Skip to main content

Electron Ionization

  • Chapter
Mass Spectrometry

Abstract

The use of electron ionization (EI) [1] dates back to the infancy of mass spectrometry in the early 20th century. Ionization is effected by shooting energetic electrons onto a neutral that must have been transferred into the gas phase before. EI definitely is the classical approach to ionization in organic mass spectrometry, and only the production of ions in electrical discharges and by thermal ionization (TI) of inorganic salts have earlier been in use. [2] Nevertheless, EI still represents an important technique for the analysis of low- to medium-polarity, non-ionic organic compounds in the range of molecular weights up to M r ≈ 1000. Until recent years, EI has been termed electron impact ionization or simply electron impact (EI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference List

  1. Field, F.H.; Franklin, J.L. Electron Impact Phenomena and the Properties of Gaseous Ions; 1st ed.; Academic Press: New York, 1957.

    Google Scholar 

  2. Nier, A.O. Some Reflections on the Early Days of Mass Spectrometry at the University of Minnesota. Int. J. Mass Spectrom. Ion Proc. 1990, 100, 1–13.

    Article  CAS  Google Scholar 

  3. Mark, T.D. Fundamental Aspects of Electron Impact Ionization. Int. J. Mass Spectrom. Ion Phys. 1982, 45, 125–145.

    Google Scholar 

  4. Mark, T.D. Electron Impact Ionization, in Gaseous ion Chemistry and Mass Spectrometry, Futrell, J.H., editor; John Wiley and Sons: New York, 1986; pp. 61–93.

    Google Scholar 

  5. Meyerson, S.; Van der Haar, R.W. Multiply Charged Organic Ions in Mass Spectra. J. Chem. Phys. 1962, 37, 2458–2462.

    Article  CAS  Google Scholar 

  6. Wolkenstein, K.; Gross, J.H.; Oeser, T.; Schöler, H.F. Spectroscopic Characterization and Crystal Structure of the 1,2,3,4,5,6-Hexahydrophenanthrof 1, 10, 9, 8-OpgrajPerylene. Tetrahedron Lett. 2002, 43, 1653–1655.

    Article  CAS  Google Scholar 

  7. Selby, D.S.; Mlynski, V.; Guilhaus, M. A 20 KV Orthogonal Acceleration Time-of-Flight Mass Spectrometer for Matrix-Assisted Laser Desorption/Ionization. Int. J. Mass Spectrom. 2001, 210/211, 89–100.

    Google Scholar 

  8. Schröder, E. Massenspektrometrie — Begriffe und Definitionen; 1st ed.; Springer-Verlag: Heidelberg, 1991.

    Book  Google Scholar 

  9. Meier, K.; Scibl, J. Measurement of Ion Residence Times in a Commercial Electron Impact Ion Source. Int. J. Mass Spec-trom. Ion Phys. 1974, 14. 99–106.

    Article  CAS  Google Scholar 

  10. Harrison, A.G. Fundamentals of Gas Phase Ion Chemistry, in Chemical Ionization Mass Spectrometry, 2nd ed.; CRC Press: Boca Raton, 1992; Chapter 2, pp. 26.

    Google Scholar 

  11. De Wall, R.; Neuert, H. The Formation of Negative Ions From Electron Impact With Tungsten Hexafluoride. Z. Naturforsch. A. 1977, 32A, 968–971.

    Google Scholar 

  12. Ludányi, K.; Dallos, A.; Kühn, Z.; Vékey, D. Mass Spectrometry of Very Large Saturated Hydrocarbons. J. Mass Spectrom. 1999, 34, 264–267.

    Article  Google Scholar 

  13. Remberg, G.; Remberg, E.; Spiteller-Friedmann, M.; Spiteller, G. Massenspektren schwach angeregter Moleküle. 4. Mitteilung. Org. Mass Spectrom. 1968, 1, 87–113.

    Article  CAS  Google Scholar 

  14. Bowen, R.D.; Maccoll, A. Low-Energy, Low-Temperature Mass Spectra. I. Selected Derivatives of Octane. Org. Mass Spectrom. 1983, 18, 576–581.

    Article  CAS  Google Scholar 

  15. Brophy, J.J.; Maccoll, A. Low-Energy, Low-Temperature Mass Spectra. 9. The Linear Undecanols. Org. Mass Spectrom. 1988, 23, 659–662.

    Article  CAS  Google Scholar 

  16. Melaku, A.; Maccoll, A.; Bowen, R.D. Low-Energy, Low-Temperature Mass Spectra. Part 17: Selected Aliphatic Amides. Eur. Mass Spectrom. 1997, 3, 197–208.

