Skip to main content

Advertisement

Log in

Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

A healthy gut is predominantly occupied by bacteria which play a vital role in nutrition and health. Any change in normal gut homeostasis imposes gut dysbiosis. So far, efforts have been made to mitigate the gastrointestinal symptoms using modern day probiotics. The majority of the probiotics strains used currently belong to the genera Lactobacillus, Clostridium, Bifidobacterium and Streptococcus. Recent advancements in culturomics by implementing newer techniques coupled with the use of gnotobiotic animal models provide a subtle ground to develop novel host specific probiotics therapies. In this review article, the recent advances in the development of microbe-based therapies which can now be implemented to treat a wide spectrum of diseases have been discussed. However, these probiotics are not classified as drugs and there is a lack of stringent law enforcement to protect the end users against the pseudo-probiotic products. While modern probiotics hold strong promise for the future, more rigorous regulations are needed to develop genuine probiotic products and characterize novel probiotics using the latest research and technology. This article also highlights the possibility of reducing antibiotic usage by utilizing probiotics developed using the latest concepts of syn and ecobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Group NHW, Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, Baker CC, Di Francesco V, Howcroft TK, Karp RW, Lunsford RD, Wellington CR, Belachew T, Wright M, Giblin C, David H, Mills M, Salomon R, Mullins C, Akolkar B, Begg L, Davis C, Grandison L, Humble M, Khalsa J, Little AR, Peavy H, Pontzer C, Portnoy M, Sayre MH, Starke-Reed P, Zakhari S, Read J, Watson B, Guyer M (2009) The NIH human microbiome project. Genome Res 19:2317–2323. https://doi.org/10.1101/gr.096651.109

    Article  CAS  Google Scholar 

  2. Bengmark S (1998) Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42:2–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836. https://doi.org/10.1042/BCJ20160510

    Article  CAS  PubMed  Google Scholar 

  4. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920. https://doi.org/10.1126/science.1104816

    Article  CAS  PubMed  Google Scholar 

  5. Luckey TD (1972) Introduction to intestinal microecology. Am J Clin Nutr 25:1292–1294. https://doi.org/10.1093/ajcn/25.12.1292

    Article  CAS  PubMed  Google Scholar 

  6. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533. https://doi.org/10.1371/journal.pbio.1002533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Timmis K, Cavicchioli R, Garcia JL, Nogales B, Chavarria M, Stein L, McGenity TJ, Webster N, Singh B, Handelsman J, de Lorenzo V, Pruzzo C, Timmis J, Martin JLR, Verstraete W, Jetten M, Danchin A, Huang W, Gilbert J, Lal R, Santos H, Lee SY, Sessitsch A, Bonfante P, Gram L, Lin RTP, Ron E, Karahan C, van der Meer JR, Artunkal S, Jahn D, Harper L (2019) The urgent need for microbiology literacy in society. Environ Microbiol. https://doi.org/10.1111/1462-2920.14611

    Article  PubMed  Google Scholar 

  8. Natividad JM, Verdu EF (2013) Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res 69:42–51. https://doi.org/10.1016/j.phrs.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  9. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  10. Higginson J (1980) Proportion of cancers due to occupation. Prev Med 9:180–188

    Article  CAS  PubMed  Google Scholar 

  11. Gensollen T, Iyer SS, Kasper DL, Blumberg RS (2016) How colonization by microbiota in early life shapes the immune system. Science 352:539–544. https://doi.org/10.1126/science.aad9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Isolauri E (2001) Probiotics in human disease. Am J Clin Nutr 73:1142S–1146S. https://doi.org/10.1093/ajcn/73.6.1142S

    Article  CAS  PubMed  Google Scholar 

  13. Guyonnet D, Schlumberger A, Mhamdi L, Jakob S, Chassany O (2009) Fermented milk containing Bifidobacterium lactis DN-173 010 improves gastrointestinal well-being and digestive symptoms in women reporting minor digestive symptoms: a randomised, double-blind, parallel, controlled study. Br J Nutr 102:1654–1662. https://doi.org/10.1017/S0007114509990882

    Article  CAS  PubMed  Google Scholar 

  14. Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS, Baccaglini L, Mohapatra A, Mohapatra SS, Misra PR, Chaudhry R, Chen HH, Johnson JA, Morris JG, Paneth N, Gewolb IH (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548:407–412. https://doi.org/10.1038/nature23480

    Article  CAS  PubMed  Google Scholar 

  15. McKean J, Naug H, Nikbakht E, Amiet B, Colson N (2017) Probiotics and subclinical psychological symptoms in healthy participants: a systematic review and meta-analysis. J Altern Complement Med 23:249–258. https://doi.org/10.1089/acm.2016.0023

    Article  PubMed  Google Scholar 

  16. Milani C, Duranti S, Bottacini F, Casey E, Turroni F, Mahony J, Belzer C, Delgado Palacio S, Arboleya Montes S, Mancabelli L, Lugli GA, Rodriguez JM, Bode L, de Vos W, Gueimonde M, Margolles A, van Sinderen D, Ventura M (2017) The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol Mol Biol Rev. https://doi.org/10.1128/mmbr.00036-17

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lagier J-C, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P, Caputo A, Cadoret F, Traore SI, Seck EH, Dubourg G, Durand G, Mourembou G, Guilhot E, Togo A, Bellali S, Bachar D, Cassir N, Bittar F, Delerce J, Mailhe M, Ricaboni D, Bilen M, Dangui Nieko NPM, Dia Badiane NM, Valles C, Mouelhi D, Diop K, Million M, Musso D, Abrahão J, Azhar EI, Bibi F, Yasir M, Diallo A, Sokhna C, Djossou F, Vitton V, Robert C, Rolain JM, La Scola B, Fournier P-E, Levasseur A, Raoult D (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203. https://doi.org/10.1038/nmicrobiol.2016.203

    Article  CAS  PubMed  Google Scholar 

  18. Lagier JC, Armougom F, Million M, Hugon P, Pagnier I, Robert C, Bittar F, Fournous G, Gimenez G, Maraninchi M, Trape JF, Koonin EV, La Scola B, Raoult D (2012) Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect 18:1185–1193. https://doi.org/10.1111/1469-0691.12023

