Skip to main content

Biotechnological Approaches for the Production of Bioenergy

  • Chapter
  • First Online:
Biotechnology and Omics Approaches for Bioenergy Crops

Abstract

World energy production is dominated by the oils, natural gas, and coal which are also known as fossil fuels. These fossil fuels are the main cause of global warming as they emit more carbon and drive toward climate change issue. World energy production needs a transition from fossil fuels to green energy, and it is only possible with the production of bioethanol, biodiesel, and biohydrogen. Many countries have been producing green energy for the past two decades, and the demand for such energy is increasing with each passing year. Green energy is obtained from renewable sources and is considered safe for environment. Biotechnology had played a significant role in the development of bioenergy. By the use of biotechnological techniques such as polymerase chain reaction (PCR), Rt PCR, and microarray, metagenomic and proteomic identification of new microorganisms has been carried out which produce biofuels more efficiently. Similarly, genetic engineering also played a significant role in the production of large volume of biofuels. Genetic engineering techniques such as metabolic engineering, genome shuffling, CRISPR-Cas9, and gene overexpression have been utilized in the efficient production of biofuels. Genetic engineering had also laid out the foundation of biofuel production from forestry leftovers. Similarly, besides biotechnology and genetic engineering, biorefineries are also vital for the efficient extraction of biofuels from feedstocks. It can be concluded that bioenergy is the future of world energy production, and both biotechnology and genetic engineering are the basic tools to enhance bioenergy production in the future; however, judicious use and ethical concerns of such technologies are also important in the efficient production of bioenergy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alalwan HA, Alminshid AH, Aljaafari HA (2019) Promising evolution of biofuel generations. Sub Rev Renew Energy Focus 28:127–139

    Article  Google Scholar 

  • Ale S, Femeena PV, Mehan S, Cibin R (2019) Environmental impacts of bioenergy crop production and benefits of multifunctional bioenergy systems. In: Bioenergy with carbon capture and storage. Academic Press, pp 195–217

    Chapter  Google Scholar 

  • Ali SS, Mastropetros SG, Schagerl M, Sakarika M, Elsamahy T, El-Sheekh M & Kornaros M (2022) Recent advances in wastewater microalgae-based biofuels production: A state-of-the-art review. Energy Reports, 8: 13253–13280.

    Google Scholar 

  • Amornraksa S, Subsaipin I, Simasatitkul L, Assabumrungrat S (2020) Systematic design of separation process for bioethanol production from corn Stover. BMC Chemical Engineering 2(1):1–16

    Article  Google Scholar 

  • Aslam A, Fazal T, Uz Zaman Q, Shan A, Rehman F, Iqbal J et al (2020) Biorefinery of microalgae for nonfuel products. In: Yousuf A (ed) Microalgae cultivation for biofuels production. Academic Press, pp 197–209. https://doi.org/10.1016/b978-0-12-817536-1.00013-8

    Chapter  Google Scholar 

  • Atitallah IB, Antonopoulou G, Ntaikou I, Alexandropoulou M, Nasri M, Mechichi T, Lyberatos G (2019) On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. Bioresour Technol 289:121614

    Article  PubMed  Google Scholar 

  • Babu SS, Gondi R, Vincent GS, JohnSamuel GC, Jeyakumar RB (2022) Microalgae biomass and lipids as feedstock for biofuels: sustainable biotechnology strategies. Sustainability 14(22):15070

    Article  CAS  Google Scholar 

  • Baker JC, Crumley RE, Eckdahl TT (2016) Laboratory exercises random amplified polymorphic DNA PCR in the microbiology teaching laboratory. Biochem Mol Biol Educ 8:391–396

    Google Scholar 

  • Benevenuti C, Botelho A, Ribeiro R et al (2020) Experimental design to improve cell growth and ethanol production in syngas fermentation by clostridium carboxidivorans. Catalysts 10(1):59

    Article  CAS  Google Scholar 

  • Bohnenkamp AC, Wijffels RH, Kengen SW, Weusthuis RA (2021) Co-production of hydrogen and ethyl acetate in Escherichia coli. Biotechnol Biofuels 14:1–12

    Article  Google Scholar 

  • Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sust Energ Rev 16(7):4763–4784

    Article  CAS  Google Scholar 

  • Calvo-Flores FG, Martin-Martinez FJ (2022) Biorefineries: achievements and challenges for a bio-based economy. Frontiers in Chemistry 10

    Google Scholar 

  • Choi YJ, Park JH, Kim T, Lee SY (2012) Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab Eng 14:477–486

    Article  PubMed  Google Scholar 

  • Chukwuma OB, Rafatullah M, Tajarudin HA, Ismail N (2021) A review on bacterial contribution to lignocellulose breakdown into useful bio-products. Int J Environ Res Public Health 18(11):6001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dibden J, Gibbs D, Cocklin C (2013) Framing GM crops as a food security solution. J Rural Stud 29:59–70. https://doi.org/10.1016/j.jrurstud.2011.11.001

    Article  Google Scholar 

  • Ediger VŞ (2019) An integrated review and analysis of multi-energy transition from fossil fuels to renewables. Energy Procedia 156:2–6

    Article  Google Scholar 

  • Fathy W, Essawy E, Tawfik E, Khedr M, Abdelhameed MS, Hammouda O, Elsayed K (2021) Recombinant overexpression of the Escherichia coli acetyl-CoA carboxylase gene in Synechocystis sp. boosts lipid production. J Basic Microbiol 61(4):330–338

    Article  CAS  PubMed  Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20(4):1727–1737

    Article  CAS  Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T & Seibert M (2003) Expression of two [Fe]‐hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. European J Biochem 270(13): 2750–2758.

    Google Scholar 

  • Forsberg CW, Dale BE, Jones DS, Hossain T, Morais ARC, Wendt LM (2021) Replacing liquid fossil fuels and hydrocarbon chemical feedstocks with liquid biofuels from large-scale nuclear biorefineries. Appl Energy 298:117225

    Article  CAS  Google Scholar 

  • Franco-Duarte R, Černáková L, Kadam S et al (2019) Advances in chemical and biological methods to identify microorganisms—from past to present. Microorganisms 7(5):130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghirardi ML, Dubini A, Yu J, Maness PC (2009) Photobiological hydrogen-producing systems. Chem Soc Rev 38(1):52–61

    Article  CAS  PubMed  Google Scholar 

  • Gillespie S (2016) Current status of molecular microbiological techniques for the analysis of drinking water. In: Molecular microbial diagnostic methods. Academic Press, pp 39–58

    Chapter  Google Scholar 

  • Gong M, Bassi A (2016) Carotenoids from microalgae: a review of recent developments. Biotechnol Adv 34(8):1396–1412

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan B, Khanna N, Das D (2019) Dark-fermentative biohydrogen production. In: Biohydrogen. Elsevier, pp 79–122

    Chapter  Google Scholar 

  • Haas MJ, Scott KM (2007) Moisture removal substantially improves the efficiency of in situ biodiesel production from soybeans. J Am Oil Chem Soc 84(2)

    Google Scholar 

  • Hahn-Hägerdal B, Himmel ME, Somerville C, Wyman C (2008) Welcome to biotechnology for biofuels. Biotechnol Biofuels 1(1–4):197–204

    Google Scholar 

  • Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29

    Article  CAS  PubMed  Google Scholar 

  • Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sust Energ Rev 16(1):143–169

    Article  CAS  Google Scholar 

  • Hu G, Yang J, Li J (2022) The dynamic evolution of global energy security and geopolitical games: 1995–2019. Int J Environ Res Public Health 19(21):14584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibraheem SA, Malomo SO, Igunnu A (2017) Characterization of detergent-stable proteases isolated from Citrus sinensis fruit peel

    Google Scholar 

  • IEA (n.d.) Biofuel production by country/region and fuel type, 2016–2022. IEA, Paris. https://www.iea.org/data-and-statistics/charts/biofuel-production-by-country-region-and-fuel-type-2016-2022. IEA. Licence: CC BY 4.0

  • Jeswani HK, Chilvers A, Azapagic A (2020) Environmental sustainability of biofuels: a review. Proc R Soc A 476(2243):20200351

    Article  PubMed  PubMed Central  Google Scholar 

  • Joshi A, Verma KK, Rajput D, V., Minkina, T., & Arora, J. (2022) Recent advances in metabolic engineering of microorganisms for advancing lignocellulose-derived biofuels. Bioengineered 13(4):8135–8163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapilan N, Baykov BD (2014) A review on new methods used for the production of biodiesel. Petrol Coal 56(1)

    Google Scholar 

  • Karthic P, Joseph S (2012) Comparison and limitations of biohydrogen production processes. Res J Biotechnol 7(2):59–71

    CAS  Google Scholar 

  • Kim JY, Jo BH, Cha HJ (2010) Production of biohydrogen by recombinant expression of [NiFe]-hydrogenase 1 in Escherichia coli. Microb Cell Factories 9(1):1–10

    Article  Google Scholar 

  • Kong QX, Zhang AL, Cao LM, Chen X (2007) Over-expressing GLT1 in a gpd2 Δ mutant of Saccharomyces cerevisiae to improve ethanol production. Appl Microbiol Biotechnol 75:1361–1366

    Article  CAS  PubMed  Google Scholar 

  • Konur O (ed) (2021) Biodiesel fuels based on edible and nonedible feedstocks, wastes, and algae: science, technology, health, and environment. CRC Press

    Google Scholar 

  • Kumar R, Dhurandhar R, Chakrabortty S, Ghosh AK (2022) Downstream process: toward cost/energy effectiveness. In: Handbook of biofuels. Academic Press, pp 249–260

    Chapter  Google Scholar 

  • Lakhawat SS, Malik N, Kumar V, Kumar S, Sharma PK (2022) Implications of CRISPR-Cas9 in developing next generation biofuel: a mini-review. Curr Prot Pept Sci 23(9):574–584

    Article  CAS  Google Scholar 

  • Lee JH, Won HJ, Hoang Nguyen Tran P, Lee SM, Kim HY, Jung JH (2021) Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley. GCB Bioenergy 13(4):742–752

    Article  CAS  Google Scholar 

  • Leng L, Li W, Li H, Jiang S, Zhou W (2020) Cold flow properties of biodiesel and the improvement methods: a review. Energy Fuel 34(9):10364–10383

    Article  CAS  Google Scholar 

  • Lim MK, Ouyang Y (2016) Biofuel supply chain network design and operations. In: Environmentally responsible supply chains, pp 143–162

    Google Scholar 

  • Limongi AR, Viviano E, De Luca M, Radice RP, Bianco G, Martelli G (2021) Biohydrogen from microalgae: production and applications. Appl Sci 11(4):1616

    Article  CAS  Google Scholar 

  • Lin H, Wang Q, Shen Q, Zhan J, Zhao Y (2013) Genetic engineering of microorganisms for biodiesel production. Bioengineered 4(5):292–304

    Article  PubMed  Google Scholar 

  • Linganiso EC, Tlhaole B, Magagula LP, Dziike S, Linganiso LZ, Motaung TE et al (2022) Biodiesel production from waste oils: a south African outlook. Sustainability 14(4):1983

    Article  CAS  Google Scholar 

  • Liu LY, Ji HG, Lü XF, Wang T, Zhi S, Pei F, Quan DL (2021) Mitigation of greenhouse gases released from mining activities: a review. Int J Miner Metall Mater 28:513–521

    Article  CAS  Google Scholar 

  • Luang-In V, Yotchaisarn M, Saengha W, Udomwong P, Deeseenthum S, Maneewan K (2019) Isolation and identification of amylase-producing bacteria from soil in Nasinuan community Forest, Maha Sarakham, Thailand. Biomed Pharmacol J 12(3):1061–1068

    Article  CAS  Google Scholar 

  • Luo Q, Ding N, Liu Y, Zhang H, Fang Y, Yin L (2023) Metabolic engineering of microorganisms to produce pyruvate and derived compounds. Molecules 28(3):1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahapatra S, Kumar D, Singh B, Sachan PK (2021) Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus. Energy Nexus 4:100036

    Article  CAS  Google Scholar 

  • Maliha A, Abu-Hijleh B (2022) A review on the current status and post-pandemic prospects of third-generation biofuels. In: Energy systems, pp 1–32

    Google Scholar 

  • Malik K, Sharma P, Yang Y et al (2022) Lignocellulosic biomass for bioethanol: insight into the advanced pretreatment and fermentation approaches. Ind Crop Prod 188:115569

    Article  CAS  Google Scholar 

  • Maqtari QA, Waleed AA, Mahdi AA (2019) Microbial enzymes produced by fermentation and their applications in the food industry-a review. Int J Agric Innov Res 8(1):2319–1473

    Google Scholar 

  • Mat Aron NS, Khoo KS, Chew KW, Show PL, Chen WH, Nguyen THP (2020) Sustainability of the four generations of biofuels–a review. Int J Energy Res 44(12):9266–9282

    Article  CAS  Google Scholar 

  • Mitani N, Koizumi A, Sano R, Masutani T, Murakawa K, Mikasa K, Okamoto Y (2005) Molecular typing of methicillin-resistant Staphylococcus aureus by PCR-RFLP and its usefulness in an epidemiological study of an outbreak. Jpn J Infect Dis 58(4):250

    CAS  PubMed  Google Scholar 

  • Muhammad K (2021) Bioenergy in Renewable energy conversion system. Academic press. 243–264. https://doi.org/10.1016/B978-0-12-823538-6.00002-6

  • Musa IA (2016) The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egypt J Pet 25(1):21–31

    Article  Google Scholar 

  • Mutturi S, Palmqvist B, Lidén G (2014) Developments in bioethanol fuel-focused biorefineries. In: Advances in biorefineries. Woodhead Publishing, pp 259–302

    Chapter  Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine (2017) Preparing for future products of biotechnology. National Academies Press

    Google Scholar 

  • Naher L, Fatin SN, Sheikh MAH, Azeez LA, Siddiquee S, Zain NM, Karim SMR (2021) Cellulase enzyme production from filamentous fungi Tricoderma Trichoderma reesei and Aspergillus awamori in submerged fermentation with rice straw. J Fungi 7(10): 868

    Google Scholar 

  • Paes BC, Paes OA, Lobo WV, Barros SDS, de Freitas FA (2022) Omics in biofuel production: a sustainable approach. In: Omics insights in environmental bioremediation. Singapore, Springer Nature Singapore, pp 515–541

    Chapter  Google Scholar 

  • Pandiyan K, Singh A, Singh S, Saxena AK, Nain L (2019) Technological interventions for utilization of crop residues and weedy biomass for second generation bio-ethanol production. Renew Energy 132:723–741

    Article  Google Scholar 

  • Paravantis JA, Kontoulis N (2020) Energy security and renewable energy: a geopolitical perspective. In: Renewable energy-resources, challenges and applications. IntechOpen

    Google Scholar 

  • Patankar S, Dudhane A, Paradh AD, Patil S (2021) Improved bioethanol production using genome-shuffled Clostridium ragsdalei (DSM 15248) strains through syngas fermentation. Biofuels 12(1):81–89

    Article  CAS  Google Scholar 

  • Paudel S & Menze MA (2014) Genetic engineering, a hope for sustainable biofuel production. Int J of Environ, 311.

    Google Scholar 

  • Pazhany AS, Henry RJ (2019) Genetic modification of biomass to alter lignin content and structure. Ind Eng Chem Res 58(35):16190–16203

    Article  CAS  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rákos M, Fari M (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32:559–578

    Article  Google Scholar 

  • Prayogo FA, Budiharjo A, Kusumaningrum HP, Wijanarka W, Suprihadi A, Nurhayati N (2020) Metagenomic applications in exploration and development of novel enzymes from nature: a review. J Genet Eng Biotechnol 18(1):1–10

    Article  Google Scholar 

  • Röder M, Welfle A (2019) Bioenergy. In: Managing global warming. Academic Press, pp 379–398

    Chapter  Google Scholar 

  • Rodionova MV, Bozieva AM, Zharmukhamedov SK et al (2022) A comprehensive review on lignocellulosic biomass biorefinery for sustainable biofuel production. Int J Hydrog Energy 47(3):1481–1498

    Article  CAS  Google Scholar 

  • Saleem M (2022) Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon, e08905

    Google Scholar 

  • Salic A, Zelic B (2022) A game changer: microfluidic technology for enhancing biohydrogen production—small size for great performance. Energies 15(19):7065

    Article  CAS  Google Scholar 

  • Sethi S, Datta A, Gupta BL, Gupta S (2013) Optimization of cellulase production from bacteria isolated from soil. International Scholarly Research Notices, 2013

    Google Scholar 

  • Sethi BK, Nanda PK, Sahoo S, Sena S (2016) Characterization of purified α-amylase produced by aspergillus terreus NCFT 4269.10 using pearl millet as substrate. Cogent Food Agric 2(1):1158902

    Google Scholar 

  • Sharma P, Sharma N, Sharma N (2019) Optimization of enzymatic hydrolysis conditions for saccharification of carbohydrates in algal biomass: an integral walk for bioethanol production. Pharma Innov J 8:461–466

    CAS  Google Scholar 

  • Sillanpaa M, Ncibi MC, Sillanpää ME (2017) Sustainable bioeconomy. Springer, London, pp 141–183

    Book  Google Scholar 

  • Singh N, Sarma S (2022) Biological routes of hydrogen production: a critical assessment. In: Handbook of biofuels. Academic Press, pp 419–434

    Chapter  Google Scholar 

  • Singh S, Sarkar P, Dutta K (2022) Bioenergy: an overview of bioenergy as a sustainable and renewable source of energy. In: Bioprospecting of microbial diversity, pp 483–502

    Google Scholar 

  • Stuart PR, El-Halwagi MM (eds) (2012) Integrated biorefineries: design, analysis, and optimization. CRC Press

    Google Scholar 

  • Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9(9):2289–2297

    Article  CAS  PubMed  Google Scholar 

  • Sugiura T, Yamagishi K, Kimura T, Nishida T, Kawagishi H & Hirai H (2009) Cloning and homologous expression of novel lignin peroxidase genes in the white-rot fungus Phanerochaete sordida YK-624. BioSci Biotech Biochem 73(8): 1793–1798

    Google Scholar 

  • Sun J, Wang Y (2014) Recent advances in catalytic conversion of ethanol to chemicals. ACS Catal 4(4):1078–1090

    Article  CAS  Google Scholar 

  • Taponen S, Salmikivi L, Simojoki H, Koskinen MT, Pyörälä S (2009) Real-time polymerase chain reaction-based identification of bacteria in milk samples from bovine clinical mastitis with no growth in conventional culturing. J Dairy Sci 92(6):2610–2617

    Article  CAS  PubMed  Google Scholar 

  • Timothy TJ, Wiens DJ, Reaney MJ (2021) Production of bioethanol—a review of factors affecting ethanol yield. Fermentation 7(4):268

    Article  Google Scholar 

  • Trostle R (2011) Why have food commodity prices risen again? Diane Publishing

    Google Scholar 

  • Ubando AT, Felix CB, Chen WH (2020) Biorefineries in circular bioeconomy: a comprehensive review. Bioresour Technol 299:122585

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Miyazaki K (2009) Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 20(6):616–622

    Article  CAS  PubMed  Google Scholar 

  • Vanholme R, Demedts B, Morreel K, Ralph J and Boerjan W (2010) Lignin Biosynthesis and Structure. Plant Physiol 153: 895–905.

    Google Scholar 

  • Varela Villarreal J, Burgués C, Rösch C (2020) Acceptability of genetically engineered algae biofuels in Europe: opinions of experts and stakeholders. Biotechnol Biofuels 13:1–21

    Article  Google Scholar 

  • Vignais PM, Magnin JP, Willison JC (2006) Increasing biohydrogen production by metabolic engineering. Int J Hydrog Energy 31(11):1478–1483

    Article  CAS  Google Scholar 

  • Wagemann K, Tippkötter N (2019) Biorefineries: a short introduction. In: Biorefineries, pp 1–11

    Google Scholar 

  • Wecker MS, Beaton SE, Chado RA, Ghirardi ML (2017) Development of a Rhodobacter capsulatus self-reporting model system for optimizing light-dependent,[FeFe]-hydrogenase-driven H2 production. Biotechnol Bioeng 114(2):291–297

    Article  CAS  PubMed  Google Scholar 

  • Williams PJ, Laurens LM (2010) Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetic and economics. Energy Environ Sci 3:554–590. https://doi.org/10.1039/b924978h

    Article  CAS  Google Scholar 

  • Xu, Q., & Smith, H. O. (2014). U.S. Patent No. 8,859,744. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Yang M, Li X, Bu C et al (2014) Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks. World J Microbiol Biotechnol 30:2871–2883

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN (2022) Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol

    Google Scholar 

  • Yilmaz N, Vigil FM (2014) Potential use of a blend of diesel, biodiesel, alcohols and vegetable oil in compression ignition engines. Fuel 124:168–172

    Article  CAS  Google Scholar 

  • Zabermawi NM, Alsulaimany FA, El-Saadony MT, El-Tarabily KA (2022) New eco-friendly trends to produce biofuel and bioenergy from microorganisms: an updated review. Saudi J Biol Sci

    Google Scholar 

  • Zaman F, Ishaq MW, Ul-Haq N, Rahman WU, Ali MM, Ahmed F, Haq AU (2022) Effect of different parameters on catalytic production of biodiesel from different oils. ChemBioEng Rev 9(1):6–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassan, A., Qureshi, M.K., Islam, B., Altaf, M.T. (2023). Biotechnological Approaches for the Production of Bioenergy. In: Aasim, M., Baloch, F.S., Nadeem, M.A., Habyarimana, E., Ahmed, S., Chung, G. (eds) Biotechnology and Omics Approaches for Bioenergy Crops. Springer, Singapore. https://doi.org/10.1007/978-981-99-4954-0_3

Download citation

Publish with us

Policies and ethics