    Article  Google Scholar 

  17. Schaeffer, O.A. An Improved Mass Spectrometer Ion Source. Rev. Sci. Instrum. 1954, 25, 660–662.

    Article  CAS  Google Scholar 

  18. Fock, W. Design of a Mass Spectrometer Ion Source Based on Computed Ion Trajectories. bit. J. Mass Spectrom. Ion Phys. 1969, 3, 285–291.

    Article  CAS  Google Scholar 

  19. Koontz, S.L.; Denton, M.B. A Very High Yield Electron Impact Ion Source for Analytical Mass Spectrometry. Int. J. Mass Spectrom. Ion Phys. 1981, 37, 227–239.

    Article  CAS  Google Scholar 

  20. Hogg, A.M.; Payzant, J.D. Design of a Field Ionization/Field Desorption/Electron Impact Ion Source and its Performance on a Modified AEIMS9 Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1978, 27, 291–303.

    Article  CAS  Google Scholar 

  21. Brunnée, C. A Combined Field Ionisation-Electron Impact Ion Source for High Molecular Weight Samples of Low Volatility. Z Naturforsch., B 1967, 22, 121–123.

    Google Scholar 

  22. Habfast, K. Massenspektrometrische Funktionselemente: Ionenquellen, in Massenspektrometrie, 1st ed.; Kienitz, H., editor; Verlag Chemie: Weinheim, 1968; Chapter B 1.2, pp. 43–74.

    Google Scholar 

  23. Bleakney, W. A New Method of Positive-Ray Analysis and its Application to the Measurement of Ionization Potentials in Mercury Vapor. Physical Review 1929, 34, 157–160.

    Article  CAS  Google Scholar 

  24. Nier, A.O. Mass Spectrometer for Isotope and Gas Analysis, Rev. Sci. Instrum. 1947, 18, 398–411.

    Article  CAS  Google Scholar 

  25. Nier, A.O. The Development of a High Resolution Mass Spectrometer: a Reminiscence. J. Am. Soc. Mass Spectrom. 1991, 2, 447–452.

    Article  CAS  Google Scholar 

  26. Swingler, D.L. Mass Spectrometer Ion Source with High Yield. J. Appl. Phys. 1910 , 41, 1496–1499.

    Article  Google Scholar 

  27. Price, P. Standard Definitions of Terms Relating to Mass Spectrometry. A Report From the Committee on Measurements and Standards of the Amercian Society for Mass Spectrometry. J. Am. Chem. Soc. Mass Spectrom. 1991, 2, 336–348.

    Article  CAS  Google Scholar 

  28. Todd, J.F.J. Recommendations for Nomenclature and Symbolism for Mass Spectroscopy Including an Appendix of Terms Used in Vacuum Technology. Int. J. Mass Spectrom. Ion Proc. 1995, 142, 211–240.

    Article  CAS  Google Scholar 

  29. Sparkman, O.D. Mass Spec Desk Reference; 1st ed.; Global View Publishing: Pittsburgh, 2000.

    Google Scholar 

  30. Kilburn, K.D.; Lewis, P.H.; Underwood, J.G.; Evans, S.; Holmes, J.; Dean, M. Quality of Mass and Intensity Measurements From a High Performance Mass Spectrometer. Anal. Chem. 1979, 51, 1420–1425.

    Article  CAS  Google Scholar 

  31. Morrison, J.D. Ion Focusing, Mass Analysis, and Detection, in Gaseous Ion Chemistry and Mass Spectrometry, Futrell, J.H., editor; John Wiley & Sons: New York, 1986; pp. 107–125.

    Google Scholar 

  32. Dahl, D.A.; Delmore, J.E.; Appelhans, A.D. SIMION PC/PS2 Electrostatic Lens Design Program. Rev. Sci. Instrum. 1990, 61, 607–609.

    Article  CAS  Google Scholar 

  33. Blaum, K.; Geppert, C.; Müller, P.; Nörtershäuser, W.; Otten, E.W.; Schmitt, A.; Trautmann, N.; Wendt, K.; Bushaw, B.A. Properties and Performance of a Quadrupole Mass Filter Used for Resonance Ionization Mass Spectrometry. Int. J. Mass Spectrom. 1998, 181, 67–87.

    Article  CAS  Google Scholar 

  34. Ehlers, M.; Schmidt, S.; Lee, B.J.; Grote-meyer, J. Design and Set-Up of an External Ion Source Coupled to a Quadrupole-Ion-Trap Reflectron-Time-of-Flight Hybrid Instrument. Eur. J. Mass Spectrom. 2000, 6, 377–385.

    Article  CAS  Google Scholar 

  35. Dahl, D.A. SIMION for the Personal Computer in Reflection. Int. J. Mass Spectrom. 2000, 200, 3–25.

    Article  CAS  Google Scholar 

  36. Forbes, M.W.; Sharifi, M.; Croley, T.; Lausevic, Z.; March, R.E. Simulation of Ion Trajectories in a Quadrupole Ion Trap: a Comparison of Three Simulation Programs. J. Mass Spectrom. 1999, 34, 1219–1239.

    Article  CAS  Google Scholar 

  37. Cameron, A.E. Electron-Bombardment Ion Source for Mass Spectrometry of Solids. Rev. Sci. Instrum. 1954, 25, 1154–1156.

    Article  CAS  Google Scholar 

  38. Reed, R.I. Electron Impact and Molecular Dissociation. Part I. Some Steroids and Triterpenoids. J. Chem. Soc. 1958, 3432–3436.

    Google Scholar 

  39. Gohlke, R.S. Obtaining the Mass Spectra of Non-Volatile or Thermally Unstable Compounds. Chem. Industry 1963, 946–948.

    Google Scholar 

  40. Junk, G.A.; Svec, H.J. A Vacuum Lock for the Direct Insertion of Samples into a Mass Spectrometer. Anal. Chem. 1965, 37, 1629–1630.

    Article  CAS  Google Scholar 

  41. Kankare, J.J. Simple Temperature Programmer for a Mass Spectrometer Direct Insertion Probe. Anal. Chem. 1974, 46, 966–967.

    Article  CAS  Google Scholar 

  42. Franzen, J.; Küper, H.; Riepe, W.; Henne-berg, D. Automatic Ion Current Control of a Direct Inlet System. Int. J. Mass Spectrom. Ion Phys. 1973, 10, 353–357.

    Article  CAS  Google Scholar 

  43. Sawdo, R.M.; Blumer, M. Refrigerated Direct Insertion Probe for Mass Spectrometry. Anal. Chem. 1976 , 48, 790–791.

    Article  CAS  Google Scholar 

  44. Cotter, R.J. Mass Spectrometry of Nonvolatile Compounds by Desorption From Extended Probes. Anal. Chem. 1980, 52, 1589A–1602A.

    Article  CAS  Google Scholar 

  45. Ohashi, M.; Nakayama, N. In-Beam Electron Impact Mass Spectrometry of Aliphatic Alkohols. Org. Mass Spectrom. 1978, 13, 642–645.

    Article  CAS  Google Scholar 

  46. Ohashi, M.; Tsujimoto, K.; Funakura, S.; Harada, K.; Suzuki, M. Detection of Pseudomolecular Ions of Tetra- and Pentasaccharides by in-Beam Electron Ionization Mass Spectrometry. Spectroscopy Int. J. 1983, 2, 260–266.

    CAS  Google Scholar 

  47. Constantin, E.; Nakatini, Y.; Ourisson, G.; Hueber, R.; Teller, G. Spectres De Masse De Phospholipides Et Polypeptides Non Proteges. Une Méthode Simple D’Obtention Du Spectre Complet. Tetrahedron Lett. 1980, 21, 4745–4746.

    Article  CAS  Google Scholar 

  48. Traldi, P.; Vettori, U.; Dragoni, F. Instrument Parameterization for Optimum Use of Commercial Direct Inlet Systems. Org. Mass Spectrom. 1982, 17, 587–592.

    Article  CAS  Google Scholar 

  49. Traldi, P. Direct Electron Impact — a New Ionization Technique? Org. Mass Spectrom. 1982, 17, 245–246.

    Article  CAS  Google Scholar 

  50. Udseth, H.R.; Friedman, L. Analysis of Styrene Polymers by Mass Spectrometry With Filament-Heated Evaporation. Anal. Chem. 1981, 53, 29–33.

    Article  CAS  Google Scholar 

  51. Daves, G.D., Jr. Mass Spectrometry of Involatile and Thermally Unstable Molecules. Accounts of Chemical Research 1979, 12, 359–365.

    Article  CAS  Google Scholar 

  52. Peltier, J.M.; MacLean, D.B.; Szarek, W.A. Determination of the Glycosidic Linkage in Peracetylated Disaccharides Comprised of D-Glucopyranose Units by Use of Desorption Electron-Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 446–449.

    Article  CAS  Google Scholar 

  53. Kurlansik, L.; Williams, T.J.; Strong, J.M.; Anderson, L.W.; Campana, J.E. Desorption Ionization Mass Spectrometry of Synthetic Porphyrins. Biomed. Mass Spectrom. 1984, 11, 475–481.

    Article  CAS  Google Scholar 

  54. Qian, K.; Killinger, W.E.; Casey, M.; Nicol, G.R. Rapid Polymer Identification by In-Source Direct Pyrolysis Mass Spectrometry and Library Searching Techniques. Anal. Chem. 1996 , 68, 1019–1027.

    Article  CAS  Google Scholar 

  55. Meuzelaar, H.L.C.; Haverkamp, J.; Hileman, F.D. Pyrolysis Mass Spectrometry of Recent and Fossil Biomaterials; 1ed.; Elsevier: Amsterdam, 1982.

    Google Scholar 

  56. Guillo, C.; Lipp, M.; Radovic, B.; Reniero, F.; Schmidt, M.; Anklam, E. Use of Py-rolysis-Mass Spectrometry in Food Analysis: Applications in the Food Analysis Laboratory of the European Commissions’ Joint Research Center. J. Anal. Appl. Pyrolysis 1999, 49, 329–335.

    Article  Google Scholar 

  57. Schulten, H.-R.; Leinweber, P. Characterization of Humic and Soil Particles by Analytical Pyrolysis and Computer Modeling. J. Anal. Appl Pyrolysis 1996, 38, 1–53.

    Article  CAS  Google Scholar 

  58. Basile, F.; Beverly, M.B.; Voorhees, K.J. Pathogenic Bacteria: Their Detection and Differentiation by Rapid Lipid Profiling With Pyrolysis Mass Spectrometry. Trends Anal. Chem. 1998, 17, 95–109.

    Article  CAS  Google Scholar 

  59. Caldecourt, V.J. Heated Sample Inlet System for Mass Spectrometry. Anal. Chem. 1955, 27, 1670.

    Article  CAS  Google Scholar 

  60. Peterson, L. Mass Spectrometer All-Glass Heated Inlet. Anal. Chem. 1962, 34, 1850–1851.

    Article  CAS  Google Scholar 

  61. Roussis, S.G.; Cameron, A.S. Simplified Hydrocarbon Compound Type Analysis Using a Dynamic Batch Inlet System Coupled to a Mass Spectrometer. Energy & Fuels 1997, 11, 879–886.

    Article  CAS  Google Scholar 

  62. Patullo, A.D.; Young, H.A. Liquid Sample Introduction System for a Mass Spectrometer. Anal. Chem. 1963, 35, 1768.

    Article  Google Scholar 

  63. Message, G.M. Practical Aspects of Gas Chromatography/Mass Spectrometry; 1st ed.; John Wiley & Sons: New York, 1984.

    Google Scholar 

  64. Hübschmann, H.-J. Handbuch der GC-MS — Grundlagen und Anwendungen; 1st ed.; Verlag Chemie: Weinheim, 1996.

    Book  Google Scholar 

  65. Budde, W.L. Analytical Mass Spectrometry; 1st ed.; ACS and Oxford University Press: Washington, D.C. and Oxford, 2001.

    Google Scholar 

  66. Gohlke, R.S.; McLafferty, F.W. Early Gas Chromatography/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1993, 4, 367–371.

    Article  CAS  Google Scholar 

  67. Willoughby, R.C.; Browner, R.F. Monodisperse Aerosol Generation Interface for Combining Liquid Chromatography with Mass Spectroscopy. Anal. Chem. 1984, 56, 2625–2631.

    Article  CAS  Google Scholar 

  68. Winkler, P.C.; Perkins, D.D.; Williams, D.K.; Browner, R.F. Performance of an Improved Monodisperse Aerosol Generation Interface for Liquid Chromatography/Mass Spectrometry. Anal. Chem. 1988, 60, 489–493.

    Article  CAS  Google Scholar 

  69. Brauers, F.; von Bünau, G. Mass Spectrometry of Solutions: a New Simple Interface for the Direct Introduction of Liquid Samples. Int. J. Mass Spectrom. Ion Proc. 1990, 99, 249–262.

    Article  CAS  Google Scholar 

  70. Handbook of Derivates for Chromatography; 1st ed.; Blau, G.; King, G.S., editors; Heyden & Son: London, 1977.

    Google Scholar 

  71. Poole, C.F. Recent Advances in the Silylation of Organic Compounds for Gas Chromatography, in Handbook of derivates for chromatography, 1st ed.; Blau, G.; King, G.S., editors; Heyden & Son: London, 1977; Chapter 4, pp. 152–200.

    Google Scholar 

  72. Svendsen, J.S.; Sydnes, L.K.; Whist, J.E. Mass Spectrometric Study of Dimethyl Esters of Trimethylsilyl Ether Derivatives of Some 3-Hydroxy Dicarboxylic Acids. Org. Mass Spectrom. 1987, 22, 421–429.

    Article  CAS  Google Scholar 

  73. Svendsen, J.S.; Whist, J.E.; Sydnes, L.K. A Mass Spectrometric Study of the Dimethyl Ester Trimethylsilyl Enol Ether Derivatives of Some 3-Oxodicarboxylic Acids. Org. Mass Spectrom. 1987, 22, 486–492.

    Article  CAS  Google Scholar 

  74. Scribe, P.; Guezennec, J.; Dagaut, J.; Pepe, C.; Saliot, A. Identification of the Position and the Stereochemistry of the Double Bond in Monounsaturated Fatty Acid Methyl Esters by Gas Chromatography/Mass Spectrometry of Dimethyl Disulfide Derivatives. Anal. Chem. 1988, 60, 928–931.

    Article  CAS  Google Scholar 

  75. Pepe, C.; Sayer, H.; Dagaut, J.; Couffignal, R. Determination of Double Bond Positions in Triunsaturated Compounds by Means of Gas Chromatography/Mass Spectrometry of Dimethyl Disulfide Derivatives. Rapid Commun. Mass Spectrom. 1997, 11, 919–921.

    Article  CAS  Google Scholar 

  76. Abrahamsson, S.; Stenhagen, E.; McLafferty, F.W. Atlas of Mass Spectral Data; 1st ed.; John Wiley & Sons: New York, 1969; Vol. 1–3.

    Google Scholar 

  77. Eight Peak Index of Mass Spectra; 3rd ed.; Royal Society of Chemistry: London, 1983; Vol. 1–3.

    Google Scholar 

  78. McLafferty, F.W.; Stauffer, D.B. The Wiley/NBS Registry of Mass Spectral Data; 2nd ed.; Wiley-Interscience: New York, 1989; Vol. 1–7.

    Google Scholar 

  79. McLafferty, F.W.; Gohlke, R.S. Mass-Spectrometric Analysis: Spectral-Data File Utilizing Machine Filing and Manual Searching. Anal. Chem. 1959, 31, 1160–1163.

    Article  CAS  Google Scholar 

  80. Stein, S.E.; Ausloos, P.; Lias, S.G. Comparative Evaluations of Mass Spectral Databases. J. Am. Soc. Mass Spectrom. 1991, 2, 441–443.

    Article  CAS  Google Scholar 

  81. McLafferty, F.W.; Stauffer, D.B.; Twiss-Brooks, A.B.; Loh, S.Y. An Enlarged Data Base of Electron-Ionization Mass Spectra. J. Am. Soc. Mass Spectrom. 1991, 2, 432–437.

    Article  CAS  Google Scholar 

  82. McLafferty, F.W.; Stauffer, D.B.; Loh, S.Y. Comparative Evaluations of Mass Spectral Data Bases. J. Am. Soc. Mass Spectrom. 1991, 2, 438–440.

    Article  CAS  Google Scholar 

  83. Henneberg, D.; Weimann, B.; Zalfen, U. Computer-Aided Interpretation of Mass Spectra Using Databases with Spectra and Structures. I. Structure Searches. Org. Mass Spectrom. 1993, 28, 198–206.

    Article  CAS  Google Scholar 

  84. Stein, S.; Scott, D.R. Optimization and Testing of Mass Spectral Library Search Algorithms for Compound Identification. J. Am. Soc. Mass Spectrom. 1994, 5, 859–866.

    Article  CAS  Google Scholar 

  85. Stein, S.E. Estimating Probabilities of Correct Identification From Results of Mass Spectral Library Searches. J. Am. Soc. Mass Spectrom. 1994, 5, 316–323.

    Article  CAS  Google Scholar 

  86. Lebedev, K.S.; Cabrol-Bass, D. New Computer Aided Methods for Revealing Structural Features of Unknown Compounds Using Low Resolution Mass Spectra. J. Chem. Inf. Comput. Sci. 1998, 38, 410–419.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2004). Electron Ionization. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-36756-X_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-36756-X_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07388-5

  • Online ISBN: 978-3-540-36756-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics