kaya N. ISCA2 mutation causes the infantile neurodegenerative mitochondrial disorder. J Med Genet. 2015;52(3):186–94. https://doi.org/10.1136/jmedgenet-2014-102592.

    Article  CAS  PubMed  Google Scholar 

  62. Baertling F, Al-Murshedi F, Sánchez-Caballero L, Al-Senaidi K, Joshi NP, Venselaar H, van den Brand MA, Nijtmans LG, Rodenburg RJ. Mutation in mitochondrial complex IV subunit COX5A causes pulmonary arterial hypertension, lactic acidemia, and failure to thrive. Hum Mutat. 2017;38(6):692–703. https://doi.org/10.1002/humu.23210.

    Article  CAS  PubMed  Google Scholar 

  63. Boycott KM, Beaulieu CL, Kernohan KD, Gebril OH, Mhanni A, Chudley AE, Redl D, Qin W, Hampson S, Küry S, Tetreault M, Puffenberger EG, Scott JN, Bezieau S, Reis A, Uebe S, Schumacher J, Hegele RA, McLeod DR, Abou Jamra R. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet. 2015;6(97):886–93. https://doi.org/10.1016/j.ajhg.2015.11.002.

    Article  CAS  Google Scholar 

  64. Eldomery MK, Akdemir ZC, Vögtle F-N, Charng W-L, Mulica P, Rosenfeld JA, Gambin T, Gu S, Burrage LC, Al Shamsi A, Penney S, Jhangiani SN, Zimmerman HH, Muzny DM, Wang X, Tang J, Medikonda R, Ramachandran PV, Wong L-J, Sutton VR. MIPEP recessive variants cause a syndrome of left ventricular non-compaction, hypotonia, and infantile death. Genome Med. 2016;8(1):106. https://doi.org/10.1186/s13073-016-0360-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haack TB, Kopajtich R, Freisinger P, Wieland T, Rorbach J, Nicholls TJ, Baruffini E, Walther A, Danhauser K, Zimmermann FA, Husain RA, Schum J, Mundy H, Ferrero I, Strom TM, Meitinger T, Taylor RW, Minczuk M, Mayr JA, Prokisch H. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am J Hum Genet. 2013;93(2):211–23. https://doi.org/10.1016/j.ajhg.2013.06.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hartmann B, Wai T, Hu H, MacVicar T, Musante L, Fischer-Zirnsak B, Stenzel W, Gräf R, van den Heuvel L, Ropers H-H, Wienker TF, Hübner C, Langer T, Kaindl AM. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation. elife. n.d.;5:e16078. https://doi.org/10.7554/eLife.16078.

  67. Heberle LC, Tawari AAA, Ramadan DG, Ibrahim JK. Ethylmalonic encephalopathy—report of two cases. Brain Dev. 2006;28(5):329–31. https://doi.org/10.1016/j.braindev.2005.10.005.

    Article  PubMed  Google Scholar 

  68. Jobling RK, Assoum M, Gakh O, Blaser S, Raiman JA, Mignot C, Roze E, Dürr A, Brice A, Lévy N, Prasad C, Paton T, Paterson AD, Roslin NM, Marshall CR, Desvignes J-P, Roëckel-Trevisiol N, Scherer SW, Rouleau GA, Yoon G. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain. 2015;138(6):1505–17. https://doi.org/10.1093/brain/awv057.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Malicdan MCV, Vilboux T, Ben-Zeev B, Guo J, Eliyahu A, Pode-Shakked B, Dori A, Kakani S, Chandrasekharappa SC, Ferreira C, Shelestovich N, Marek-Yagel D, Pri-Chen H, Blatt I, Niederhuber JE, He L, Toro C, Taylor RW, Deeken J, Anikster Y. A novel inborn error of the coenzyme Q10 biosynthesis pathway: cerebellar ataxia and static encephalomyopathy due to COQ5 C-methyltransferase deficiency. Hum Mutat. 2018;39(1):69–79. https://doi.org/10.1002/humu.23345.

    Article  CAS  PubMed  Google Scholar 

  70. Ramadan DG, Head RA, Al-Tawari A, Habeeb Y, Zaki M, Al-Ruqum F, Besley GTN, Wraith JE, Brown RM, Brown GK. Lactic acidosis and developmental delay due to deficiency of E3 binding protein (protein X) of the pyruvate dehydrogenase complex. J Inherit Metab Dis. 2004;27(4):477–85. https://doi.org/10.1023/B:BOLI.0000037336.91549.44.

