Skip to main content

Microbiome and Human Health: From Dysbiosis to Therapeutic Interventions

  • Chapter
  • First Online:
Role of Microbes in Sustainable Development

Abstract

Human body is a complex system housing multiple biomes such as virome, microbiome, and eukaryome which governs human health. Unicellular archaea, bacteria, virus, and multicellular eukaryotes together regulate the physiological functions along with the internal homeostatic mechanisms. With the next-generation sequencing technology, the composition of the “internal biome” and its role in health and disease has become much clearer. Joshua Lederberg coined the term “microbiome” in 2001, which defines the full complement of microbes (bacteria, viruses, fungi, and protozoa), their genes, and genomes in or on the human body. Human Microbiome Project was launched in 2007 through 2016 by the National Institutes of Health to characterize the genomic makeup of all microbes inhabiting the human body and analyze its role in health and disease. Bacteria outnumber the human cells tenfold and make up about 1–3% of body mass. The composition of the microbiome changes during the lifetime, impacting human physiology in healthy and diseased state by modulating the metabolic and immune functions. The current chapter provides an introduction to the “human microbiome” and also compares the bacterial diversity in healthy and diseased state. A comparison of microbiome of Indian and Western population has also been added. Gut bacteria play a regulatory role in the metabolism and have a strong connection with brain, influencing behavior. Some bacterial species are found to be either abnormally abundant or reduced in certain diseases. Dysbiosis or imbalance in microbial flora has been recognized as a cause or consequence. Therefore there is a need to adopt certain therapeutic strategies for restoring the balance of microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aggarwala V, Mogno I, Li Z, Yang C, Britton GJ, Chen-Liaw A et al (2021) Precise quantification of bacterial strains after fecal microbiota transplantation delineates long-term engraftment and explains outcomes. Nat Microbiol 6(10):1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agus A, Planchais J, Sokol H (2018) Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23(6):716–724

    Article  CAS  PubMed  Google Scholar 

  • Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA et al (2021) Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med 27(2):321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16(9):567–576

    Article  CAS  PubMed  Google Scholar 

  • Barandouzi ZA, Starkweather AR, Henderson WA, Gyamfi A, Cong XS (2020) Altered composition of gut microbiota in depression: a systematic review. Front Psych 11:541

    Article  Google Scholar 

  • Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med 9(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berry S, Drew D, Linenberg I, Hadjigeorgiou G, Davies R, Khatib H et al (2020) Personalised REsponses to DIetary Composition Trial (PREDICT): an intervention study to determine inter-individual differences in postprandial response to foods. Res Square. https://doi.org/10.21203/rs.2.20798/v1

  • Bhalodi AA, van Engelen TSR, Virk HS, Wiersinga WJ (2019) Impact of antimicrobial therapy on the gut microbiome. J Antimicrob Chemother 74(Suppl 1):i6–i15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull MJ, Plummer NT (2014) Part 1: the human gut microbiome in health and disease. Integr Med 13(6):17–22

    Google Scholar 

  • Caruso R, Lo BC, Nunez G (2020) Host-microbiota interactions in inflammatory bowel disease. Nat Rev Immunol 20(7):411–426

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari DS, Dhotre DP, Agarwal DM, Gaike AH, Bhalerao D, Jadhav P et al (2020) Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age. Sci Rep 10(1):5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W et al (2020) Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol 11:589726

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou J, Wang L (2021) Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol 11:625913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, He S, Miles P, Li C, Ge Y, Yu X et al (2022) Nasal bacterial microbiome differs between healthy controls and those with asthma and allergic rhinitis. Front Cell Infect Microbiol 12:841995

    Article  PubMed  PubMed Central  Google Scholar 

  • Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S (2017) Gut microbiota’s effect on mental health: the gut-brain axis. Clin Pract 7(4):987

    Article  PubMed  PubMed Central  Google Scholar 

  • Collado MC, Cernada M, Bauerl C, Vento M, Perez-Martinez G (2012) Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 3(4):352–365

    Article  PubMed  PubMed Central  Google Scholar 

  • Correa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA (2016) Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunol 5(4):e73

    Article  Google Scholar 

  • Costea PI, Hildebrand F, Arumugam M, Backhed F, Blaser MJ, Bushman FD et al (2018) Enterotypes in the landscape of gut microbial community composition. Nat Microbiol 3(1):8–16

    Article  CAS  PubMed  Google Scholar 

  • Crusell MKW, Hansen TH, Nielsen T, Allin KH, Ruhlemann MC, Damm P et al (2018) Gestational diabetes is associated with change in the gut microbiota composition in third trimester of pregnancy and postpartum. Microbiome 6(1):89

    Article  PubMed  PubMed Central  Google Scholar 

  • Da Silva HE, Teterina A, Comelli EM, Taibi A, Arendt BM, Fischer SE et al (2018) Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep 8(1):1466

    Article  PubMed  PubMed Central  Google Scholar 

  • Das B, Nair GB (2019) Homeostasis and dysbiosis of the gut microbiome in health and disease. J Biosci 44(5):117

    Article  PubMed  Google Scholar 

  • Das Purkayastha S, Bhattacharya MK, Prasad HK, Upadhyaya H, Lala SD, Pal K et al (2019) Contrasting diversity of vaginal lactobacilli among the females of Northeast India. BMC Microbiol 19(1):198

    Article  PubMed  PubMed Central  Google Scholar 

  • de Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M (2017) Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut Microbes 8(3):253–267

    Article  PubMed  PubMed Central  Google Scholar 

  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340

    Article  Google Scholar 

  • El-Salhy M, Patcharatrakul T, Gonlachanvit S (2021) Fecal microbiota transplantation for irritable bowel syndrome: an intervention for the 21(st) century. World J Gastroenterol 27(22):2921–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flandroy L, Poutahidis T, Berg G, Clarke G, Dao M-C, Decaestecker E et al (2018) The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci Total Environ 627:1018–1038

    Article  CAS  PubMed  Google Scholar 

  • Gao K, Mu CL, Farzi A, Zhu WY (2020) Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr 11(3):709–723

    Article  PubMed  Google Scholar 

  • Garrett WS (2019) The gut microbiota and colon cancer. Science 364(6446):1133–1135

    Article  CAS  PubMed  Google Scholar 

  • Glassner KL, Abraham BP, Quigley EMM (2020) The microbiome and inflammatory bowel disease. J Allergy Clin Immunol 145(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Greathouse KL, Wyatt M, Johnson AJ, Toy EP, Khan JM, Dunn K et al (2022) Diet-microbiome interactions in cancer treatment: opportunities and challenges for precision nutrition in cancer. Neoplasia 29:100800

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanssen NMJ, de Vos WM, Nieuwdorp M (2021) Fecal microbiota transplantation in human metabolic diseases: from a murky past to a bright future? Cell Metab 33(6):1098–1110

    Article  CAS  PubMed  Google Scholar 

  • Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E et al (2018) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98

    Article  CAS  PubMed  Google Scholar 

  • Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopfner F, Kunstner A, Muller SH, Kunzel S, Zeuner KE, Margraf NG et al (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45

    Article  CAS  PubMed  Google Scholar 

  • Horn J, Mayer DE, Chen S, Mayer EA (2022) Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl Psychiatry 12(1):164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, Xiao C et al (2022) Microbiota in health and diseases. Signal Transduct Target Ther 7(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Yang B, Li W (2016) Defining the normal core microbiome of conjunctival microbial communities. Clin Microbiol Infect 22(7):643:e7–e12

    Google Scholar 

  • Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar RD (2015) Role of the normal gut microbiota. World J Gastroenterol 21(29):8787–8803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW et al (2015) Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 125(1):386–402

    Article  PubMed  Google Scholar 

  • Kelly CR, Yen EF, Grinspan AM, Kahn SA, Atreja A, Lewis JD et al (2021) Fecal microbiota transplantation is highly effective in real-world practice: initial results from the FMT National Registry. Gastroenterology 160(1):183–192

    Article  PubMed  Google Scholar 

  • Kim JE, Kim HS (2019) Microbiome of the skin and gut in atopic dermatitis (AD): understanding the pathophysiology and finding novel management strategies. J Clin Med 8(4):444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Sood U, Gupta V, Singh M, Scaria J, Lal R (2020) Recent advancements in the development of modern probiotics for restoring human gut microbiome dysbiosis. Indian J Microbiol 60(1):12–25

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Sood U, Kaur J, Anand S, Gupta V, Patil KS et al (2022) The rising dominance of microbiology: what to expect in the next 15 years? Microb Biotechnol 15(1):110–128

    Article  PubMed  Google Scholar 

  • Lach G, Schellekens H, Dinan TG, Cryan JF (2018) Anxiety, depression, and the microbiome: a role for gut peptides. Neurotherapeutics 15(1):36–59

    Article  CAS  PubMed  Google Scholar 

  • Leeming ER, Louca P, Gibson R, Menni C, Spector TD, Le Roy CI (2021) The complexities of the diet-microbiome relationship: advances and perspectives. Genome Med 13(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Li K, Bihan M, Yooseph S, Methe BA (2012) Analyses of the microbial diversity across the human microbiome. PLoS One 7(6):e32118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Wang C, Tang C, He Q, Li N, Li J (2014) Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn’s disease. J Clin Gastroenterol 48(6):513–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F et al (2016) Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 352(6285):586–589

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z (2020) Implication of the gut microbiome composition of type 2 diabetic patients from northern China. Sci Rep 10(1):5450

    Article  PubMed  PubMed Central  Google Scholar 

  • Lynch SV, Pedersen O (2016) The human intestinal microbiome in health and disease. N Engl J Med 375(24):2369–2379

    Article  CAS  PubMed  Google Scholar 

  • Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P et al (2020) The firmicutes/bacteroidetes ratio: a relevant marker of gut dysbiosis in obese patients? Nutrients 12(5):1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahajan G, Doherty E, To T, Sutherland A, Grant J, Junaid A et al (2022) Vaginal microbiome-host interactions modeled in a human vagina-on-a-chip. Microbiome 10(1):201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNabney SM, Henagan TM (2017) Short-chain fatty acids in the colon and peripheral tissues: a focus on butyrate, colon cancer, obesity and insulin resistance. Nutrients 9(12):1348

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendez-Garcia C, Barbas C, Ferrer M, Rojo D (2018) Complementary methodologies to investigate human gut microbiota in host health, working towards integrative systems biology. J Bacteriol 200:3

    Article  Google Scholar 

  • Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J et al (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev 81(4):e00036

    Article  PubMed  PubMed Central  Google Scholar 

  • Minter MR, Hinterleitner R, Meisel M, Zhang C, Leone V, Zhang X et al (2017) Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APP(SWE)/PS1(DeltaE9) murine model of Alzheimer’s disease. Sci Rep 7(1):10411

    Article  PubMed  PubMed Central  Google Scholar 

  • Moffatt MF, Cookson WO (2017) The lung microbiome in health and disease. Clin Med 17(6):525–529

    Article  Google Scholar 

  • Morais LH, Schreiber HL, Mazmanian SK (2021) The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–255

    Article  CAS  PubMed  Google Scholar 

  • Nguyen J, Lara-Gutierrez J, Stocker R (2021) Environmental fluctuations and their effects on microbial communities, populations and individuals. FEMS Microbiol Rev 45(4):68

    Article  Google Scholar 

  • Niederman MS, Baron RM, Bouadma L, Calandra T, Daneman N, DeWaele J et al (2021) Initial antimicrobial management of sepsis. Crit Care 25(1):307

    Article  PubMed  PubMed Central  Google Scholar 

  • Ojima M, Motooka D, Shimizu K, Gotoh K, Shintani A, Yoshiya K et al (2016) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci 61(6):1628–1634

    Article  PubMed  Google Scholar 

  • Osadchiy V, Martin CR, Mayer EA (2019) Gut microbiome and modulation of CNS function. Compr Physiol 10(1):57–72

    Article  PubMed  Google Scholar 

  • Peng C, Gathagan RJ, Covell DJ, Medellin C, Stieber A, Robinson JL et al (2018) Cellular milieu imparts distinct pathological α-synuclein strains in α-synucleinopathies. Nature 557(7706):558–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potbhare R, RaviKumar A, Munukka E, Lahti L, Ashma R (2022) Skin microbiota diversity among genetically unrelated individuals of Indian origin. PeerJ 10:e13075

    Article  PubMed  PubMed Central  Google Scholar 

  • Prashanthi GS, Jayasudha R, Chakravarthy SK, Padakandla SR, Sai Abhilash CR, Sharma S et al (2019) Alterations in the ocular surface fungal microbiome in fungal keratitis patients. Microorganisms 7(9):309

    Article  CAS  PubMed  Google Scholar 

  • Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S et al (2013) Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol 11(7):868–875

    Article  CAS  PubMed  Google Scholar 

  • Redondo-Useros N, Nova E, Gonzalez-Zancada N, Diaz LE, Gomez-Martinez S, Marcos A (2020) Microbiota and lifestyle: a special focus on diet. Nutrients 12(6):1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A et al (2019) What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 7(1):14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–1480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358

    Article  PubMed  Google Scholar 

  • Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14(8):e1002533

    Article  PubMed  PubMed Central  Google Scholar 

  • Ser HL, Letchumanan V, Goh BH, Wong SH, Lee LH (2021) The use of fecal microbiome transplant in treating human diseases: too early for poop? Front Microbiol 12:519836

    Article  PubMed  PubMed Central  Google Scholar 

  • Si H, Yang Q, Hu H, Ding C, Wang H, Lin X (2021) Colorectal cancer occurrence and treatment based on changes in intestinal flora. Semin Cancer Biol 70:3–10

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15(1):73

    Article  PubMed  PubMed Central  Google Scholar 

  • Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, Kwiecinska-Pirog J et al (2021) Human skin microbiome: impact of intrinsic and extrinsic factors on skin microbiota. Microorganisms 9(3):543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slyepchenko A, Maes M, Jacka FN, Kohler CA, Barichello T, McIntyre RS et al (2017) Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom 86(1):31–46

    Article  PubMed  Google Scholar 

  • Sokolowska M, Frei R, Lunjani N, Akdis CA, O’Mahony L (2018) Microbiome and asthma. Asthma Res Pract 4:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Song M, Zhang X, Meyerhardt JA, Giovannucci EL, Ogino S, Fuchs CS et al (2017) Marine omega-3 polyunsaturated fatty acid intake and survival after colorectal cancer diagnosis. Gut 66(10):1790–1796

    Article  CAS  PubMed  Google Scholar 

  • Song M, Wu K, Meyerhardt JA, Ogino S, Wang M, Fuchs CS et al (2018) Fiber intake and survival after colorectal cancer diagnosis. JAMA Oncol 4(1):71–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X, Zhang J, Song J, Zhai Y (2021) Decisive effects of life stage on the gut microbiota discrepancy between two wild populations of hibernating asiatic toads (Bufo gargarizans). Front Microbiol 12:665849

    Article  PubMed  PubMed Central  Google Scholar 

  • Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E et al (2012) Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61(2):364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoi H, Chu ESH, Zhang X, Sheng J, Nakatsu G, Ng SC et al (2017) Peptostreptococcus anaerobius induces intracellular cholesterol biosynthesis in colon cells to induce proliferation and causes dysplasia in mice. Gastroenterology 152(6):1419–1433

    Article  PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031

    Article  PubMed  Google Scholar 

  • Vallianou N, Stratigou T, Christodoulatos GS, Dalamaga M (2019) Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep 8(3):317–332

    Article  PubMed  Google Scholar 

  • Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy J-M, Dequenne I et al (2020) How probiotics affect the microbiota. Front Cell Infect Microbiol 9:454

    Article  PubMed  PubMed Central  Google Scholar 

  • Witkowski M, Weeks TL, Hazen SL (2020) Gut microbiota and cardiovascular disease. Circ Res 127(4):553–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Zhang G, Jiang C, Liu X, Wang X, Li Y et al (2021) Deciphering gut microbiota dysbiosis and corresponding genetic and metabolic dysregulation in psoriasis patients using metagenomics sequencing. Front Cell Infect Microbiol 11:605825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C et al (2017) Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol 7:381

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM et al (2015) Gut dysbiosis is linked to hypertension. Hypertension 65(6):1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Ma Y, Smith-Warner S, Song M, Wu K, Wang M et al (2019) Calcium intake and survival after colorectal cancer diagnosis. Clin Cancer Res 25(6):1980–1988

    Article  CAS  PubMed  Google Scholar 

  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaiss MM, Joyce Wu HJ, Mauro D, Schett G, Ciccia F (2021) The gut-joint axis in rheumatoid arthritis. Nat Rev Rheumatol 17(4):224–237

    Article  PubMed  Google Scholar 

  • Zhou H, Zhao X, Sun L, Liu Y, Lv Y, Gang X et al (2020) Gut microbiota profile in patients with type 1 diabetes based on 16S rRNA gene sequencing: a systematic review. Dis Markers 2020:3936247

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Wu H, Wang PP, Savas S, Woodrow J, Wish T et al (2013) Dietary patterns and colorectal cancer recurrence and survival: a cohort study. BMJ Open 3(2):e002270

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

RL thanks INSA for providing INSA Senior Scientist Position. RK acknowledges SERB International Research Experience (SIRE) for providing the fellowship (SIR/2022/000474).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhingra, G.G., Kumar, R., Sood, U., Hira, P., Kaur, J., Lal, R. (2023). Microbiome and Human Health: From Dysbiosis to Therapeutic Interventions. In: Sobti, R., Kuhad, R.C., Lal, R., Rishi, P. (eds) Role of Microbes in Sustainable Development. Springer, Singapore. https://doi.org/10.1007/978-981-99-3126-2_13

Download citation

Publish with us

Policies and ethics