Skip to main content

Mass Spectrometry-Based Metabolomics for the Clinical Laboratory

  • Chapter
  • First Online:
Clinical Metabolomics Applications in Genetic Diseases
  • 310 Accesses

Abstract

In the clinical laboratory, analysis of small molecules using mass spectrometry (MS) primarily encompasses the targeted and quantitative determination of known biomarkers for disease diagnosis and monitoring, general health status evaluation, toxicology, and therapeutic drug monitoring. Although there are exceptions, MS-based assays in the clinical laboratory typically involve the utilization of analyte-specific calibration curves for quantitation, and stable isotope-labeled internal standards to correct for any sample preparation and instrument-related variability. A clinical MS-based assay usually consists of a relatively small panel of biomarkers in a certain diagnostic context that are compatible with the same sample preparation protocol. Alternatively, the term metabolomics generally refers to the comprehensive and systematic large-scale profiling of small molecules within a biological system. Targeted and quantitative MS-based assays containing relatively large panels of small molecules (metabolites) are routinely utilized for newborn screening (NBS), biochemical genetics testing, and toxicology. Broad nontargeted metabolomics investigations have found some utility in the aforementioned testing areas, but are not currently commonplace in the clinical laboratory. This chapter discusses current state-of-the-art MS instrumentation, describes several applications, and provides implementation considerations for MS-based metabolomics in the clinical laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Alternating current

APCI:

Atmospheric chemical ionization

APPI:

Atmospheric pressure photoionization

CCS:

Collisional cross section

CI:

Chemical ionization

CID:

Collision-induced dissociation

Da:

Dalton

DC:

Direct current

EI:

Electron ionization

ESI:

Electrospray ionization

eV:

Electron volt

FTICR:

Fourier-transform ion cyclotron resonance

FWHM:

Full width at half maximum

GC:

Gas chromatography

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectrometry

ICP:

Inductively coupled plasma

IEMs:

Inborn errors of metabolism

IMS:

Ion mobility spectrometry

kV:

Kilovolt

LC:

Liquid chromatography

m/z:

Mass-to-charge ratio

MALDI:

Matrix-assisted laser desorption/ionization

MRM:

Multiple-reaction monitoring

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

QTOF:

Quadrupole time-of-flight

RF:

Radiofrequency

TOF:

Time-of-flight

UPLC:

Ultra-high-performance liquid chromatography

References

  1. Kaklamanos G, Aprea E, Theodoridis G. Mass spectrometry: principles and instrumentation. In: Caballero B, Finglas PM, Toldrá F, editors. Encyclopedia of food and health. Oxford: Academic Press; 2016. p. 661–8.

    Chapter  Google Scholar 

  2. Nordström A, Want E, Northen T, Lehtiö J, Siuzdak G. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Anal Chem. 2008;80(2):421–9.

    Article  PubMed  Google Scholar 

  3. Gross JH. Electron ionization. In: Gross JH, editor. Mass spectrometry: a textbook. Berlin: Springer; 2004. p. 193–222.

    Chapter  Google Scholar 

  4. Rockwood AL, Kushnir MM, Clarke NJ. Chapter 2 - Mass spectrometry. In: Rifai N, Horvath AR, Wittwer CT, editors. Principles and applications of clinical mass spectrometry. Amsterdam: Elsevier; 2018. p. 33–65.

    Chapter  Google Scholar 

  5. Bhardwaj C, Hanley L. Ion sources for mass spectrometric identification and imaging of molecular species. Nat Prod Rep. 2014;31(6):756–67.

    Article  CAS  PubMed  Google Scholar 

  6. Konermann L, Ahadi E, Rodriguez AD, Vahidi S. Unraveling the mechanism of electrospray ionization. Anal Chem. 2013;85(1):2–9.

    Article  CAS  PubMed  Google Scholar 

  7. Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrom Rev. 2009;28(6):870–97.

    Article  CAS  PubMed  Google Scholar 

  8. Robb DB, Covey TR, Bruins AP. Atmospheric pressure photoionization: an ionization method for liquid chromatography−mass spectrometry. Anal Chem. 2000;72(15):3653–9.