    Article  CAS  PubMed  Google Scholar 

  71. Shamseldin HE, Alasmari A, Salih MA, Samman MM, Mian SA, Alshidi T, Ibrahim N, Hashem M, Faqeih E, Al-Mohanna F, Alkuraya FS. A null mutation in MICU2 causes abnormal mitochondrial calcium homeostasis and a severe neurodevelopmental disorder. Brain. 2017;140(11):2806–13. https://doi.org/10.1093/brain/awx237.

    Article  PubMed  Google Scholar 

  72. Shamseldin HE, Smith LL, Kentab A, Alkhalidi H, Summers B, Alsedairy H, Xiong Y, Gupta VA, Alkuraya FS. Mutation of the mitochondrial carrier SLC25A42 causes a novel form of mitochondrial myopathy in humans. Hum Genet. 2016;135(1):21–30. https://doi.org/10.1007/s00439-015-1608-8.

    Article  CAS  PubMed  Google Scholar 

  73. Spinazzola A, Santer R, Akman OH, Tsiakas K, Schaefer H, Ding X, Karadimas CL, Shanske S, Ganesh J, Di Mauro S, Zeviani M. Hepatocerebral form of mitochondrial DNA depletion syndrome: novel MPV17 mutations. Arch Neurol. 2008;65(8):1108–13. https://doi.org/10.1001/archneur.65.8.1108.

    Article  PubMed  Google Scholar 

  74. Yavuz H, Bertoli-Avella AM, Alfadhel M, Al-Sannaa N, Kandaswamy KK, Al-Tuwaijri W, Rolfs A, Brandau O, Bauer P. A founder nonsense variant in NUDT2 causes a recessive neurodevelopmental disorder in Saudi Arab children. Clin Genet. 2018;94(3–4):393–5. https://doi.org/10.1111/cge.13386.

    Article  CAS  PubMed  Google Scholar 

  75. Ferguson E. The strengths and weaknesses of whole-genome sequencing; 2020. p. 3.

    Google Scholar 

  76. Petersen B-S, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet. 2017;18(1):14. https://doi.org/10.1186/s12863-017-0479-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Nikkanen J, Forsström S, Euro L, Paetau I, Kohnz RA, Wang L, Chilov D, Viinamäki J, Roivainen A, Marjamäki P, Liljenbäck H, Ahola S, Buzkova J, Terzioglu M, Khan NA, Pirnes-Karhu S, Paetau A, Lönnqvist T, Sajantila A, Suomalainen A. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one-carbon metabolism. Cell Metab. 2016;23(4):635–48. https://doi.org/10.1016/j.cmet.2016.01.019.

    Article  CAS  PubMed  Google Scholar 

  78. Reinecke CJ, Koekemoer G, van der Westhuizen FH, Louw R, Lindeque JZ, Mienie LJ, Smuts I. Metabolomics of urinary organic acids in respiratory chain deficiencies in children. Metabolomics. 2012;8(2):264–83. https://doi.org/10.1007/s11306-011-0309-0.

    Article  CAS  Google Scholar 

  79. Smuts I, van der Westhuizen FH, Louw R, Mienie LJ, Engelke UFH, Wevers RA, Mason S, Koekemoer G, Reinecke CJ. Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach. Metabolomics. 2013;9(2):379–91. https://doi.org/10.1007/s11306-012-0455-z.

    Article  CAS  Google Scholar 

  80. Legault JT, Strittmatter L, Tardif J, Sharma R, Tremblay-Vaillancourt V, Aubut C, Boucher G, Clish CB, Cyr D, Daneault C, Waters PJ. A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of Leigh syndrome. Cell Rep. 2015;13(5):981–9. https://doi.org/10.1016/j.celrep.2015.09.054.

    Article  CAS  Google Scholar 

  81. Sharma R, Reinstadler B, Engelstad K, Skinner OS, Stackowitz E, Haller RG, Clish CB, Pierce K, Walker MA, Fryer R, Oglesbee D, Mao X, Shungu DC, Khatri A, Hirano M, De Vivo DC, Mootha VK. Circulating markers of NADH-reductive stress correlate with mitochondrial disease severity. J Clin Invest. 2021;131(2):136055. https://doi.org/10.1172/JCI136055.

    Article  PubMed  Google Scholar 

  82. Hall AM, Vilasi A, Garcia-Perez I, Lapsley M, Alston CL, Pitceathly RDS, McFarland R, Schaefer AM, Turnbull DM, Beaumont NJ, Hsuan JJ, Cutillas PR, Lindon JC, Holmes E, Unwin RJ, Taylor RW, Gorman GS, Rahman S, Hanna MG. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int. 2015;87(3):610–22. https://doi.org/10.1038/ki.2014.297.

    Article  CAS  PubMed  Google Scholar 

  83. Chao de la Barca JM, Simard G, Amati-Bonneau P, Safiedeen Z, Prunier-Mirebeau D, Chupin S, Gadras C, Tessier L, Gueguen N, Chevrollier A, Desquiret-Dumas V, Ferré M, Bris C, Kouassi Nzoughet J, Bocca C, Leruez S, Verny C, Miléa D, Bonneau D, Reynier P. The metabolomic signature of Leber’s hereditary optic neuropathy reveals endoplasmic reticulum stress. Brain. 2016;139(11):2864–76. https://doi.org/10.1093/brain/aww222.

    Article  PubMed  Google Scholar 

  84. Sandlers Y, Mercier K, Pathmasiri W, Carlson J, McRitchie S, Sumner S, Vernon HJ. Metabolomics reveals new mechanisms for pathogenesis in Barth syndrome and introduces novel roles for Cardiolipin in cellular function. PLoS One. 2016;11(3):e0151802. https://doi.org/10.1371/journal.pone.0151802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Semeraro M, Boenzi S, Carrozzo R, Diodato D, Martinelli D, Olivieri G, Antonetti G, Sacchetti E, Catesini G, Rizzo C, Dionisi-Vici C. The urinary organic acids profile in single large-scale mitochondrial DNA deletion disorders. Clin Chim Acta. 2018;481:156–60. https://doi.org/10.1016/j.cca.2018.03.002.

    Article  CAS  PubMed  Google Scholar 

  86. Esterhuizen K, Lindeque JZ, Mason S, van der Westhuizen FH, Rodenburg RJ, de Laat P, Smeitink JAM, Janssen MCH, Louw R. One mutation, three phenotypes: novel metabolic insights on MELAS, MIDD and myopathy caused by the m.3243A > G mutation. Metabolomics. 2021;17(1):10. https://doi.org/10.1007/s11306-020-01769-w.

    Article  CAS  PubMed  Google Scholar 

  87. Stoessel D, Schulte C, Teixeira dos Santos MC, Scheller D, Rebollo-Mesa I, Deuschle C, Walther D, Schauer N, Berg D, Nogueira da Costa A, Maetzler W. Promising metabolite profiles in the plasma and CSF of early clinical Parkinson’s disease. Front Aging Neurosci. 2018;10:51. https://doi.org/10.3389/fnagi.2018.00051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luan H, Liu L-F, Meng N, Tang Z, Chua K-K, Chen L-L, Song J-X, Mok VCT, Xie L-X, Li M, Cai Z. LC–MS-based urinary metabolite signatures in idiopathic Parkinson’s disease. J Proteome Res. 2015;14(1):467–78. https://doi.org/10.1021/pr500807t.

    Article  CAS  PubMed  Google Scholar 

  89. Ibáñez C, Simó C, Martín-Álvarez PJ, Kivipelto M, Winblad B, Cedazo-Mínguez A, Cifuentes A. Toward a predictive model of Alzheimer’s disease progression using capillary electrophoresis–mass spectrometry metabolomics. Anal Chem. 2012;84(20):8532–40. https://doi.org/10.1021/ac301243k.

    Article  CAS  PubMed  Google Scholar 

  90. Scolamiero E, Cozzolino C, Albano L, Ansalone A, Caterino M, Corbo G, di Girolamo MG, Di Stefano C, Durante A, Franzese G, Franzese I, Gallo G, Giliberti P, Ingenito L, Ippolito G, Malamisura B, Mazzeo P, Norma A, Ombrone D, Ruoppolo M. Targeted metabolomics in the expanded newborn screening for inborn errors of metabolism. Mol BioSyst. 2015;11(6):1525–35. https://doi.org/10.1039/c4mb00729h.

    Article  CAS  PubMed  Google Scholar 

  91. Jacob M, Malkawi A, Albast N, Al Bougha S, Lopata A, Dasouki M, Abdel Rahman AM. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism. Anal Chim Acta. 2018;1025:141–53. https://doi.org/10.1016/j.aca.2018.03.058.

    Article  CAS  PubMed  Google Scholar 

  92. Salihovic S, Broeckling CD, Ganna A, Prenni JE, Sundström J, Berne C, Lind L, Ingelsson E, Fall T, Ärnlöv J, Nowak C. Non-targeted urine metabolomics and associations with prevalent and incident type 2 diabetes. Sci Rep. 2020;10(1):16474. https://doi.org/10.1038/s41598-020-72456-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gu X, Al Dubayee M, Alshahrani A, Masood A, Benabdelkamel H, Zahra M, Li L, Abdel Rahman AM, Aljada A. Distinctive metabolomics patterns associated with insulin resistance and type 2 diabetes mellitus. Front Mol Biosci. 2020;7:411. https://doi.org/10.3389/fmolb.2020.609806.

    Article  CAS  Google Scholar 

  94. Bu Y, Wang H, Ma X, Han C, Jia X, Zhang J, Liu Y, Peng Y, Yang M, Yu K, Wang C. Untargeted Metabolomic profiling of the correlation between prognosis differences and PD-1 expression in sepsis: a preliminary study. Front Immunol. 2021;12:740. https://doi.org/10.3389/fimmu.2021.594270.

    Article  CAS  Google Scholar 

  95. Lin S-H, Fan J, Zhu J, Zhao Y-S, Wang C-J, Zhang M, Xu F. Exploring plasma metabolomic changes in sepsis: a clinical matching study based on gas chromatography–mass spectrometry. Ann Transl Med. 2020;8(23):1568. https://doi.org/10.21037/atm-20-3562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang J, Sun Y, Teng S, Li K. Prediction of sepsis mortality using metabolite biomarkers in the blood: a meta-analysis of death-related pathways and prospective validation. BMC Med. 2020;18(1):83. https://doi.org/10.1186/s12916-020-01546-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cavus E, Karakas M, Ojeda FM, Kontto J, Veronesi G, Ferrario MM, Linneberg A, Jørgensen T, Meisinger C, Thorand B, Iacoviello L, Börnigen D, Woodward M, Schnabel R, Costanzo S, Tunstall-Pedoe H, Koenig W, Kuulasmaa K, Salomaa V, BiomarCaRE consortium. Association of circulating metabolites with risk of coronary heart disease in a European population: results from the biomarkers for cardiovascular risk assessment in Europe (BiomarCaRE) consortium. JAMA Cardiol. 2019;4(12):1270–9. https://doi.org/10.1001/jamacardio.2019.4130.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Griffin JL, Atherton H, Shockcor J, Atzori L. Metabolomics as a tool for cardiac research. Nat Rev Cardiol. 2011;8(11):630–43. https://doi.org/10.1038/nrcardio.2011.138.

    Article  CAS  PubMed  Google Scholar 

  99. Debik J, Euceda LR, Lundgren S, Gythfeldt HVDL, Garred Ø, Borgen E, Engebraaten O, Bathen TF, Giskeødegård GF. Assessing treatment response and prognosis by serum and tissue metabolomics in breast cancer patients. J Proteome Res. 2019;18(10):3649–60. https://doi.org/10.1021/acs.jproteome.9b00316.

    Article  CAS  PubMed  Google Scholar 

  100. Feng LR, Barb JJ, Regan J, Saligan LN. Plasma metabolomic profile associated with fatigue in cancer patients. Cancer Med. 2021;10(5):1623–33. https://doi.org/10.1002/cam4.3749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Guida F, Tan VY, Corbin LJ, Smith-Byrne K, Alcala K, Langenberg C, Stewart ID, Butterworth AS, Surendran P, Achaintre D, Adamski J, Amiano P, Bergmann MM, Bull CJ, Dahm CC, Gicquiau A, Giles GG, Gunter MJ, Haller T, Johansson M. The blood metabolome of incident kidney cancer: a case–control study nested within the MetKid consortium. PLoS Med. 2021;18(9):e1003786. https://doi.org/10.1371/journal.pmed.1003786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wojakowska A, Chekan M, Widlak P, Pietrowska M. Application of metabolomics in thyroid cancer research. Int J Endocrinol. 2015;2015:e258763. https://doi.org/10.1155/2015/258763.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anas M. Abdel Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sebaa, R., Harper, ME., Al-Tassan, R., Al-Owain, M., Abdel Rahman, A.M. (2023). Metabolomics in the Study of Human Mitochondrial Diseases. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics