Skip to main content
Log in

Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Pyruvate decarboxylase and alcohol dehydrogenase are efficient enzymes for ethanol production in Zymomonas mobilis. These two enzymes were over-expressed in Escherichia coli, a promising candidate for industrial ethanol production, resulting in high ethanol production in the engineered E. coli. To investigate the intracellular changes to the enzyme overexpression for homoethanol production, 2-DE and LC–MS/MS were performed. More than 1,000 protein spots were reproducibly detected in the gel by image analysis. Compared to the wild-type, 99 protein spots showed significant changes in abundance in the recombinant E. coli, in which 46 were down-regulated and 53 were up-regulated. Most proteins related to tricarboxylic acid cycle, glycerol metabolism and other energy metabolism were up-regulated, whereas proteins involved in glycolysis and glyoxylate pathway were down-regulated, indicating the rewired metabolism in the engineered E. coli. As glycolysis is the main pathway for ethanol production, and it was inhibited significantly in engineered E. coli, further efforts should be directed at minimizing the repression of glycolysis to optimize metabolism network for higher yields of ethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abanoz K, Stark BC, Akbas MY (2012) Enhancement of ethanol production from potato-processing wastewater by engineering Escherichia coli using Vitreoscilla haemoglobin. Lett Appl Microbiol 55:436–443

    CAS  Google Scholar 

  • Alterthum F, Ingram LO (1989) Efficient ethanol production from glucose, lactose, and xylose by recombinant Escherichia coli. Appl Environ Microbiol 55:1943–1948

    CAS  Google Scholar 

  • Balsom PD, Soderlund K, Ekblom B (1994) Creatine in humans with special reference to creatine supplementation. Sports Med 18:268–280

    Article  CAS  Google Scholar 

  • Barbosa MS, Ingram LO (1994) Expression of the Zymomonas mobilis alcohol dehydrogenase II (adhB) and pyruvate decarboxylase (pdc) genes in Bacillus. Curr Microbiol 28:279–282

    Article  CAS  Google Scholar 

  • Beall DS, Ohta K, Ingram LO (1991) Parametric studies of ethanol production form xylose and other sugars by recombinant Escherichia coli. Biotechnol Bioeng 38:296–303

    Article  CAS  Google Scholar 

  • Bjellqvist B, Ek K, Righetti PG, Gianazza E, Gorg A, Westermeier R, Postel W (1982) Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 6:317–339

    Article  CAS  Google Scholar 

  • Conway T (1992) The Entner–Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Lett 103:1–27

    Article  CAS  Google Scholar 

  • Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO (1987a) Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol 169:949–954

    CAS  Google Scholar 

  • Conway T, Sewell GW, Osman YA, Ingram LO (1987b) Cloning and sequencing of the alcohol dehydrogenase II gene from Zymomonas mobilis. J Bacteriol 169:2591–2597

    CAS  Google Scholar 

  • Cowell JL, Maser K, DeMoss RD (1973) Tryptophanase from Aeromonas liquifaciens. Purification, molecular weight and some chemical, catalytic and immunological properties. Biochim Biophys Acta 315:449–463

    Article  CAS  Google Scholar 

  • Death A, Ferenci T (1994) Between feast and famine: endogenous inducer synthesis in the adaptation of Escherichia coli to growth with limiting carbohydrates. J Bacteriol 176:5101–5107

    CAS  Google Scholar 

  • Dien B, Nichols N, O’Bryan P, Bothast R (2000) Development of new ethanologenic Escherichia coli strains for fermentation of lignocellulosic biomass. Appl Biochem Biotechnol 84–86:181–196

    Article  Google Scholar 

  • Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  CAS  Google Scholar 

  • Dumsday GJ, Zhou B, Yaqin W, Stanley GA, Pamment NB (1999) Comparative stability of ethanol production by Escherichia coli KO11 in batch and chemostat culture. J Ind Microbiol Biotechnol 23:701–708

    Article  CAS  Google Scholar 

  • Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207–214

    Article  CAS  Google Scholar 

  • Field TL, Reznikoff WS, Frey PA (1989) Galactose-1-phosphate uridylyltransferase: identification of histidine-164 and histidine-166 as critical residues by site-directed mutagenesis. Biochemistry 28:2094–2099

    Article  CAS  Google Scholar 

  • Gold RS, Meagher MM, Tong S, Hutkins RW, Conway T (1996) Cloning and expression of the Zymomonas mobilis “production of ethanol” genes in Lactobacillus casei. Curr Microbiol 33:256–260

    Article  CAS  Google Scholar 

  • Ho NWY, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of lucose and xylose. Appl Environ Microbiol 54:1852–1859

    Google Scholar 

  • Horinouchi T, Tamaoka K, Furusawa C, Ono N, Suzuki S, Hirasawa T, Yomo T, Shimizu H (2010) Transcriptome analysis of parallel-evolved Escherichia coli strains under ethanol stress. BMC Genom 11:579

    Article  Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53:2420–2425

    CAS  Google Scholar 

  • Ingram LO, Aldrich HC, Borges ACC, Causey TB, Martinez A, Morales F (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog 15:855–866

    Article  CAS  Google Scholar 

  • Jarboe LR, Grabar TB, Yomano LP, Shanmugan KT, Ingram LO (2007) Development of ethanologenic bacteria. In: Olsson L (ed) Biofuels pp 237–261

  • Kim YH, Han KY, Lee K, Lee J (2005) Proteome response of Escherichia coli fed-batch culture to temperature downshift. Appl Microbiol Biotechnol 68:786–793

    Article  CAS  Google Scholar 

  • Krishnan MS, Blanco M, Shattuck CK, Nghiem NP, Davison BH (2000) Ethanol production from glucose and xylose by immobilized Zymomonas mobilis CP4(pZB5). Appl Biochem Biotechnol 84–86:525–541

    Article  Google Scholar 

  • Lawford HG, Rousseau JD (1991) Ethanol production by recombinant Escherichia coli carrying genes from Zymomonas mobilis. Appl Biochem Biotechnol 28–29:221–236

    Article  Google Scholar 

  • McFall E, Newman EB (1996) Amino acids as carbon sources. Escherichia coli and Salmonella: Cellular and molecular biology. Washington, DC: ASM Press: 358–379

  • Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135

    Article  CAS  Google Scholar 

  • Neale AD, Scopes RK, Wettenhall RE, Hoogenraad NJ (1987) Pyruvate decarboxylase of Zymomonas mobilis: isolation, properties, and genetic expression in Escherichia coli. J Bacteriol 169:1024–1028

    CAS  Google Scholar 

  • Nichols NN, Dien BS, Bothast RJ (2003) Engineering lactic acid bacteria with pyruvate decarboxylase and alcohol dehydrogenase genes for ethanol production from Zymomonas mobilis. J Ind Microbiol Biotechnol 30:315–321

    Article  CAS  Google Scholar 

  • Ohta K, Beall DS, Mejia JP, Shanmugam KT, Ingram LO (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900

    CAS  Google Scholar 

  • Palmqvist E, Almeida JS, Hahn-Hagerdal B (1999) Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng 62:447–454

    Article  CAS  Google Scholar 

  • Piriya PS, Vasan PT, Padma VS, Vidhyadevi U, Archana K, Vennison SJ (2012) Cellulosic ethanol production by recombinant cellulolytic bacteria harbouring pdc and adh II genes of Zymomonas mobilis. Biotechnol Res Int. doi:10.1155/2012/817549

  • Raman B, Nandakumar MP, Muthuvijayan V, Marten MR (2005) Proteome analysis to assess physiological changes in Escherichia coli grown under glucose-limited fed-batch conditions. Biotechnol Bioeng 92:384–392

    Article  CAS  Google Scholar 

  • Raya R, Bardowski J, Andersen PS, Ehrlich SD, Chopin A (1998) Multiple transcriptional control of the Lactococcus lactis trp operon. J Bacteriol 180:3174–3180

    CAS  Google Scholar 

  • Schuster S, Fell DA, Dandekar T (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat Biotechnol 18:326–332

    Article  CAS  Google Scholar 

  • Wang XQ, Yang PF, Liu Z, Liu WZ, Hu Y, Chen H, Kuang TY, Pei ZM, Shen SH, He YK (2009) Exploring the mechanism of Physcomitrella patens desiccation tolerance through a proteomic strategy. Plant Physiol 149:1739–1750

    Article  CAS  Google Scholar 

  • Yomano LP, York SW, Zhou S, Shanmugam KT, Ingram LO (2008) Re-engineering Escherichia coli for ethanol production. Biotechnol Lett 30:2097–2103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Beijing Natural Science Foundation (Nos. 5132004, 6122005), National Natural Science Foundation of China (Nos. 30970250, 31370674), China Postdoctoral Science Foundation to Dr. Wang, and Science and Technology Platform Construction Program of Beijing Municipal Commission of Education (PXM2012_014207_000028) and Beijing University of Agriculture (2014).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Hu or Xiaoqin Wang.

Additional information

Mingfeng Yang and Xuefeng Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Li, X., Bu, C. et al. Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks. World J Microbiol Biotechnol 30, 2871–2883 (2014). https://doi.org/10.1007/s11274-014-1713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1713-1

Keywords

Navigation