Skip to main content

Nanotechnology and Plant Biotechnology: The Current State of Art and Future Prospects

  • Chapter
  • First Online:
Biological Applications of Nanoparticles

Abstract

Nanotechnology revolutionized the field of science and technology in the beginning of 1990. It invaded in all areas of science including plant biotechnology. Plant biotechnology has drawn the attention of scientists and researchers to develop new concepts, tools, techniques, and methods to strengthen fulfilment of high demand of food across the globe. Now, we need more yield-promising crop varieties along with potential resistance to combat biotic and abiotic stresses. Engineered Nanoparticles (NPs) are enhancing growth and development of plant and increasing resistance against biotic stresses when used as fertilizers and pesticides. Till date most of the research studies primarily focussed on plant genetic engineering where NPs are employed as site-specific delivery vehicles for single stranded DNA (ssDNA), double stranded DNA (dsDNA), plasmid DNA, some biomolecules (siRNA), phytohormones, peptides, etc. Current chapter focusses on the collecting information on their application in relatively newer domains like plant tissue culture (PTC) where they could be potential disinfectant, induce organogenesis, and promote pigment synthesis. Moreover, some newly discovered application creating new horizon in plant biotechnology are their capability of being utilized in light harvesting even in infrared range, nanosensors for various plant and environmental analytes, seed nano-priming gene sequencing, and post-harvest loss reduction. This chapter mainly attempted to highlight the gap in research among nanotechnology and agriculture biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi G, Salehi H, Khosh-Khui M (2008) Nano silver: a novel nanomaterial for removal of bacterial contaminants in valerian (Valeriana officinalis L.) tissue culture. Acta Physiol Plant 30(5):709–714

    Article  CAS  Google Scholar 

  • Acharya P, Jayaprakasha G, Crosby KM, Jifon JL, Patil BS (2019) Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain Chem Eng 7(17):14580–14590

    Article  CAS  Google Scholar 

  • Adisa IO et al (2019) Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ Sci Nano 6(7):2002–2030

    Article  CAS  Google Scholar 

  • Aghdaei M, Sarmast MK, Salehi H (2012) Effects of silver nanoparticles on Tecomella undulata (Roxb.) seem. Micropropagation, pp 21–24

    Google Scholar 

  • Alharby HF, Metwali EM, Fuller MP, Aldhebiani AY (2017) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum mill) under salt stress. Arch Biol Sci 68:723

    Article  Google Scholar 

  • Ali MA et al (2019) Oxidative stress and antioxidant defense in plants exposed to metal/metalloid toxicity. In: Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, pp 353–370

    Chapter  Google Scholar 

  • Al-Oubaidi HKM, Kasid NM (2015) Increasing phenolic and flavonoids compounds of Cicer arietinum L. from embryo explant using titanium dioxide nanoparticle in vitro. World J Pharm Res 4(11):1791–1799

    CAS  Google Scholar 

  • An J, Zhang M, Wang S, Tang J (2008) Physical, chemical and microbiological changes in stored green asparagus spears as affected by coating of silver nanoparticles-PVP. LWT Food Sci Technol 41(6):1100–1107

    Article  CAS  Google Scholar 

  • An J, Hu P, Li F, Wu H, Shen Y, White JC, Giraldo JP et al (2020) Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environ Sci Nano 7(8):2214–2228

    Article  CAS  Google Scholar 

  • Anwaar S, Maqbool Q, Jabeen N, Nazar M, Abbas F, Nawaz B et al (2016) The effect of green synthesized CuO nanoparticles on callogenesis and regeneration of Oryza sativa L. Front Plant Sci 7:1330

    Article  PubMed  PubMed Central  Google Scholar 

  • Arab MM, Yadollahi A, Hosseini-Mazinani M, Bagheri S (2014) Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G× N15 (hybrid of almond× peach) rootstock. J Gen Eng Biotechnol 12(2):103–110

    Article  Google Scholar 

  • Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63(10):3523–3543

    Article  CAS  PubMed  Google Scholar 

  • Avellan A, Yun J, Zhang Y, Spielman-Sun E, Unrine JM, Thieme J, Lowry GV et al (2019) Nanoparticle size and coating chemistry control foliar uptake pathways, translocation, and leaf-to-rhizosphere transport in wheat. ACS Nano 13(5):5291–5305

    Article  CAS  PubMed  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63(2):147–173