    Article  CAS  PubMed  Google Scholar 

  9. Raffaelli A, Saba A. Atmospheric pressure photoionization mass spectrometry. Mass Spectrom Rev. 2003;22(5):318–31.

    Article  CAS  PubMed  Google Scholar 

  10. Seeley EH, Caprioli RM. MALDI imaging mass spectrometry of human tissue: method challenges and clinical perspectives. Trends Biotechnol. 2011;29(3):136–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reyzer ML, Caprioli RM. MALDI-MS-based imaging of small molecules and proteins in tissues. Curr Opin Chem Biol. 2007;11(1):29–35.

    Article  CAS  PubMed  Google Scholar 

  12. Calligaris D, Norton I, Feldman DR, Ide JL, Dunn IF, Eberlin LS, et al. Mass spectrometry imaging as a tool for surgical decision-making. J Mass Spectrom. 2013;48(11):1178–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gross JH. Direct analysis in real time—a critical review on DART-MS. Anal Bioanal Chem. 2014;406(1):63–80.

    Article  CAS  PubMed  Google Scholar 

  14. Sisco E, Forbes TP. Forensic applications of DART-MS: a review of recent literature. Forensic Chem. 2021;22:100294.

    Article  CAS  Google Scholar 

  15. Chernetsova ES, Morlock GE. Ambient desorption ionization mass spectrometry (DART, DESI) and its bioanalytical applications. Bioanal Rev. 2011;3(1):1–9.

    Article  Google Scholar 

  16. Münzenberg G. Development of mass spectrometers from Thomson and Aston to present. Int J Mass Spectrom. 2013;349–350:9–18.

    Article  Google Scholar 

  17. Nier KA, Yergey AL, Jane GP. A general chronicle of mass spectrometry and guide to the scope of the volume. In: Gross ML, Caprioli RM, editors. The encyclopedia of mass spectrometry. Boston: Elsevier; 2016. p. 7–12.

    Chapter  Google Scholar 

  18. Nier KA. Dempster’s descendants—the core of the development of mass spectrometry. J Mass Spectrom. 2020;55(8):e4353.

    Article  CAS  PubMed  Google Scholar 

  19. Miller PE, Denton MB. The quadrupole mass filter: basic operating concepts. J Chem Educ. 1986;63(7):617.

    Article  CAS  Google Scholar 

  20. Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, et al. Towards higher sensitivity of mass spectrometry: a perspective from the mass analyzers. Front Chem. 2021;9:813359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stafford GC, Kelley PE, Syka JEP, Reynolds WE, Todd JFJ. Recent improvements in and analytical applications of advanced ion trap technology. Int J Mass Spectrom Ion Process. 1984;60(1):85–98.

    Article  CAS  Google Scholar 

  22. Paul W. Electromagnetic traps for charged and neutral particles (Nobel Lecture). Angew Chem Int Ed Engl. 1990;29(7):739–48.

    Article  Google Scholar 

  23. Yang L, Amad M, Winnik WM, Schoen AE, Schweingruber H, Mylchreest I, et al. Investigation of an enhanced resolution triple quadrupole mass spectrometer for high-throughput liquid chromatography/tandem mass spectrometry assays. Rapid Commun Mass Spectrom. 2002;16(21):2060–6.

    Article  CAS  PubMed  Google Scholar 

  24. Yost RA, Enke CG. Selected ion fragmentation with a tandem quadrupole mass spectrometer. J Am Chem Soc. 1978;100(7):2274–5.

    Article  CAS  Google Scholar 

  25. Thomas SN. Chapter 10 - Mass spectrometry. In: Clarke W, Marzinke MA, editors. Contemporary practice in clinical chemistry. 4th ed. New York: Academic Press; 2019. p. 171–85.

    Chapter  Google Scholar 

  26. Yost RA, Enke CG, McGilvery DC, Smith D, Morrison JD. High efficiency collision-induced dissociation in an RF-only quadrupole. Int J Mass Spectrom. 1979;30(2):127–36.

    CAS  Google Scholar 

  27. Sleno L, Volmer DA. Ion activation methods for tandem mass spectrometry. J Mass Spectrom. 2004;39(10):1091–112.

    Article  CAS  PubMed  Google Scholar 

  28. Plaß WR, Dickel T, Scheidenberger C. Multiple-reflection time-of-flight mass spectrometry. Int J Mass Spectrom. 2013;349–350:134–44.

    Article  Google Scholar 

  29. Mamyrin BA. Time-of-flight mass spectrometry (concepts, achievements, and prospects). Int J Mass Spectrom. 2001;206(3):251–66.

    Article  CAS  Google Scholar 

  30. Coles J, Guilhaus M. Orthogonal acceleration — a new direction for time-of-flight mass spectrometry: fast, sensitive mass analysis for continuous ion sources. TrAC Trends Anal Chem. 1993;12(5):203–13.

    Article  CAS  Google Scholar 

  31. Allen DR, McWhinney BC. Quadrupole time-of-flight mass spectrometry: a paradigm shift in toxicology screening applications. Clin Biochem Rev. 2019;40(3):135–46.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Johnson JV, Yost RA, Kelley PE, Bradford DC. Tandem-in-space and tandem-in-time mass spectrometry: triple quadrupoles and quadrupole ion traps. Anal Chem. 1990;62(20):2162–72.

    Article  CAS  Google Scholar 

  33. Clarke W. Chapter 1 - Mass spectrometry in the clinical laboratory: determining the need and avoiding pitfalls. In: Nair H, Clarke W, editors. Mass spectrometry for the clinical laboratory. San Diego: Academic Press; 2017. p. 1–15.

    Google Scholar 

  34. Douglas DJ, Frank AJ, Mao D. Linear ion traps in mass spectrometry. Mass Spectrom Rev. 2005;24(1):1–29.

    Article  CAS  PubMed  Google Scholar 

  35. Cabruja M, Priotti J, Domizi P, Papsdorf K, Kroetz DL, Brunet A, et al. In-depth triacylglycerol profiling using MS3 Q-trap mass spectrometry. Anal Chim Acta. 2021;1184:339023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Collings BA. Fragmentation of ions in a low pressure linear ion trap. J Am Soc Mass Spectrom. 2007;18(8):1459–66.

    Article  CAS  Google Scholar 

  37. Lv S, Wang H, Yan Y, Ge M, Guan J. Quantification and confirmation of four aflatoxins using a LC–MS/MS QTRAP system in multiple reaction monitoring, enhanced product ion scan, and MS3 modes. Eur J Mass Spectrom. 2020;26(1):63–77.

    Article  CAS  Google Scholar 

  38. Hopfgartner G, Varesio E, Tschäppät V, Grivet C, Bourgogne E, Leuthold LA. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. J Mass Spectrom. 2004;39(8):845–55.

    Article  CAS  PubMed  Google Scholar 

  39. Kingdon KH. A method for the neutralization of electron space charge by positive ionization at very low gas pressures. Phys Rev. 1923;21(4):408–18.

    Article  CAS  Google Scholar 

  40. Makarov A. Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem. 2000;72(6):1156–62.

    Article  CAS  PubMed  Google Scholar 

  41. Hecht ES, Scigelova M, Eliuk S, Makarov A. Fundamentals and advances of orbitrap mass spectrometry. In: Encyclopedia of analytical chemistry. New York: Wiley. p. 1–40.

    Google Scholar 

  42. Zubarev RA, Makarov A. Orbitrap mass spectrometry. Anal Chem. 2013;85(11):5288–96.

    Article  CAS  PubMed  Google Scholar 

  43. Crutchfield CA, Clarke W. Chapter 12 - High resolution accurate mass (HRAM) mass spectrometry. In: Nair H, Clarke W, editors. Mass spectrometry for the clinical laboratory. San Diego: Academic Press; 2017. p. 247–59.

    Chapter  Google Scholar 

  44. Makarov A, Denisov E, Kholomeev A, Balschun W, Lange O, Strupat K, et al. Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. Anal Chem. 2006;78(7):2113–20.

    Article  CAS  PubMed  Google Scholar 

  45. Kim MS, Pandey A. Electron transfer dissociation mass spectrometry in proteomics. Proteomics. 2012;12(4–5):530–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Guan S, Marshall AG. Ion traps for Fourier transform ion cyclotron resonance mass spectrometry: principles and design of geometric and electric configurations. Int J Mass Spectrom Ion Process. 1995;146–147:261–96.

    Article  Google Scholar 

  47. Nikolaev EN, Kostyukevich YI, Vladimirov GN. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: theory and simulations. Mass Spectrom Rev. 2016;35(2):219–58.

    Article  CAS  PubMed  Google Scholar 

  48. Blaum K, Eliseev S, Sturm S. Perspectives on testing fundamental physics with highly charged ions in penning traps. Quantum Sci Technol. 2021;6(1):014002.

    Article  Google Scholar 

  49. Ostrander CM, Arkin CR, Laude D. Central ring electrode for trapping and excitation/detection in Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom. 2001;12(1):30–7.

    Article  CAS  PubMed  Google Scholar 

  50. Marshall AG, Hendrickson CL. Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int J Mass Spectrom. 2002;215(1):59–75.

    Article  CAS  Google Scholar 

  51. Marshall AG, Hendrickson CL, Jackson GS. Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom Rev. 1998;17(1):1–35.

    Article  CAS  PubMed  Google Scholar 

  52. Perez de Souza L, Alseekh S, Scossa F, Fernie AR. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat Methods. 2021;18(7):733–46.

    Article  CAS  PubMed  Google Scholar 

  53. Žuvela P, Skoczylas M, Jay Liu J, Baṃczek T, Kaliszan R, Wong MW, et al. Column characterization and selection systems in reversed-phase high-performance liquid chromatography. Chem Rev. 2019;119(6):3674–729.

    Article  PubMed  Google Scholar 

  54. Bartle KD, Myers P. History of gas chromatography. TrAC Trends Anal Chem. 2002;21(9):547–57.

    Article  CAS  Google Scholar 

  55. Gohlke RS. Time-of-flight mass spectrometry and gas-liquid partition chromatography. Anal Chem. 1959;31(4):535–41.

    Article  CAS  Google Scholar 

  56. Gallagher RC, Pollard L, Scott AI, Huguenin S, Goodman S, Sun Q. Laboratory analysis of organic acids, 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2018;20(7):683–91.

    Article  PubMed  Google Scholar 

  57. Ramautar R. Capillary electrophoresis-mass spectrometry for clinical metabolomics. Adv Clin Chem. 2016;74:1–34.

    Article  CAS  PubMed  Google Scholar 

  58. Chouinard CD, Wei MS, Beekman CR, Kemperman RHJ, Yost RA. Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem. 2016;62(1):124–33.

    Article  CAS  PubMed  Google Scholar 

  59. Delvaux A, Rathahao-Paris E, Alves S. Different ion mobility-mass spectrometry coupling techniques to promote metabolomics. Mass Spectrom Rev. 2022;41(5):695.

    Article  CAS  PubMed  Google Scholar 

  60. Dodds JN, Baker ES. Ion mobility spectrometry: fundamental concepts, instrumentation, applications, and the road ahead. J Am Soc Mass Spectrom. 2019;30(11):2185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ibrahim YM, Hamid AM, Deng L, Garimella SVB, Webb IK, Baker ES, et al. New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst. 2017;142(7):1010–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paglia G, Astarita G. Metabolomics and lipidomics using traveling-wave ion mobility mass spectrometry. Nat Protoc. 2017;12(4):797–813.

    Article  CAS  PubMed  Google Scholar 

  63. Dubland JA. Lipid analysis by ion mobility spectrometry combined with mass spectrometry: a brief update with a perspective on applications in the clinical laboratory. J Mass Spectrom Adv Clin Lab. 2022;23:7–13.

    Article  CAS  PubMed  Google Scholar 

  64. Fung AWS, Sugumar V, Ren AH, Kulasingam V. Emerging role of clinical mass spectrometry in pathology. J Clin Pathol. 2020;73(2):61.

    Article  CAS  PubMed  Google Scholar 

  65. Strathmann FG, Hoofnagle AN. Current and future applications of mass spectrometry to the clinical laboratory. Am J Clin Pathol. 2011;136(4):609–16.

    Article  CAS  PubMed  Google Scholar 

  66. Adaway JE, Keevil BG, Owen LJ. Liquid chromatography tandem mass spectrometry in the clinical laboratory. Ann Clin Biochem. 2015;52(1):18–38.

    Article  CAS  PubMed  Google Scholar 

  67. Jannetto PJ, Fitzgerald RL. Effective use of mass spectrometry in the clinical laboratory. Clin Chem. 2016;62(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  68. Hines JM, Bancos I, Bancos C, Singh RD, Avula AV, Young WF, et al. High-resolution, accurate-mass (HRAM) mass spectrometry urine steroid profiling in the diagnosis of adrenal disorders. Clin Chem. 2017;63(12):1824–35.

    Article  CAS  PubMed  Google Scholar 

  69. Nuttall KL, Gordon WH, Ash KO. Inductively coupled plasma mass spectrometry for trace element analysis in the clinical laboratory. Ann Clin Lab Sci. 1995;25(3):264–71.