    Article  CAS  PubMed  Google Scholar 

  19. Sood U, Bajaj A, Kumar R, Khurana S, Kalia VC (2018) Infection and microbiome: impact of tuberculosis on human gut microbiome of indian cohort. Indian J Microbiol 58:123–125. https://doi.org/10.1007/s12088-018-0706-4

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zou Y, Xue W, Luo G, Deng Z, Qin P, Guo R, Sun H, Xia Y, Liang S, Dai Y, Wan D, Jiang R, Su L, Feng Q, Jie Z, Guo T, Xia Z, Liu C, Yu J, Lin Y, Tang S, Huo G, Xu X, Hou Y, Liu X, Wang J, Yang H, Kristiansen K, Li J, Jia H, Xiao L (2019) 1,520 reference genomes from cultivated human gut bacteria enable functional microbiome analyses. Nat Biotechnol 37:179–185. https://doi.org/10.1038/s41587-018-0008-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S, Arumugam M, Kultima JR, Prifti E, Nielsen T, Juncker AS, Manichanh C, Chen B, Zhang W, Levenez F, Wang J, Xu X, Xiao L, Liang S, Zhang D, Zhang Z, Chen W, Zhao H, Al-Aama JY, Edris S, Yang H, Wang J, Hansen T, Nielsen HB, Brunak S, Kristiansen K, Guarner F, Pedersen O, Dore J, Ehrlich SD, Meta HITC, Bork P, Wang J, Meta HITC (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32:834–841. https://doi.org/10.1038/nbt.2942

    Article  CAS  PubMed  Google Scholar 

  22. Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and Bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15. https://doi.org/10.1186/s40168-016-0160-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Talebi Bezmin Abadi A (2014) Helicobacter pylori: a beneficial gastric pathogen? Front Med (Lausanne) 1:26. https://doi.org/10.3389/fmed.2014.00026

    Article  Google Scholar 

  24. Conway T, Cohen PS (2015) Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.mbp-0006-2014

    Article  PubMed  Google Scholar 

  25. Valdes AM, Walter J, Segal E, Spector TD (2018) Role of the gut microbiota in nutrition and health. BMJ 361:k2179. https://doi.org/10.1136/bmj.k2179

    Article  PubMed  PubMed Central  Google Scholar 

  26. Backhed F, Fraser CM, Ringel Y, Sanders ME, Sartor RB, Sherman PM, Versalovic J, Young V, Finlay BB (2012) Defining a healthy human gut microbiome: current concepts, future directions, and clinical applications. Cell Host Microbe 12:611–622. https://doi.org/10.1016/j.chom.2012.10.012

    Article  CAS  PubMed  Google Scholar 

  27. Abraham BP, Quigley EMM (2017) Probiotics in inflammatory bowel disease. Gastroenterol Clin N Am 46:769–782. https://doi.org/10.1016/j.gtc.2017.08.003

    Article  Google Scholar 

  28. Schepper JD, Irwin R, Kang J, Dagenais K, Lemon T, Shinouskis A, Parameswaran N, McCabe LR (2017) Probiotics in gut-bone signaling. Adv Exp Med Biol 1033:225–247. https://doi.org/10.1007/978-3-319-66653-2_11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Metchnikoff E (1908) The prolongation of life: optimistic studies. G. P. Putnam’s Sons, New York

    Google Scholar 

  30. Markova IuM, Sheveleva SA (2014) Probiotics as functional food products: manufacture and approaches to evaluating of the effectiveness. Vopr Pitan 83:4–14

    PubMed  Google Scholar 

  31. Saarela M, Mogensen G, Fonden R, Matto J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84:197–215

    Article  CAS  PubMed  Google Scholar 

  32. Berner D, Viernstein H (2006) Effect of protective agents on the viability of Lactococcus lactis subjected to freeze-thawing and freeze-drying. Sci Pharm 74:137

    Article  CAS  Google Scholar 

  33. Begum P, Madhavi G, Rajagopal S, Viswanath B, Razak M, Venkataratnamma V (2017) Probiotics as functional foods: potential effects on human health and its impact on neurological diseases. Int J Nutr Pharmacol Neurol Dis 7:23–33. https://doi.org/10.4103/ijnpnd.ijnpnd_90_16

    Article  CAS  Google Scholar 

  34. Ranadheera CS, Vidanarachchi JK, Rocha RS, Cruz AG, Ajlouni S (2017) Probiotic delivery through fermentation: dairy vs. non-dairy beverages. Fermentation 3:67

    Article  Google Scholar 

  35. Yeung TW, Ucok EF, Tiani KA, McClements DJ, Sela DA (2016) Microencapsulation in alginate and chitosan microgels to enhance viability of Bifidobacterium longum for oral delivery. Front Microbiol 7:494. https://doi.org/10.3389/fmicb.2016.00494

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412. https://doi.org/10.1093/jn/125.6.1401

    Article  CAS  PubMed  Google Scholar 

  37. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275. https://doi.org/10.1079/NRR200479

    Article  CAS  PubMed  Google Scholar 

  38. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, Armanini F, Truong DT, Manara S, Zolfo M, Beghini F, Bertorelli R, De Sanctis V, Bariletti I, Canto R, Clementi R, Cologna M, Crifo T, Cusumano G, Gottardi S, Innamorati C, Mase C, Postai D, Savoi D, Duranti S, Lugli GA, Mancabelli L, Turroni F, Ferrario C, Milani C, Mangifesta M, Anzalone R, Viappiani A, Yassour M, Vlamakis H, Xavier R, Collado CM, Koren O, Tateo S, Soffiati M, Pedrotti A, Ventura M, Huttenhower C, Bork P, Segata N (2018) Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24:133–145. https://doi.org/10.1016/j.chom.2018.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Backhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, Li Y, Xia Y, Xie H, Zhong H, Khan MT, Zhang J, Li J, Xiao L, Al-Aama J, Zhang D, Lee YS, Kotowska D, Colding C, Tremaroli V, Yin Y, Bergman S, Xu X, Madsen L, Kristiansen K, Dahlgren J, Wang J (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17:690–703. https://doi.org/10.1016/j.chom.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  40. Figueroa-Gonzalez I, Quijano G, Ramirez G, Cruz-Guerrero A (2011) Probiotics and prebiotics–perspectives and challenges. J Sci Food Agric 91:1341–1348. https://doi.org/10.1002/jsfa.4367

    Article  CAS  PubMed  Google Scholar 

  41. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, Verbeke K, Reid G (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  PubMed  Google Scholar 

  42. Cummings JH (1981) Short chain fatty acids in the human colon. Gut 22:763–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hijova E, Chmelarova A (2007) Short chain fatty acids and colonic health. Bratisl Lek Listy 108:354–358

    CAS  PubMed  Google Scholar 

  44. Roytio H, Ouwehand AC (2014) The fermentation of polydextrose in the large intestine and its beneficial effects. Benef Microbes 5:305–313. https://doi.org/10.3920/BM2013.0065

    Article  CAS  PubMed  Google Scholar 

  45. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, Wolvers D, Watzl B, Szajewska H, Stahl B, Guarner F, Respondek F, Whelan K, Coxam V, Davicco MJ, Leotoing L, Wittrant Y, Delzenne NM, Cani PD, Neyrinck AM, Meheust A (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104:S1–S63. https://doi.org/10.1017/S0007114510003363

    Article  CAS  PubMed  Google Scholar 

  46. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40:235–243

    Article  CAS  PubMed  Google Scholar 

  47. Basturk A, Artan R, Yilmaz A (2016) Efficacy of synbiotic, probiotic, and prebiotic treatments for irritable bowel syndrome in children: a randomized controlled trial. Turk J Gastroenterol 27:439–443. https://doi.org/10.5152/tjg.2016.16301

    Article  PubMed  Google Scholar 

  48. Zamani B, Farshbaf S, Golkar HR, Bahmani F, Asemi Z (2017) Synbiotic supplementation and the effects on clinical and metabolic responses in patients with rheumatoid arthritis: a randomised, double-blind, placebo-controlled trial. Br J Nutr 117:1095–1102. https://doi.org/10.1017/S000711451700085X

    Article  CAS  PubMed  Google Scholar 

  49. Karamali M, Nasiri N, Taghavi Shavazi N, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, Asemi Z (2018) The effects of synbiotic supplementation on pregnancy outcomes in gestational diabetes. Probiotics Antimicrob Proteins 10:496–503. https://doi.org/10.1007/s12602-017-9313-7

    Article  CAS  PubMed  Google Scholar 

  50. Nikbakht E, Khalesi S, Singh I, Williams LT, West NP, Colson N (2018) Effect of probiotics and synbiotics on blood glucose: a systematic review and meta-analysis of controlled trials. Eur J Nutr 57:95–106. https://doi.org/10.1007/s00394-016-1300-3

    Article  PubMed  Google Scholar 

  51. Saez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A (2016) Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. Int J Mol Sci. https://doi.org/10.3390/ijms17060928

    Article  PubMed  PubMed Central  Google Scholar 

  52. Okada H, Kuhn C, Feillet H, Bach JF (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol 160:1–9. https://doi.org/10.1111/j.1365-2249.2010.04139.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bartlett JG, Moon N, Chang TW, Taylor N, Onderdonk AB (1978) Role of Clostridium difficile in antibiotic-associated pseudomembranous colitis. Gastroenterology 75:778–782

    Article  CAS  PubMed  Google Scholar 

  54. Smits WK, Lyras D, Lacy DB, Wilcox MH, Kuijper EJ (2016) Clostridium difficile infection. Nat Rev Dis Primers 2:16020. https://doi.org/10.1038/nrdp.2016.20

    Article  PubMed  PubMed Central  Google Scholar 

  55. https://cdifffoundation.org. Accessed 20 Apr 2019

  56. Bagdasarian N, Rao K, Malani PN (2015) Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 313:398–408. https://doi.org/10.1001/jama.2014.17103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Louie TJ, Miller MA, Mullane KM, Weiss K, Lentnek A, Golan Y, Gorbach S, Sears P, Shue YK, Group OPTCS (2011) Fidaxomicin versus vancomycin for Clostridium difficile infection. N Engl J Med 364:422–431. https://doi.org/10.1056/nejmoa0910812

    Article  CAS  PubMed  Google Scholar 

  58. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368:407–415. https://doi.org/10.1056/NEJMoa1205037

    Article  CAS  PubMed  Google Scholar 

  59. Sofi AA, Silverman AL, Khuder S, Garborg K, Westerink JM, Nawras A (2013) Relationship of symptom duration and fecal bacteriotherapy in Clostridium difficile infection-pooled data analysis and a systematic review. Scand J Gastroenterol 48:266–273. https://doi.org/10.3109/00365521.2012.743585

    Article  PubMed  Google Scholar 

  60. Kamada N, Chen GY, Inohara N, Nunez G (2013) Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14:685–690. https://doi.org/10.1038/ni.2608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meighani A, Hart BR, Mittal C, Miller N, John A, Ramesh M (2016) Predictors of fecal transplant failure. Eur J Gastroenterol Hepatol 28:826–830. https://doi.org/10.1097/MEG.0000000000000614

    Article  PubMed  Google Scholar 

  62. Vargason AM, Anselmo AC (2018) Clinical translation of microbe-based therapies: current clinical landscape and preclinical outlook. Bioeng Transl Med 3:124–137. https://doi.org/10.1002/btm2.10093

    Article  PubMed  PubMed Central  Google Scholar 

  63. Khanna S, Pardi DS, Kelly CR, Kraft CS, Dhere T, Henn MR, Lombardo MJ, Vulic M, Ohsumi T, Winkler J, Pindar C, McGovern BH, Pomerantz RJ, Aunins JG, Cook DN, Hohmann EL (2016) A novel microbiome therapeutic increases gut microbial diversity and prevents recurrent Clostridium difficile infection. J Infect Dis 214:173–181. https://doi.org/10.1093/infdis/jiv766

    Article  PubMed  Google Scholar 

  64. Plessas S, Nouska C, Karapetsas A, Kazakos S, Alexopoulos A, Mantzourani I, Chondrou P, Fournomiti M, Galanis A, Bezirtzoglou E (2017) Isolation, characterization and evaluation of the probiotic potential of a novel Lactobacillus strain isolated from feta-type cheese. Food Chem 226:102–108. https://doi.org/10.1016/j.foodchem.2017.01.052

    Article  CAS  PubMed  Google Scholar 

  65. Munoz-Quezada S, Chenoll E, Vieites JM, Genoves S, Maldonado J, Bermudez-Brito M, Gomez-Llorente C, Matencio E, Bernal MJ, Romero F, Suarez A, Ramon D, Gil A (2013) Isolation, identification and characterisation of three novel probiotic strains (Lactobacillus paracasei CNCM I-4034, Bifidobacterium breve CNCM I-4035 and Lactobacillus rhamnosus CNCM I-4036) from the faeces of exclusively breast-fed infants. Br J Nutr 109:S51–S62. https://doi.org/10.1017/S0007114512005211

    Article  CAS  PubMed  Google Scholar 

  66. Papadimitriou K, Zoumpopoulou G, Foligne B, Alexandraki V, Kazou M, Pot B, Tsakalidou E (2015) Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front Microbiol 6:58. https://doi.org/10.3389/fmicb.2015.00058

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sood U, Gupta V, Kumar R, Lal S, Fawcett D, Rattan S, Poinern GEJ, Lal R (2019) Chicken gut microbiome and human health: past scenarios, current perspectives, and futuristic applications. Indian J Microbiol. https://doi.org/10.1007/s12088-019-00785-2

    Article  PubMed  PubMed Central  Google Scholar 

  68. Guzman-Rodriguez M, McDonald JAK, Hyde R, Allen-Vercoe E, Claud EC, Sheth PM, Petrof EO (2018) Using bioreactors to study the effects of drugs on the human microbiota. Methods 149:31–41. https://doi.org/10.1016/j.ymeth.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  69. Auchtung JM, Robinson CD, Britton RA (2015) Cultivation of stable, reproducible microbial communities from different fecal donors using minibioreactor arrays (MBRAs). Microbiome 3:42. https://doi.org/10.1186/s40168-015-0106-5

    Article  PubMed  PubMed Central  Google Scholar 

  70. Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI (2014) Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med 6:220ra211. https://doi.org/10.1126/scitranslmed.3008051

    Article  CAS  Google Scholar 

  71. Brestoff JR, Artis D (2013) Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14:676–684. https://doi.org/10.1038/ni.2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schaedler RW, Dubs R, Costello R (1965) Association of germfree mice with bacteria isolated from normal mice. J Exp Med 122:77–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Geuking MB, Cahenzli J, Lawson MA, Ng DC, Slack E, Hapfelmeier S, McCoy KD, Macpherson AJ (2011) Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34:794–806. https://doi.org/10.1016/j.immuni.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  74. Wymore Brand M, Wannemuehler MJ, Phillips GJ, Proctor A, Overstreet AM, Jergens AE, Orcutt RP, Fox JG (2015) The altered Schaedler flora: continued applications of a defined murine microbial community. ILAR J 56:169–178. https://doi.org/10.1093/ilar/ilv012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shen TC, Albenberg L, Bittinger K, Chehoud C, Chen YY, Judge CA, Chau L, Ni J, Sheng M, Lin A, Wilkins BJ, Buza EL, Lewis JD, Daikhin Y, Nissim I, Yudkoff M, Bushman FD, Wu GD (2015) Engineering the gut microbiota to treat hyperammonemia. J Clin Invest 125:2841–2850. https://doi.org/10.1172/JCI79214

    Article  PubMed  PubMed Central  Google Scholar 

  76. Moghadamrad S, McCoy KD, Geuking MB, Sagesser H, Kirundi J, Macpherson AJ, De Gottardi A (2015) Attenuated portal hypertension in germ-free mice: function of bacterial flora on the development of mesenteric lymphatic and blood vessels. Hepatology 61:1685–1695. https://doi.org/10.1002/hep.27698

    Article  CAS  PubMed  Google Scholar 

  77. Thomas M, Wongkuna S, Ghimire S, Kumar R, Antony L, Doerner KC, Singery A, Nelson E, Woyengo T, Chankhamhaengdecha S, Janvilisri T, Scaria J (2018) Gut microbial dynamics during conventionalization of germfree chicken. mSphere 4:e00035-19. https://doi.org/10.1128/mSphere.00035-19

    Article  Google Scholar 

  78. Probiotics in food: health and nutritional properties and guidelines for evaluation: report of a joint FAO/WHO expert consultation on evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria, Cordoba, Argentina, 1–4 October 2001 [and] report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada, 30 April–1 May 2002 (2006). FAO food and nutrition paper, 0254-4725; 85., vol Accessed from https://nla.gov.au/nla.cat-vn3788914. Food and Agriculture Organization of the United Nations, World Health Organization, Rome [Italy]

  79. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  80. Venugopalan V, Shriner KA, Wong-Beringer A (2010) Regulatory oversight and safety of probiotic use. Emerg Infect Dis 16:1661–1665. https://doi.org/10.3201/eid1611.100574

    Article  PubMed  PubMed Central  Google Scholar 

  81. https://www.researchandmarkets.com/research/lzfc2k/probiotics_market?w=12. Accessed 20 Apr 2019

  82. de Simone C (2019) The unregulated probiotic market. Clin Gastroenterol Hepatol 17:809–817. https://doi.org/10.1016/j.cgh.2018.01.018

    Article  PubMed  Google Scholar 

  83. Guslandi M (2015) Role of probiotics in Crohn’s disease and in pouchitis. J Clin Gastroenterol 49:S46–S49. https://doi.org/10.1097/MCG.0000000000000351

    Article  CAS  PubMed  Google Scholar 

  84. Timmerman HM, Koning CJ, Mulder L, Rombouts FM, Beynen AC (2004) Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol 96:219–233. https://doi.org/10.1016/j.ijfoodmicro.2004.05.012

    Article  CAS  PubMed  Google Scholar 

  85. Piotrovskii VK, Veiko NN, Golovanova IV, Gus’kova TA, Polievktov MK (1987) Slow elimination of a prazosin metabolite compared to prazosin kinetics after its intravenous administration to rabbits. Biull Exp Biol Med 103:73–75

    Article  CAS  Google Scholar 

  86. Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD, Paraskevakos G, Leyer G (2006) Probiotic use in at-risk populations. J Am Pharm Assoc 56:680–686. https://doi.org/10.1016/j.japh.2016.07.001

    Article  Google Scholar 

  87. Bagchi T (2014) Traditional food & modern lifestyle: impact of probiotics. Indian J Med Res 140:333–335

    CAS  PubMed  PubMed Central  Google Scholar 

  88. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6406a6.htm. Accessed 20 Apr 2019

  89. Expression of concern–Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial (2010). Lancet 375:875–876. https://doi.org/10.1016/s0140-6736(10)60360-1

    Article  Google Scholar 

  90. Nagpal R, Kumar A, Kumar M, Behare PV, Yadav H, Jain S (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334:1–15. https://doi.org/10.1111/j.1574-6968.2012.02593.x

    Article  CAS  PubMed  Google Scholar 

  91. Martin IW, Tonner R, Trivedi J, Miller H, Lee R, Liang X, Rotello L, Isenbergh E, Anderson J, Perl T, Zhang SX (2017) Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotic’s use. Diagn Microbiol Infect Dis 87:286–288. https://doi.org/10.1016/j.diagmicrobio.2016.12.004

    Article  PubMed  Google Scholar 

  92. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1:a000034. https://doi.org/10.1101/cshperspect.a000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gutierrez A, Zapater P, Juanola O, Sempere L, Garcia M, Laveda R, Martinez A, Scharl M, Gonzalez-Navajas JM, Such J, Wiest R, Rogler G, Frances R (2016) Gut bacterial DNA translocation is an independent risk factor of flare at short term in patients with Crohn’s disease. Am J Gastroenterol 111:529–540. https://doi.org/10.1038/ajg.2016.8

    Article  CAS  PubMed  Google Scholar 

  94. Bull M, Plummer S, Marchesi J, Mahenthiralingam E (2013) The life history of Lactobacillus acidophilus as a probiotic: a tale of revisionary taxonomy, misidentification and commercial success. FEMS Microbiol Lett 349:77–87. https://doi.org/10.1111/1574-6968.12293

    Article  CAS  PubMed  Google Scholar 

  95. Allen AP, Clarke G, Cryan JF, Quigley EMM, Dinan TG (2017) Bifidobacterium infantis 35624 and other probiotics in the management of irritable bowel syndrome. Strain specificity, symptoms, and mechanisms. Curr Med Res Opin 33:1349–1351. https://doi.org/10.1080/03007995.2017.1322571

    Article  PubMed  Google Scholar 

  96. https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps. Accessed 20 Apr 2019

  97. Kolacek S, Hojsak I, Berni Canani R, Guarino A, Indrio F, Orel R, Pot B, Shamir R, Szajewska H, Vandenplas Y, van Goudoever J, Weizman Z, Probiotics EWGf, Prebiotics (2017) Commercial probiotic products: a call for improved quality control. A position paper by the ESPGHAN working group for probiotics and prebiotics. J Pediatr Gastroenterol Nutr 65:117–124. https://doi.org/10.1097/mpg.0000000000001603

    Article  PubMed  Google Scholar 

  98. https://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryinformation/medicalfoods/ucm054048.htm. Accessed 20 Apr 2019

  99. Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, Tolan DR, Sanchez-Lozada LG, Rosen HR, Lanaspa MA, Diehl AM, Johnson RJ (2018) Fructose and sugar: a major mediator of non-alcoholic fatty liver disease. J Hepatol 68:1063–1075. https://doi.org/10.1016/j.jhep.2018.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rao RK, Samak G (2013) Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. Curr Nutr Food Sci 9:99–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Williams NT (2010) Probiotics. Am J Health Syst Pharm 67:449–458. https://doi.org/10.2146/ajhp090168

    Article  CAS  PubMed  Google Scholar 

  102. Gezginc Y, Akyol I, Kuley E, Özogul F (2013) Biogenic amines formation in Streptococcus thermophilus isolated from home-made natural yogurt. Food Chem 138:655–662. https://doi.org/10.1016/j.foodchem.2012.10.138

    Article  CAS  PubMed  Google Scholar 

  103. Pessione E (2012) Lactic acid bacteria contribution to gut microbiota complexity: lights and shadows. Front Cell Infect Microbiol 2:86. https://doi.org/10.3389/fcimb.2012.00086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M, Backhed F, Delzenne NM, Schrenzel J, François P, Cani PD (2014) Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 8:2116. https://doi.org/10.1038/ismej.2014.45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhai Q, Feng S, Arjan N, Chen W (2018) A next generation probiotic, Akkermansia muciniphila. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2018.1517725

    Article  PubMed  Google Scholar 

  106. Hong HA, le Duc H, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835. https://doi.org/10.1016/j.femsre.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  107. Jiang H, Ji C, Sui J, Sa R, Wang X, Liu X, Guo TL (2017) Antibacterial and antitumor activity of Bogorol B-JX isolated from Brevibacillus laterosporus JX-5. World J Microbiol Biotechnol 33:177. https://doi.org/10.1007/s11274-017-2337-z

    Article  CAS  PubMed  Google Scholar 

  108. Ulsemer P, Toutounian K, Schmidt J, Karsten U, Goletz S (2012) Preliminary safety evaluation of a new Bacteroides xylanisolvens isolate. Appl Environ Microbiol 78:528–535. https://doi.org/10.1128/AEM.06641-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ulsemer P, Toutounian K, Kressel G, Goletz C, Schmidt J, Karsten U, Hahn A, Goletz S (2016) Impact of oral consumption of heat-treated Bacteroides xylanisolvens DSM 23964 on the level of natural TFalpha-specific antibodies in human adults. Benef Microbes 7:485–500. https://doi.org/10.3920/BM2015.0143

    Article  CAS  PubMed  Google Scholar 

  110. Ku S, Park MS, Ji GE, You HJ (2016) Review on Bifidobacterium bifidum BGN4: functionality and nutraceutical applications as a probiotic microorganism. Int J Mol Sci. https://doi.org/10.3390/ijms17091544

    Article  PubMed  PubMed Central  Google Scholar 

  111. LeBlanc JG, Chain F, Martin R, Bermudez-Humaran LG, Courau S, Langella P (2017) Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact 16:79. https://doi.org/10.1186/s12934-017-0691-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y (2004) Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 72:2240–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yuan F, Ni H, Asche CV, Kim M, Walayat S, Ren J (2017) Efficacy of Bifidobacterium infantis 35624 in patients with irritable bowel syndrome: a meta-analysis. Curr Med Res Opin 33:1191–1197. https://doi.org/10.1080/03007995.2017.1292230

    Article  CAS  PubMed  Google Scholar 

  114. Liu MY, Yang ZY, Dai WK, Huang JQ, Li YH, Zhang J, Qiu CZ, Wei C, Zhou Q, Sun X, Feng X, Li DF, Wang HP, Zheng YJ (2017) Protective effect of Bifidobacterium infantis CGMCC313-2 on ovalbumin-induced airway asthma and beta-lactoglobulin-induced intestinal food allergy mouse models. World J Gastroenterol 23:2149–2158. https://doi.org/10.3748/wjg.v23.i12.2149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B (2006) Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol 6:31. https://doi.org/10.1186/1471-230X-6-31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Merenstein DJ, Tan TP, Molokin A, Smith KH, Roberts RF, Shara NM, Mete M, Sanders ME, Solano-Aguilar G (2015) Safety of Bifidobacterium animalis subsp. lactis (B. lactis) strain BB-12-supplemented yogurt in healthy adults on antibiotics: a phase I safety study. Gut Microbes 6:66–77. https://doi.org/10.1080/19490976.2015.1005484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ruiz L, Gueimonde M, Ruas-Madiedo P, Ribbera A, de los Reyes-Gavilán CG, Ventura M, Margolles A, Sánchez B (2012) Molecular clues to understand the aerotolerance phenotype of bifidobacterium animalis subsp. lactis. Appl Environ Microbiol 78:644–650. https://doi.org/10.1128/aem.05455-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Celiberto LS, Bedani R, Dejani NN, Ivo de Medeiros A, Sampaio Zuanon JA, Spolidorio LC, Tallarico Adorno MA, Amancio Varesche MB, Carrilho Galvao F, Valentini SR, Font de Valdez G, Rossi EA, Cavallini DCU (2017) Effect of a probiotic beverage consumption (Enterococcus faecium CRL 183 and Bifidobacterium longum ATCC 15707) in rats with chemically induced colitis. PLoS ONE 12:e0175935. https://doi.org/10.1371/journal.pone.0175935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Liu J, Sun J, Wang F, Yu X, Ling Z, Li H, Zhang H, Jin J, Chen W, Pang M, Yu J, He Y, Xu J (2015) Neuroprotective Effects of Clostridium butyricum against vascular dementia in mice via metabolic butyrate. Biomed Res Int 2015:412946. https://doi.org/10.1155/2015/412946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Martín R, Miquel S, Benevides L, Bridonneau C, Robert V, Hudault S, Chain F, Berteau O, Azevedo V, Chatel JM, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella P (2017) Functional characterization of novel Faecalibacterium prausnitzii strains isolated from healthy volunteers: a step forward in the use of F. prausnitzii as a next-generation probiotic. Front Microbiol 8:1226. https://doi.org/10.3389/fmicb.2017.01226

    Article  PubMed  PubMed Central  Google Scholar 

  121. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105:16731–16736. https://doi.org/10.1073/pnas.0804812105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hong YF, Kim H, Kim HS, Park WJ, Kim JY, Chung DK (2016) Lactobacillus acidophilus K301 inhibits atherogenesis via induction of 24 (S), 25-epoxycholesterol-mediated ABCA1 and ABCG1 production and cholesterol efflux in macrophages. PLoS ONE 11:e0154302. https://doi.org/10.1371/journal.pone.0154302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu CH, Hsueh YH, Kuo JM, Liu SJ (2018) Characterization of a potential probiotic Lactobacillus brevis RK03 and efficient production of gamma-aminobutyric acid in batch fermentation. Int J Mol Sci. https://doi.org/10.3390/ijms19010143

    Article  PubMed  PubMed Central  Google Scholar 

  124. Moro-García MA, Alonso-Arias R, Baltadjieva M, Fernández Benítez C, Fernández Barrial MA, Díaz Ruisánchez E, Alonso Santos R, Alvarez Sánchez M, Saavedra Miján J, López-Larrea C (2013) Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects. Age (Dordr) 35:1311–1326. https://doi.org/10.1007/s11357-012-9434-6

    Article  CAS  Google Scholar 

  125. Hill D, Sugrue I, Tobin C, Hill C, Stanton C, Ross RP (2018) The Lactobacillus casei group: history and health related applications. Front Microbiol 9:2107. https://doi.org/10.3389/fmicb.2018.02107

    Article  PubMed  PubMed Central  Google Scholar 

  126. Aktas B, De Wolfe TJ, Tandee K, Safdar N, Darien BJ, Steele JL (2015) The effect of Lactobacillus casei 32G on the mouse cecum microbiota and innate immune response is dose and time dependent. PLoS ONE 10:e0145784. https://doi.org/10.1371/journal.pone.0145784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Usman Hosono A (1999) Bile tolerance, taurocholate deconjugation, and binding of cholesterol by Lactobacillus gasseri strains. J Dairy Sci 82:243–248. https://doi.org/10.3168/jds.S0022-0302(99)75229-X

    Article  CAS  PubMed  Google Scholar 

  128. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, Okano M, Kagoshima M, Tsuchida T (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64:636–643. https://doi.org/10.1038/ejcn.2010.19

    Article  CAS  PubMed  Google Scholar 

  129. Hosoya T, Sakai F, Yamashita M, Shiozaki T, Endo T, Ukibe K, Uenishi H, Kadooka Y, Moriya T, Nakagawa H, Nakayama Y, Miyazaki T (2014) Lactobacillus helveticus SBT2171 inhibits lymphocyte proliferation by regulation of the JNK signaling pathway. PLoS ONE 9:e108360. https://doi.org/10.1371/journal.pone.0108360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Costabile A, Buttarazzi I, Kolida S, Quercia S, Baldini J, Swann JR, Brigidi P, Gibson GR (2017) An in vivo assessment of the cholesterol-lowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. PLoS ONE 12:e0187964. https://doi.org/10.1371/journal.pone.0187964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Behera SS, Ray RC, Zdolec N (2018) Lactobacillus plantarum with functional properties: an approach to increase safety and shelf-life of fermented foods. Biomed Res Int 2018:9361614. https://doi.org/10.1155/2018/9361614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Krzysciak W, Koscielniak D, Papiez M, Vyhouskaya P, Zagorska-Swiezy K, Kolodziej I, Bystrowska B, Jurczak A (2017) Effect of a Lactobacillus salivarius probiotic on a double-species Streptococcus mutans and Candida albicans caries biofilm. Nutrients. https://doi.org/10.3390/nu9111242

    Article  PubMed  PubMed Central  Google Scholar 

  133. Neville BA, O’Toole PW (2010) Probiotic properties of Lactobacillus salivarius and closely related Lactobacillus species. Future Microbiol 5:759–774. https://doi.org/10.2217/fmb.10.35

    Article  CAS  PubMed  Google Scholar 

  134. Song AA-L, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Fact 16:55. https://doi.org/10.1186/s12934-017-0669-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Abbasiliasi S, Tan JS, Bashokouh F, Ibrahim TAT, Mustafa S, Vakhshiteh F, Sivasamboo S, Ariff AB (2017) In vitro assessment of Pediococcus acidilactici Kp10 for its potential use in the food industry. BMC Microbiol 17:121. https://doi.org/10.1186/s12866-017-1000-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ogita T, Nakashima M, Morita H, Saito Y, Suzuki T, Tanabe S (2011) Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells. J Biomed Biotechnol 2011:378417. https://doi.org/10.1155/2011/378417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rho MK, Kim YE, Rho HI, Kim TR, Kim YB, Sung WK, Kim TW, Kim DO, Kang H (2017) Enterococcus faecium FC-K derived from kimchi is a probiotic strain that shows anti-allergic activity. J Microbiol Biotechnol 27:1071–1077. https://doi.org/10.4014/jmb.1611.11020

    Article  CAS  PubMed  Google Scholar 

  138. Vimont A, Fernandez B, Hammami R, Ababsa A, Daba H, Fliss I (2017) Bacteriocin-producing Enterococcus faecium LCW 44: a high potential probiotic candidate from raw camel milk. Front Microbiol 8:865. https://doi.org/10.3389/fmicb.2017.00865

    Article  PubMed  PubMed Central  Google Scholar 

  139. Buts JP (2009) Twenty-five years of research on Saccharomyces boulardii trophic effects: updates and perspectives. Dig Dis Sci 54:15–18. https://doi.org/10.1007/s10620-008-0322-y

    Article  PubMed  Google Scholar 

  140. Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther 26:767–778. https://doi.org/10.1111/j.1365-2036.2007.03442.x

    Article  CAS  PubMed  Google Scholar 

  141. Yoon S, Yu J, McDowell A, Kim SH, You HJ, Ko G (2017) Bile salt hydrolase-mediated inhibitory effect of Bacteroides ovatus on growth of Clostridium difficile. J Microbiol 55:892–899. https://doi.org/10.1007/s12275-017-7340-4

    Article  CAS  PubMed  Google Scholar 

  142. Valdes-Varela L, Hernandez-Barranco AM, Ruas-Madiedo P, Gueimonde M (2016) Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front Microbiol 7:738. https://doi.org/10.3389/fmicb.2016.00738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Woo TD, Oka K, Takahashi M, Hojo F, Osaki T, Hanawa T, Kurata S, Yonezawa H, Kamiya S (2011) Inhibition of the cytotoxic effect of Clostridium difficile in vitro by Clostridium butyricum MIYAIRI 588 strain. J Med Microbiol 60:1617–1625. https://doi.org/10.1099/jmm.0.033423-0

    Article  CAS  PubMed  Google Scholar 

  144. Banerjee P, Merkel GJ, Bhunia AK (2009) Lactobacillus delbrueckii ssp. bulgaricus B-30892 can inhibit cytotoxic effects and adhesion of pathogenic Clostridium difficile to Caco-2 cells. Gut Pathog 1:8. https://doi.org/10.1186/1757-4749-1-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mariam SH, Zegeye N, Aseffa A, Howe R (2017) Diffusible substances from lactic acid bacterial cultures exert strong inhibitory effects on Listeria monocytogenes and Salmonella enterica serovar enteritidis in a co-culture model. BMC Microbiol 17:35. https://doi.org/10.1186/s12866-017-0944-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Garcia MT, Marinez Canamero M, Lucas R, Ben Omar N, Perez Pulido R, Galvez A (2004) Inhibition of Listeria monocytogenes by enterocin EJ97 produced by Enterococcus faecalis EJ97. Int J Food Microbiol 90:161–170

    Article  CAS  PubMed  Google Scholar 

  147. Kleessen B, Schwarz S, Boehm A, Fuhrmann H, Richter A, Henle T, Krueger M (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br J Nutr 98:540–549. https://doi.org/10.1017/S0007114507730751

    Article  CAS  PubMed  Google Scholar 

  148. Kim M, Shin HK (1998) The water-soluble extract of chicory influences serum and liver lipid concentrations, cecal short-chain fatty acid concentrations and fecal lipid excretion in rats. J Nutr 128:1731–1736. https://doi.org/10.1093/jn/128.10.1731

    Article  CAS  PubMed  Google Scholar 

  149. Clare BA, Conroy RS, Spelman K (2009) The diuretic effect in human subjects of an extract of Taraxacum officinale folium over a single day. J Altern Complement Med 15:929–934. https://doi.org/10.1089/acm.2008.0152

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gonzalez-Castejon M, Visioli F, Rodriguez-Casado A (2012) Diverse biological activities of dandelion. Nutr Rev 70:534–547. https://doi.org/10.1111/j.1753-4887.2012.00509.x

    Article  PubMed  Google Scholar 

  151. Barszcz M, Taciak M, Skomial J (2016) The effects of inulin, dried Jerusalem artichoke tuber and a multispecies probiotic preparation on microbiota ecology and immune status of the large intestine in young pigs. Arch Anim Nutr 70:278–292. https://doi.org/10.1080/1745039X.2016.1184368

    Article  CAS  PubMed  Google Scholar 

  152. Samal L, Chaturvedi VB, Saikumar G, Somvanshi R, Pattanaik AK (2015) Prebiotic potential of Jerusalem artichoke (Helianthus tuberosus L.) in Wistar rats: effects of levels of supplementation on hindgut fermentation, intestinal morphology, blood metabolites and immune response. J Sci Food Agric 95:1689–1696. https://doi.org/10.1002/jsfa.6873

    Article  CAS  PubMed  Google Scholar 

  153. Ning Zhang XH, Zeng Yanhua, Xiyang Wu, Peng Xichun (2013) Study on prebiotic effectiveness of neutral garlic fructan in vitro. Food Sci Hum Wellness 2:119–123. https://doi.org/10.1016/j.fshw.2013.07.001

    Article  Google Scholar 

  154. Kolida S, Tuohy K, Gibson GR (2002) Prebiotic effects of inulin and oligofructose. Br J Nutr 87:S193–S197. https://doi.org/10.1079/BJNBJN/2002537

    Article  CAS  PubMed  Google Scholar 

  155. Delaney B, Nicolosi RJ, Wilson TA, Carlson T, Frazer S, Zheng GH, Hess R, Ostergren K, Haworth J, Knutson N (2003) Beta-glucan fractions from barley and oats are similarly antiatherogenic in hypercholesterolemic Syrian golden hamsters. J Nutr 133:468–475. https://doi.org/10.1093/jn/133.2.468

    Article  PubMed  Google Scholar 

  156. Onning G, Wallmark A, Persson M, Akesson B, Elmstahl S, Oste R (1999) Consumption of oat milk for 5 weeks lowers serum cholesterol and LDL cholesterol in free-living men with moderate hypercholesterolemia. Ann Nutr Metab 43:301–309. https://doi.org/10.1159/000012798

    Article  CAS  PubMed  Google Scholar 

  157. Othman RA, Moghadasian MH, Jones PJ (2011) Cholesterol-lowering effects of oat beta-glucan. Nutr Rev 69:299–309. https://doi.org/10.1111/j.1753-4887.2011.00401.x

    Article  PubMed  Google Scholar 

  158. Licht TR, Hansen M, Bergstrom A, Poulsen M, Krath BN, Markowski J, Dragsted LO, Wilcks A (2010) Effects of apples and specific apple components on the cecal environment of conventional rats: role of apple pectin. BMC Microbiol 10:13. https://doi.org/10.1186/1471-2180-10-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen HL, Cheng HC, Liu YJ, Liu SY, Wu WT (2006) Konjac acts as a natural laxative by increasing stool bulk and improving colonic ecology in healthy adults. Nutrition 22:1112–1119. https://doi.org/10.1016/j.nut.2006.08.009

    Article  CAS  PubMed  Google Scholar 

  160. Kaats GR, Bagchi D, Preuss HG (2015) Konjac glucomannan dietary supplementation causes significant fat loss in compliant overweight adults. J Am Coll Nutr. https://doi.org/10.1080/07315724.2015.1009194

    Article  PubMed  Google Scholar 

  161. Singh KK, Mridula D, Rehal J, Barnwal P (2011) Flaxseed: a potential source of food, feed and fiber. Crit Rev Food Sci Nutr 51:210–222. https://doi.org/10.1080/10408390903537241

    Article  CAS  PubMed  Google Scholar 

  162. Kristensen M, Jensen MG, Aarestrup J, Petersen KE, Sondergaard L, Mikkelsen MS, Astrup A (2012) Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr Metab (Lond) 9:8. https://doi.org/10.1186/1743-7075-9-8

    Article  CAS  Google Scholar 

  163. Delgado GT, Tamashiro WM, Marostica Junior MR, Pastore GM (2013) Yacon (Smallanthus sonchifolius): a functional food. Plant Foods Hum Nutr 68:222–228. https://doi.org/10.1007/s11130-013-0362-0

    Article  CAS  PubMed  Google Scholar 

  164. Francois IE, Lescroart O, Veraverbeke WS, Marzorati M, Possemiers S, Hamer H, Windey K, Welling GW, Delcour JA, Courtin CM, Verbeke K, Broekaert WF (2014) Effects of wheat bran extract containing arabinoxylan oligosaccharides on gastrointestinal parameters in healthy preadolescent children. J Pediatr Gastroenterol Nutr 58:647–653. https://doi.org/10.1097/MPG.0000000000000285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Julie Nelson, Veterinary and Biomedical Sciences Department, South Dakota State University for editing and improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rup Lal.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Sood, U., Gupta, V. et al. Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis. Indian J Microbiol 60, 12–25 (2020). https://doi.org/10.1007/s12088-019-00808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00808-y

Keywords

Navigation