    Article  CAS  Google Scholar 

  • Bansod S, Bawskar M, Rai M (2015) In vitro effect of biogenic silver nanoparticles on sterilisation of tobacco leaf explants and for higher yield of protoplasts. IET Nanobiotechnol 9(4):239–245

    Article  PubMed  Google Scholar 

  • Bao W, Wan Y, Baluška F (2017) Nanosheets for delivery of biomolecules into plant cells. Trends Plant Sci 22(6):445–447

    Article  CAS  PubMed  Google Scholar 

  • Bhagat S et al (2018) Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J Colloid Interface Sci 513:831–842

    Article  CAS  PubMed  Google Scholar 

  • Borišev M et al (2016) Drought impact is alleviated in sugar beets (Beta vulgaris L.) by foliar application of fullerenol nanoparticles. PloS One 11(11):e0166248

    Article  PubMed  PubMed Central  Google Scholar 

  • Burketová L et al (2022) Noble metal nanoparticles in agriculture: impacts on plants, associated microorganisms, and biotechnological practices. Biotechnol Adv 58:107929

    Article  PubMed  Google Scholar 

  • Cai L et al (2018) Magnesium oxide nanoparticles: effective agricultural antibacterial agent against Ralstonia solanacearum. Front Microbiol 9:790

    Article  PubMed  PubMed Central  Google Scholar 

  • Calanca PP (2017) Effects of abiotic stress in crop production. In: Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Springer, Berlin, pp 165–180

    Chapter  Google Scholar 

  • Chang FP, Kuang LY, Huang CA, Jane WN, Hung Y, Yue-ie CH, Mou CY (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1(39):5279–5287

    Article  CAS  PubMed  Google Scholar 

  • Chen T et al (2018) Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl Mater Interfaces 10(15):12453–12462

    Article  CAS  PubMed  Google Scholar 

  • Corradini E, De Moura M, Mattoso L (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Expr Polym Lett 4(8):509

    Article  CAS  Google Scholar 

  • Cunningham FJ, Goh NS, Demirer GS, Matos JL, Landry MP (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36(9):882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirer GS, Chang R, Zhang H, Chio L, Landry MP (2018) Nanoparticle-guided biomolecule delivery for transgene expression and gene silencing in mature plants. Biophys J 114(3):217a

    Article  Google Scholar 

  • Dong BR, Jiang R, Chen JF, Xiao Y, Lv ZY, Chen WS (2022) Strategic nanoparticle-mediated plant disease resistance. Crit Rev Biotechnol:1–16

    Google Scholar 

  • Dunbar T, Tsakirpaloglou N, Septiningsih EM, Thomson MJ (2022) Carbon nanotube-mediated plasmid DNA delivery in rice leaves and seeds. Int J Mol Sci 23(8):4081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faizan M, Faraz A, Yusuf M, Khan ST, Hayat S (2018) Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica 56(2):678–686

    Article  CAS  Google Scholar 

  • Fakhouri F, Casari A, Mariano M, Yamashita F, Mei LI, Soldi V, Martelli S (2014) Effect of a gelatin-based edible coating containing cellulose nanocrystals (CNC) on the quality and nutrient retention of fresh strawberries during storage. In: Paper presented at the IOP Conference Series: Materials Science and Engineering

    Google Scholar 

  • Fazal H, Abbasi BH, Ahmad N, Ali M (2016) Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl Biochem Biotechnol 180(6):1076–1092

    Article  CAS  PubMed  Google Scholar 

  • Finch-Savage WE, Bassel GW (2016) Seed vigour and crop establishment: extending performance beyond adaptation. J Exp Bot 67(3):567–591

    Article  CAS  PubMed  Google Scholar 

  • Flores-López ML, Cerqueira MA, de Rodríguez DJ, Vicente AA (2016) Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables. Food Eng Rev 8(3):292–305

    Article  Google Scholar 

  • Frederiksen HK, Kristensen HG, Pedersen M (2003) Solid lipid microparticle formulations of the pyrethroid gamma-cyhalothrin—incompatibility of the lipid and the pyrethroid and biological properties of the formulations. J Control Release 86(2–3):243–252

    Article  CAS  PubMed  Google Scholar 

  • Gan N et al (2010) A disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nano-particles modified screen printed carbon electrode. Sensors 10(1):625–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi B, Hosseini R, Nayeri FD (2015) Effects of cobalt nanoparticles on artemisinin production and gene expression in Artemisia annua. Turk J Bot 39(5):769–777

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  PubMed  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Brew JA et al (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408

    Article  CAS  PubMed  Google Scholar 

  • Guan H et al (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92(2):83–91

    Article  CAS  Google Scholar 

  • Guo Y-R et al (2009) Gold immunochromatographic assay for simultaneous detection of carbofuran and triazophos in water samples. Anal Biochem 389(1):32–39

    Article  CAS  PubMed  Google Scholar 

  • Hamza AM, El-Kot G, El-Moghazy S (2013) Non-traditional methods for controlling maize late wilt disease caused by Cephalosporium maydis. Egypt J Biol Pest Control 23(1):87

    Google Scholar 

  • Helaly MN, El-Metwally MA, El-Hoseiny H, Omar SA, El-Sheery NI (2014) Effect of nanoparticles on biological contamination of'in vitro'cultures and organogenic regeneration of banana. Aust J Crop Sci 8(4):612–624

    CAS  Google Scholar 

  • Huang Z et al (2018) Antimicrobial magnesium hydroxide nanoparticles as an alternative to cu biocide for crop protection. J Agric Food Chem 66(33):8679–8686

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AS, Fahmy AH, Ahmed SS (2019) Copper nanoparticles elevate regeneration capacity of (Ocimum basilicum L.) plant via somatic embryogenesis. Plant Cell Tiss Org Cult 136(1):41–50

    Article  CAS  Google Scholar 

  • Javed R, Usman M, Yücesan B, Zia M, Gürel E (2017) Effect of zinc oxide (ZnO) nanoparticles on physiology and steviol glycosides production in micropropagated shoots of Stevia rebaudiana Bertoni. Plant Physiol Biochem 110:94–99

    Article  CAS  PubMed  Google Scholar 

  • Kaushal M, Wani SP (2017) Nanosensors: frontiers in precision agriculture. In: Nanotechnology. Springer, Berlin, pp 279–291

    Chapter  Google Scholar 

  • Khodakovskaya MV, De Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128–2135

    Article  CAS  PubMed  Google Scholar 

  • Khoshbin S, Solgi M, Taghizadeh M, Heidarian P (2018) Developing clinoptilolite nanoparticle-reinforced agar-g-poly (acrylic acid) hydrogels for plant tissue culture. Mater Res Expr 5(12):125017

    Article  Google Scholar 

  • Kim J-H et al (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49(2):1113–1119

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7(58):36492–36505

    Article  CAS  Google Scholar 

  • Kokina I, Sledevskis E, Gerbreders V, Grauda D, Jermalonoka M, Valaine K, Rashal I (2012) Reaction of flax (Linum usitatissimum L.) calli culture to supplement of medium by carbon nanoparticles. In: Proceedings of the Latvian Academy of Sciences, vol 66. De Gruyter, Poland, p 200

    Google Scholar 

  • Kokina I, Mickeviča I, Jermaļonoka M, Bankovska L, Gerbreders V, Ogurcovs A, Jahundoviča I (2017) Case study of somaclonal variation in resistance genes Mlo and Pme3 in flaxseed (Linum usitatissimum L.) induced by nanoparticles. Int J Genom 2017:1676874

    Google Scholar 

  • Koman VB, Lew TT, Wong MH, Kwak S-Y, Giraldo JP, Strano MS (2017) Persistent drought monitoring using a microfluidic-printed electro-mechanical sensor of stomata in planta. Lab Chip 17(23):4015–4024

    Article  CAS  PubMed  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, Amaratunga GA et al (2017) Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11(2):1214–1221

    Article  CAS  PubMed  Google Scholar 

  • Krug HF (2014) Nanosafety research—are we on the right track? Angew Chem Int Ed 53(46):12304–12319

    Article  CAS  Google Scholar 

  • Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468

    Article  PubMed  Google Scholar 

  • Kumar A et al (2018) Biotechnological tools for enhancing abiotic stress tolerance in plant. In: Eco-friendly agro-biological techniques for enhancing crop productivity. Springer, Berlin, pp 147–172

    Chapter  Google Scholar 

  • Kumari M, Ernest V, Mukherjee A, Chandrasekaran N (2012) In vivo nanotoxicity assays in plant models. In: Nanotoxicity. Humana Press, Totowa, NJ, pp 399–410

    Chapter  Google Scholar 

  • Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Strano MS et al (2019) Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. Nat Nanotechnol 14(5):447–455

    Article  CAS  PubMed  Google Scholar 

  • Lai F et al (2006) Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: preparation and characterization. AAPS PharmSciTech 7(1):E10–E18

    Article  PubMed  PubMed Central  Google Scholar 

  • Law SSY, Liou G, Nagai Y, Giménez-Dejoz J, Tateishi A, Tsuchiya K, Numata K et al (2022) Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria. Nat Commun 13(1):1–13

    Article  Google Scholar 

  • Leifert C, Cassells AC (2001) Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev Biol Plant 37(2):133–138

    Article  Google Scholar 

  • Levy-Sakin M, Ebenstein Y (2013) Beyond sequencing: optical mapping of DNA in the age of nanotechnology and nanoscopy. Curr Opin Biotechnol 24(4):690–698

    Article  CAS  PubMed  Google Scholar 

  • Li ZZ et al (2007) Study of UV-shielding properties of novel porous hollow silica nanoparticle carriers for avermectin. Pest Manag Sci 63(3):241–246

    Article  CAS  PubMed  Google Scholar 

  • Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Kang Z et al (2018a) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater 1(3):663–672

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wu H, Santana I, Fahlgren M, Giraldo JP (2018b) Standoff optical glucose sensing in photosynthetic organisms by a quantum dot fluorescent probe. ACS Appl Mater Interfaces 10(34):28279–28289

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Pan X, Xu X, Wu Y, Zhuang J, Zhang X, Liu Y et al (2021) Carbon dots as light converter for plant photosynthesis: augmenting light coverage and quantum yield effect. J Hazard Mater 410:124534

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Walker AH (2010) Monodisperse gold–copper bimetallic nanocubes: facile one-step synthesis with controllable size and composition. Angew Chem 122(38):6933–6937

    Article  Google Scholar 

  • Loo JF-C, Chien Y-H, Yin F, Kong S-K, Ho H-P, Yong K-T (2019) Upconversion and downconversion nanoparticles for biophotonics and nanomedicine. Coord Chem Rev 400:213042

    Article  CAS  Google Scholar 

  • Lu L, Huang M, Huang Y, Corvini PFX, Ji R, Zhao L (2020) Mn 3 O 4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environ Sci Nano 7(6):1692–1703

    Article  CAS  Google Scholar 

  • Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1(7):768–778

    Article  CAS  Google Scholar 

  • Mahna N, Vahed SZ, Khani S (2013) Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J Nanomed Nanotechol 4(161):1

    Google Scholar 

  • Malik M, Padhye P, Poddar P (2019) Downconversion luminescence-based nanosensor for label-free detection of explosives. ACS Omega 4(2):4259–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandeh M, Omidi M, Rahaie M (2012) In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res 150(1):376–380

    Article  PubMed  Google Scholar 

  • Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VSY, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164(2):537–547

    Article  CAS  PubMed  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Xu ZP et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3(2):1–10

    Article  Google Scholar 

  • Mittler R (2017) ROS are good. Trends Plant Sci 22(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Mohammadi MHZ, Panahirad S, Navai A, Bahrami MK, Kulak M, Gohari G (2021) Cerium oxide nanoparticles (CeO2-NPs) improve growth parameters and antioxidant defense system in Moldavian balm (Dracocephalum moldavica L.) under salinity stress. Plant. Stress 1:100006

    CAS  Google Scholar 

  • Moharrami F, Hosseini B, Sharafi A, Farjaminezhad M (2017) Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. In Vitro Cell Dev Biol Plant 53(2):104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movafeghi A, Khataee A, Abedi M, Tarrahi R, Dadpour M, Vafaei F (2018) Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J Environ Sci 64:130–138

    Article  CAS  Google Scholar 

  • Naqvi S, Maitra AN, Abdin MZ, Akmal MD, Arora I, Samim MD (2012) Calcium phosphate nanoparticle mediated genetic transformation in plants. J Mater Chem 22(8):3500–3507

    Article  CAS  Google Scholar 

  • Narayana A, Bhat SA, Fathima A, Lokesh S, Surya SG, Yelamaggad C (2020) Green and low-cost synthesis of zinc oxide nanoparticles and their application in transistor-based carbon monoxide sensing. RSC Adv 10(23):13532–13542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nau K, Bohmer N, Kuehnel D, Marquardt C, Paul F, Steinbach C, Krug HF (2016) The DaNa (2.0) knowledge base on nanomaterials-communicating current nanosafety research based on evaluated literature data. J Mater Educ 38(3–4):93–108

    Google Scholar 

  • Nebu J et al (2018) Fluorescence turn-on detection of fenitrothion using gold nanoparticle quenched fluorescein and its separation using superparamagnetic iron oxide nanoparticle. Sens Actuators B 277:271–280

    Article  CAS  Google Scholar 

  • Neme K, Nafady A, Uddin S, Tola YB (2021) Application of nanotechnology in agriculture, postharvest loss reduction and food processing: food security implication and challenges. Heliyon 7(12):e08539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paknikar K et al (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6(3–4):370–374

    Article  CAS  Google Scholar 

  • Palmqvist NM et al (2017) Maghemite nanoparticles acts as nanozymes, improving growth and abiotic stress tolerance in Brassica napus. Nanoscale Res Lett 12(1):1–9

    Article  CAS  Google Scholar 

  • Paparella S, Araújo S, Rossi G, Wijayasinghe M, Carbonera D, Balestrazzi A (2015) Seed priming: state of the art and new perspectives. Plant Cell Rep 34(8):1281–1293

    Article  CAS  PubMed  Google Scholar 

  • Poborilova Z, Opatrilova R, Babula P (2013) Toxicity of aluminium oxide nanoparticles demonstrated using a BY-2 plant cell suspension culture model. Environ Exp Bot 91:1–11

    Article  CAS  Google Scholar 

  • Qin YH, Teixeira da Silva JA, Bi JH, Zhang SL, Hu GB (2011) Response of in vitro strawberry to antibiotics. Plant Growth Regul 65(1):183–193

    Article  CAS  Google Scholar 

  • Ramezani M, Ramezani F, Gerami M (2019) Nanoparticles in pest incidences and plant disease control. In: Nanotechnology for agriculture: crop production & protection. Springer, Berlin, pp 233–272

    Chapter  Google Scholar 

  • Rangaraj S et al (2014) Augmented biocontrol action of silica nanoparticles and Pseudomonas fluorescens bioformulant in maize (Zea mays L.). RSC Adv 4(17):8461–8465

    Article  CAS  Google Scholar 

  • Rizwan M et al (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277

    Article  CAS  PubMed  Google Scholar 

  • Robatjazi H, Bahauddin SM, Doiron C, Thomann I (2015) Direct plasmon-driven photoelectrocatalysis. Nano Lett 15(9):6155–6161

    Article  CAS  PubMed  Google Scholar 

  • Rong G, Tuttle EE, Neal Reilly A, Clark HA (2019) Recent developments in nanosensors for imaging applications in biological systems. Annu Rev Anal Chem 12:109–128

    Article  CAS  Google Scholar 

  • Rossi L et al (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Zhang W, Ma X (2017) Cerium oxide nanoparticles alter the salt stress tolerance of Brassica napus L. by modifying the formation of root apoplastic barriers. Environ Pollut 229:132–138

    Article  CAS  PubMed  Google Scholar 

  • Rostami AA, Shahsavar A (2009) Olive “Mission” explants. Asian J Plant Sci 8(7):505–509

    Article  Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15(1):1–19

    Article  Google Scholar 

  • Sarmast MK, Niazi A, Salehi H, Abolimoghadam A (2015) Silver nanoparticles affect ACS expression in Tecomella undulata in vitro culture. Plant Cell Tiss Org Cult 121(1):227–236

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of brassica juncea. Appl Biochem Biotechnol 167(8):2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83

    Google Scholar 

  • Shi S, Wang W, Liu L, Wu S, Wei Y, Li W (2013) Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng 118(1):125–131

    Article  CAS  Google Scholar 

  • Sivanesan I, Saini RK, Kim DH (2016) Bioactive compounds in hyperhydric and normal micropropagated shoots of Aronia melanocarpa (michx.) Elliott. Ind Crop Prod 83:31–38

    Article  CAS  Google Scholar 

  • Son D, Park SY, Kim B, Koh JT, Kim TH, An S, Hong S et al (2011) Nanoneedle transistor-based sensors for the selective detection of intracellular calcium ions. ACS Nano 5(5):3888–3895

    Article  CAS  PubMed  Google Scholar 

  • Spinoso-Castillo JL, Chavez-Santoscoy RA, Bogdanchikova N, Pérez-Sato JA, Morales-Ramos V, Bello-Bello JJ (2017) Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia jacks. Ex Andrews) using a temporary immersion system. Plant Cell Tiss Org Cult 129(2):195–207

    Article  CAS  Google Scholar 

  • Suzuki N et al (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    Article  CAS  PubMed  Google Scholar 

  • Torney F et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  PubMed  Google Scholar 

  • Vijayakumar PS, Abhilash OU, Khan BM, Prasad BL (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20(15):2416–2423

    Article  CAS  Google Scholar 

  • Walkey C, Das S, Seal S, Erlichman J, Heckman K, Ghibelli L, Self WT (2015) Catalytic properties and biomedical applications of cerium oxide nanoparticles. Environ Sci Nano 2(1):33–53

    Article  CAS  PubMed  Google Scholar 

  • Wang X et al (2014) Evaluation and mechanism of antifungal effects of carbon nanomaterials in controlling plant fungal pathogen. Carbon 68:798–806

    Article  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang S, Xu M, Xiao L, Dai Z, Li J (2019) The impacts of γ-Fe2O3 and Fe3O4 nanoparticles on the physiology and fruit quality of muskmelon (Cucumis melo) plants. Environ Pollut 249:1011–1018

    Article  CAS  PubMed  Google Scholar 

  • Wang ZP, Zhang ZB, Zheng DY, Zhang TT, Li XL, Zhang C, Wu ZY et al (2022) Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. J Integr Plant Biol 64:1145

    Article  CAS  PubMed  Google Scholar 

  • Wiesholler LM, Frenzel F, Grauel B, Würth C, Resch-Genger U, Hirsch T (2019) Yb, Nd, Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation. Nanoscale 11(28):13440–13449

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA et al (2008) Nanomaterials in soils. Geoderma 146(1–2):291–302

    Article  CAS  Google Scholar 

  • Wu H, Li Z (2021) Recent advances in nano-enabled agriculture for improving plant performance. Crop J 10:1

    Article  Google Scholar 

  • Wu H et al (2018) It is not all about sodium: revealing tissue specificity and signalling roles of potassium in plant responses to salt stress. Plant and Soil 431(1):1–17

    Article  CAS  Google Scholar 

  • Wu H, Nißler R, Morris V, Herrmann N, Hu P, Jeon S-J, Giraldo JP et al (2020) Monitoring plant health with near-infrared fluorescent H2O2 nanosensors. Nano Lett 20(4):2432–2442

    Article  CAS  PubMed  Google Scholar 

  • Yan S et al (2021) Zinc oxide nanoparticles alleviate the arsenic toxicity and decrease the accumulation of arsenic in rice (Oryza sativa L.). BMC Plant Biol 21(1):1–11

    Article  Google Scholar 

  • Yang Q et al (2017) Interface engineering of metal organic framework on graphene oxide with enhanced adsorption capacity for organophosphorus pesticide. Chem Eng J 313:19–26

    Article  CAS  Google Scholar 

  • Yao J et al (2018) ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem Sci 9(11):2927–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zambrano-Zaragoza ML, González-Reza R, Mendoza-Muñoz N, Miranda-Linares V, Bernal-Couoh TF, Mendoza-Elvira S, Quintanar-Guerrero D (2018) Nanosystems in edible coatings: a novel strategy for food preservation. Int J Mol Sci 19(3):705

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zhang J, Zhu K (2010) Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Mol Biol 19(5):683–693

    Article  PubMed  Google Scholar 

  • Zhang H et al (2018) Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress. Environ Sci Technol 52(14):8016–8026

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Meng Z, Wang Y, Chen W, Sun C, Cui B, Cui H et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3(12):956–964

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Lu L, Wang A, Zhang H, Huang M, Wu H, Ji R et al (2020) Nano-biotechnology in agriculture: use of nanomaterials to promote plant growth and stress tolerance. J Agric Food Chem 68(7):1935–1947

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Each author expresses gratitude to the appropriate organizations for providing the resources and assistance needed to carry out this inquiry. Sincere thanks are given to Amity University Jharkhand, Ranchi 834001, Jharkhand, India, by author Rahul Kumar.

Author Contributions

SD, SG, AB, and SK designed and wrote MS. BKB, PKP, and RK edited the MS.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, S. et al. (2023). Nanotechnology and Plant Biotechnology: The Current State of Art and Future Prospects. In: Sarkar, B., Sonawane, A. (eds) Biological Applications of Nanoparticles. Springer, Singapore. https://doi.org/10.1007/978-981-99-3629-8_6

Download citation

Publish with us

Policies and ethics