    CAS  PubMed  Google Scholar 

  70. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407.

    Article  CAS  PubMed  Google Scholar 

  71. Arentz G, Mittal P, Zhang C, Ho YY, Briggs M, Winderbaum L, et al. Chapter 2 - Applications of mass spectrometry imaging to cancer. In: Drake RR, McDonnell LA, editors. Advances in cancer research, vol. 134. New York: Academic Press; 2017. p. 27–66.

    Google Scholar 

  72. Basu SS, Stopka SA, Abdelmoula WM, Randall EC, Gimenez-Cassina Lopez B, Regan MS, et al. Interim clinical trial analysis of intraoperative mass spectrometry for breast cancer surgery. NPJ Breast Cancer. 2021;7(1):116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mbughuni MM, Jannetto PJ, Langman LJ. Mass spectrometry applications for toxicology. EJIFCC. 2016;27(4):272–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Szeremeta M, Pietrowska K, Niemcunowicz-Janica A, Kretowski A, Ciborowski M. Applications of metabolomics in forensic toxicology and forensic medicine. Int J Mol Sci. 2021;22(6):3010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Plumb RS, Stumpf CL, Granger JH, Castro-Perez J, Haselden JN, Dear GJ. Use of liquid chromatography/time-of-flight mass spectrometry and multivariate statistical analysis shows promise for the detection of drug metabolites in biological fluids. Rapid Commun Mass Spectrom. 2003;17(23):2632–8.

    Article  CAS  PubMed  Google Scholar 

  76. Steuer AE, Brockbals L, Kraemer T. Untargeted metabolomics approaches to improve casework in clinical and forensic toxicology—“where are we standing and where are we heading?”. WIREs Forensic Sci. 2022;4(4):e1449.

    Article  CAS  Google Scholar 

  77. Keen B, Cawley A, Reedy B, Fu S. Metabolomics in clinical and forensic toxicology, sports anti-doping and veterinary residues. Drug Test Anal. 2022;14(5):794–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Al-Dirbashi OY, Santa T, Rashed MS, Al-Hassnan Z, Shimozawa N, Chedrawi A, et al. Rapid UPLC-MS/MS method for routine analysis of plasma pristanic, phytanic, and very long chain fatty acid markers of peroxisomal disorders. J Lipid Res. 2008;49(8):1855–62.

    Article  CAS  PubMed  Google Scholar 

  79. Valianpour F, Selhorst JJ, van Lint LE, van Gennip AH, Wanders RJ, Kemp S. Analysis of very long-chain fatty acids using electrospray ionization mass spectrometry. Mol Genet Metab. 2003;79(3):189–96.

    Article  CAS  PubMed  Google Scholar 

  80. Schwarz E, Liu A, Randall H, Haslip C, Keune F, Murray M, et al. Use of steroid profiling by UPLC-MS/MS as a second tier test in newborn screening for congenital adrenal hyperplasia: the Utah experience. Pediatr Res. 2009;66(2):230–5.

    Article  CAS  PubMed  Google Scholar 

  81. Janzen N, Sander S, Terhardt M, Steuerwald U, Peter M, Das AM, et al. Rapid steroid hormone quantification for congenital adrenal hyperplasia (CAH) in dried blood spots using UPLC liquid chromatography-tandem mass spectrometry. Steroids. 2011;76(13):1437–42.

    Article  CAS  PubMed  Google Scholar 

  82. Herman GE, Kratz L. Disorders of sterol synthesis: beyond Smith-Lemli-Opitz syndrome. Am J Med Genet C Semin Med Genet. 2012;160c(4):301–21.

    Article  PubMed  Google Scholar 

  83. Storbeck K-H, Schiffer L, Baranowski ES, Chortis V, Prete A, Barnard L, et al. Steroid metabolome analysis in disorders of adrenal steroid biosynthesis and metabolism. Endocr Rev. 2019;40(6):1605–25.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Abu Bakar N, Lefeber DJ, van Scherpenzeel M. Clinical glycomics for the diagnosis of congenital disorders of glycosylation. J Inherit Metab Dis. 2018;41(3):499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Forni G, Malvagia S, Funghini S, Scolamiero E, Mura M, Della Bona M, et al. LC-MS/MS method for simultaneous quantification of heparan sulfate and dermatan sulfate in urine by butanolysis derivatization. Clin Chim Acta. 2019;488:98–103.

    Article  CAS  PubMed  Google Scholar 

  86. Huang R, Cathey S, Pollard L, Wood T. UPLC-MS/MS analysis of urinary free oligosaccharides for lysosomal storage diseases: diagnosis and potential treatment monitoring. Clin Chem. 2018;64(12):1772–9.

    Article  CAS  PubMed  Google Scholar 

  87. Gelb MH, Lukacs Z, Ranieri E, Schielen P. Newborn screening for lysosomal storage disorders: methodologies for measurement of enzymatic activities in dried blood spots. Int J Neonatal Screen. 2019;5(1):1.

    Article  PubMed  Google Scholar 

  88. Aliu E, Kanungo S, Arnold GL. Amino acid disorders. Ann Transl Med. 2018;6(24):471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ferreira CR, Rahman S, Keller M, Zschocke J, Group IA. An international classification of inherited metabolic disorders (ICIMD). J Inherit Metab Dis. 2021;44(1):164–77.

    Article  PubMed  PubMed Central  Google Scholar 

  90. de Koning TJ. Amino acid synthesis deficiencies. J Inherit Metab Dis. 2017;40(4):609–20.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Phipps WS, Jones PM, Patel K. Chapter 2 - Amino and organic acid analysis: essential tools in the diagnosis of inborn errors of metabolism. In: Makowski GS, editor. Advances in clinical chemistry, vol. 92. Amsterdam: Elsevier; 2019. p. 59–103.

    Google Scholar 

  92. Berridge BJ Jr, Chao WR, Peters JH. Analysis of plasma and urinary amino acids by ion-exchange column chromatography. Am J Clin Nutr. 1971;24(8):934–9.

    Article  CAS  PubMed  Google Scholar 

  93. Spackman DH, Stein WH, Moore S. Automatic recording apparatus for use in chromatography of amino acids. Anal Chem. 1958;30(7):1190–206.

    Article  CAS  Google Scholar 

  94. Carling RS, McDonald BA, Austin D, Burden D, Correia J, Leung J, et al. Challenging the status quo: a comparison of ion exchange chromatography with liquid chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry methods for the measurement of amino acids in human plasma. Ann Clin Biochem. 2020;57(4):277–90.

    Article  CAS  PubMed  Google Scholar 

  95. Waterval WAH, Scheijen JLJM, Ortmans-Ploemen MMJC, Habets-van der Poel CD, Bierau J. Quantitative UPLC-MS/MS analysis of underivatised amino acids in body fluids is a reliable tool for the diagnosis and follow-up of patients with inborn errors of metabolism. Clin Chim Acta. 2009;407(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  96. Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens JP, Bouchu D. Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom. 2005;19(12):1587–602.

    Article  CAS  PubMed  Google Scholar 

  97. Le A, Ng A, Kwan T, Cusmano-Ozog K, Cowan TM. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci. 2014;944:166–74.

    Article  CAS  PubMed  Google Scholar 

  98. Miller MJ, Cusmano-Ozog K, Oglesbee D, Young S, Committee ALQA. Laboratory analysis of acylcarnitines, 2020 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(2):249–58.

    Article  CAS  PubMed  Google Scholar 

  99. Millington DS, Stevens RD. Acylcarnitines: analysis in plasma and whole blood using tandem mass spectrometry. Methods Mol Biol. 2011;708:55–72.

    Article  CAS  PubMed  Google Scholar 

  100. Peng M, Fang X, Huang Y, Cai Y, Liang C, Lin R, et al. Separation and identification of underivatized plasma acylcarnitine isomers using liquid chromatography–tandem mass spectrometry for the differential diagnosis of organic acidemias and fatty acid oxidation defects. J Chromatogr A. 2013;1319:97–106.

    Article  CAS  PubMed  Google Scholar 

  101. Körver-Keularts IMLW, Wang P, Waterval HWAH, Kluijtmans LAJ, Wevers RA, Langhans C-D, et al. Fast and accurate quantitative organic acid analysis with LC-QTOF/MS facilitates screening of patients for inborn errors of metabolism. J Inherit Metab Dis. 2018;41(3):415–24.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Nyhan WL. Disorders of purine and pyrimidine metabolism. Mol Genet Metab. 2005;86(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  103. Monostori P, Klinke G, Hauke J, Richter S, Bierau J, Garbade SF, et al. Extended diagnosis of purine and pyrimidine disorders from urine: LC MS/MS assay development and clinical validation. PLoS One. 2019;14(2):e0212458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hartmann S, JrG O, Schmidt C, Langhans C-D, Garbade SF, Burgard P, et al. Comprehensive detection of disorders of purine and pyrimidine metabolism by HPLC with electrospray ionization tandem mass spectrometry. Clin Chem. 2006;52(6):1127–37.

    Article  CAS  PubMed  Google Scholar 

  105. Chace DH, Kalas TA, Naylor EW. Use of tandem mass spectrometry for Multianalyte screening of dried blood specimens from newborns. Clin Chem. 2003;49(11):1797–817.

    Article  CAS  PubMed  Google Scholar 

  106. Chace DH, Hannon WH. Impact of second-tier testing on the effectiveness of newborn screening. Clin Chem. 2010;56(11):1653–5.

    Article  CAS  PubMed  Google Scholar 

  107. Gramer G, Hoffmann GF. Second-tier strategies in newborn screening – potential and limitations. Med Genet. 2022;34(1):21–8.

    CAS  Google Scholar 

  108. Austin Pickens C, Isenberg SL, Cuthbert C, Petritis K. Combining first and second-tier newborn screening in a single assay using high-throughput Chip-based capillary electrophoresis coupled to high-resolution mass spectrometry. Clin Chem. 2021;67(12):1709–20.

    Article  CAS  PubMed  Google Scholar 

  109. Jacob M, Malkawi A, Albast N, Al Bougha S, Lopata A, Dasouki M, et al. A targeted metabolomics approach for clinical diagnosis of inborn errors of metabolism. Anal Chim Acta. 2018;1025:141–53.

    Article  CAS  PubMed  Google Scholar 

  110. Miller MJ, Kennedy AD, Eckhart AD, Burrage LC, Wulff JE, Miller LA, et al. Untargeted metabolomic analysis for the clinical screening of inborn errors of metabolism. J Inherit Metab Dis. 2015;38(6):1029–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. U.S. Department of Health and Human Services FaDA, Center for Drug Evaluation and Research (CDER), Center for Veterinary Medicine (CVM), editor. Bioanalytical method validation: guidance for industry; 2018.

    Google Scholar 

  112. CLSI. Liquid chromatography-mass spectrometry methods; approved guideline. CLSI document C62-A. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.

    Google Scholar 

  113. Wu AHB, French D. Implementation of liquid chromatography/mass spectrometry into the clinical laboratory. Clin Chim Acta. 2013;420:4–10.

    Article  CAS  PubMed  Google Scholar 

  114. Rappold BA. Review of the use of liquid chromatography-tandem mass spectrometry in clinical laboratories: part I-development. Ann Lab Med. 2022;42(2):121–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Naz S, Vallejo M, García A, Barbas C. Method validation strategies involved in non-targeted metabolomics. J Chromatogr A. 2014;1353:99–105.

    Article  CAS  PubMed  Google Scholar 

  116. Simón-Manso Y, Lowenthal MS, Kilpatrick LE, Sampson ML, Telu KH, Rudnick PA, et al. Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Anal Chem. 2013;85(24):11725–31.

    Article  PubMed  Google Scholar 

  117. Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950–metabolites in frozen human plasma. J Lipid Res. 2017;58(12):2275–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Beger RD. Interest is high in improving quality control for clinical metabolomics: setting the path forward for community harmonization of quality control standards. Metabolomics. 2018;15(1):1.

    Article  PubMed  Google Scholar 

  119. Liu KH, Nellis M, Uppal K, Ma C, Tran V, Liang Y, et al. Reference standardization for quantification and harmonization of large-scale metabolomics. Anal Chem. 2020;92(13):8836–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ulmer CZ, Maus A, Hines J, Singh R. Challenges in translating clinical metabolomics data sets from the bench to the bedside. Clin Chem. 2021;67(12):1581–3.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP, Bleiholder C, et al. Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom Rev. 2019;38(3):291–320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Dubland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dubland, J.A. (2023). Mass Spectrometry-Based Metabolomics for the Clinical Laboratory. In: Abdel Rahman, A.M. (eds) Clinical Metabolomics Applications in Genetic Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-99-5162-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5162-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5161-1

  • Online ISBN: 978-981-99-5162-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics