Skip to main content

Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery

  • Chapter
  • First Online:
Deciphering Drug Targets for Alzheimer’s Disease

Abstract

Alzheimer’s disease is a multifactorial neurodegenerative syndrome and has raised concern related to global health and economy. Numerous targets have been analyzed toward discovery and development of potential therapeutics. Some of the single-target-based Food and Drug Administration (FDA) approved drugs include donepezil, galantamine, rivastigmine, and memantine which can improve the patient condition but fail to completely cure the disease. Single-target therapeutics have limitations to cure the disease due to complicated pathogenesis and complex network formed by the associated signaling pathways. Thus, the multi-target-directed ligand (MTDL) approach has gained importance as the potential anti-Alzheimer’s drugs having the advantages of synergistic effect with improved cognition and regulating its progression. In the present chapter, multi-target-directed approaches are discussed with coverage of design strategies and promising compounds reported in recent years. Some of the well-explored targets like acetylcholine esterase (AChE), ß-site amyloid precursor protein-cleaving enzyme 1 (BACE-1), glycogen synthase kinase 3ß (GSK-3ß), monoamine oxidases (MAOs), metal ions in the brain, N-methyl-D-aspartate (NMDA) receptor, and phosphodiesterases (PDE) are described focusing on their contribution toward cognitive neurodegeneration leading to Alzheimer’s disease (AD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-Hydroxytryptamine

AChE:

Acetylcholine esterase

AChEI :

Acetylcholine esterase inhibitor

AD :

Alzheimer’s disease

APOE :

Apolipoprotein E

BACE!:

ß-site amyloid precursor protein-cleaving enzyme 1

BBB:

Blood–brain barrier

BuChE :

Butyrylcholinesterase

CB1:

Cannabinoid-based 1

ChAT :

Acetyltransferase

FDA:

Food and drug administration

GSK-3ß:

Glycogen synthase kinase 3ß

JNK :

c-Jun N-terminal kinase

MAO:

Monoamine oxidases

MTDL :

Multi-target-directed ligand

NFT :

Neurofibrillary tangles

NMDAR :

N-methyl-D-aspartate receptor,

NQO1:

NAD(P)H quinone oxidoreductase

PAMPA :

Parallel artificial membrane permeation assay

PDE :

Phosphodiesterase

ROCK :

Rho-associated protein kinase

ROS :

Reactive oxygen species

α-M:

α-Mangostin

References

  • Abe Y, Aoyagi A, Hara T, Abe K, Yamazaki R, Kumagae Y et al (2003) Pharmacological characterization of RS-1259, an orally active dual inhibitor of acetylcholinesterase and serotonin transporter, in rodents: possible treatment of Alzheimer’s disease. J Pharmacol Sci 93(1):95–105

    Article  CAS  PubMed  Google Scholar 

  • Adefegha SA, Oboh G, Okeke BM, Oyeleye SI (2017) Comparative effects of alkaloid extracts from Aframomum melegueta (alligator pepper) and Aframomum danielli (Bastered Melegueta) on enzymes relevant to erectile dysfunction. J Diet Suppl 14(5):542–552

    Article  CAS  PubMed  Google Scholar 

  • Adefegha SA, Oyeleye SI, Dada FA, Olasehinde TA, Oboh G (2018) Modulatory effect of quercetin and its glycosylated form on key enzymes and antioxidant status in rats penile tissue of paroxetine-induced erectile dysfunction. Biomed Pharmacother 107:1473–1479

    Article  CAS  PubMed  Google Scholar 

  • Ademiluyi AO, Oyeleye SI, Ogunsuyi OB, Oboh G (2019) Phenolic analysis and erectogenic function of African walnut (Tetracarpidium conophorum) seeds: the impact of the seed shell on biological activity. J Food Biochem 43(6):e12815

    Article  PubMed  Google Scholar 

  • Aguilar BJ, Zhu Y, Lu Q (2017) Rho GTPases as therapeutic targets in Alzheimer’s disease. Alz Res Therapy 9:97

    Article  Google Scholar 

  • Ahmed M, Malik M, Teselink J, Lanctot KL, Herrmann N (2019) Current agents in development for treating behavioral and psychological symptoms associated with dementia. Drugs Aging 36:589–605

    Article  PubMed  Google Scholar 

  • Akbar M, Shabbir A, Rehman K, Akash MSH, Shah MA (2021) Neuroprotective potential of berberine in modulating Alzheimer’s disease via multiple signaling pathways. J Food Biochem 45(10):e13936

    Article  CAS  PubMed  Google Scholar 

  • Ambure P, Bhat J, Puzyn T, Roy K (2019) Identifying natural compounds as multi-target-directed ligands against Alzheimer’s disease: an in silico approach. J Biomol Struct Dyn 37(5):1282–1306

    Article  CAS  PubMed  Google Scholar 

  • Aso E, Ferrer I (2014) Cannabinoids for treatment of Alzheimer’s disease: moving toward the clinic. Front Pharmacol 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Bajad NG, Swetha R, Singh R, Ganeshpurkar A, Gutti G, Singh RB et al (2022) Combined structure and ligand-based design of dual BACE-1/GSK-3β inhibitors for Alzheimer’s disease. Chem Pap 76:7507–7524

    Article  CAS  Google Scholar 

  • Barabási AL, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Barthélemy NR, Li Y, Joseph-Mathurin N, Gordon BA, Hassenstab J, Benzinger TLS et al (2020) The dominantly inherited Alzheimer network. A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nat Med 26:398–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartolini M, Bertucci C, Cavrini V, Andrisano V (2003) Beta-amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem Pharmacol 65(3):407–416

    Article  CAS  PubMed  Google Scholar 

  • Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414

    Article  CAS  PubMed  Google Scholar 

  • Benek O, Korabecny J, Soukup O (2020) A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol Sci 41(7):434–445

    Article  CAS  PubMed  Google Scholar 

  • Bhatia R, Chakrabarti SS, Kaur U, Parashar G, Banerjee A, Rawal RK (2021) Multi-target directed ligands (MTDLs): promising coumarin hybrids for Alzheimer’s disease. Curr Alzheimer Res 18(10):802–830

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Cavalli A, Valgimigli L, Bartolini M, Rosini M, Andrisano V et al (2007) Multi-target-directed drug design strategy: from a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J Med Chem 50(26):6446–6449

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi LM (2013) Polypharmacology in a single drug: multitarget drugs. Curr Med Chem 20(13):1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Bolognesi ML, Cavalli A, Melchiorre C (2009) Memoquin: a multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer’s disease. Neurotherapeutics 6:152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braymer JJ, Detoma AS, Choi JS, Ko KS, Lim MH (2010) Recent development of bifunctional small molecules to study metal-amyloid-β species in Alzheimer’s disease. Int J Alzheimers Dis 2011:623051

    PubMed  PubMed Central  Google Scholar 

  • Brazier D, Perry R, Keane J, Barrett K, Elmaleh DR (2017) Pharmacokinetics of cromolyn and ibuprofen in healthy elderly volunteers. Clin Drug Investig 37(11):1025–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K (2020) The dual role of glutamatergic neurotransmission in Alzheimer’s disease: from pathophysiology to pharmacotherapy. Int J Mol Sci 21(20):7452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klickstein N et al (2019) Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo. Nat Neurosci 22(1):57–64

    Article  CAS  PubMed  Google Scholar 

  • Bush AI (2013) The metal theory of Alzheimer’s disease. J Alzheimers Dis 33(s1):S277–S281

    Article  PubMed  Google Scholar 

  • Cabrera-Pardo JR, Fuentealba J, Gavilán J, Cajas D, Becerra J, Napiórkowska M (2020) Exploring the multi-target neuroprotective chemical space of Benzofuran scaffolds: a new strategy in drug development for Alzheimer’s disease. Front Pharmacol 10:1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Camps P, El AR, Morral J, Munoz-Torrero D, Badia A, Banos JE et al (2000) New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer’s disease. J Med Chem 43(24):4657–4666

    Article  CAS  PubMed  Google Scholar 

  • Canter RG, Penney J, Tsai LH (2016) The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 539(7628):187–196

    Article  PubMed  Google Scholar 

  • Cavalli A, Bolognesi ML, Capsoni S, Andrisano V, Bartolini M, Margotti E (2007) A small molecule targeting the multifactorial nature of Alzheimer’s disease. Angew Chem Int Ed Engl 46(20):3689–3692

    Article  CAS  PubMed  Google Scholar 

  • Center for Drug Evaluation and Research (2013) Codevelopment of two or more new investigational drugs for use in combination, FDA

    Google Scholar 

  • Chen Gf XTH, Yan Y, Zhou Y, Jiang Y, Melcher K, Xu HE (2017) Amyloid beta: structure, biology and structure based therapeutic development. Acta Pharmacol Sin 38:1205–1235

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Tu Y, Mak S, Chen J, Lu J, Chen C (2020) Discovery of a novel small molecule PT109 with multi-targeted effects against Alzheimer’s disease in vitro and in vivo. Eur J Pharmacol 883:173361

    Article  CAS  PubMed  Google Scholar 

  • Chitra L, Kumar CR, Basha HM, Ponne S, Boopathy R (2013) Interaction of metal chelators with different molecular forms of acetylcholinesterase and its significance in Alzheimer’s disease treatment. Proteins 81(7):1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Kim YH, Hebisch M, Sliwinski C, Lee S, D'Avanzo C et al (2014) A three-dimensional human neural cell culture model of Alzheimer’s disease. Nature 515(7526):274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury S, Kumar S (2020) Alpha-terpinyl acetate: a natural monoterpenoid from Elettaria cardamomum as multi-target directed ligand in Alzheimer’s disease. J Funct Foods 68:103892

    Article  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262(5134):689–695

    Article  CAS  PubMed  Google Scholar 

  • Cruz I, Puthongking P, Cravo S, Palmeira A, Cidade H, Pinto M et al (2017) Xanthone and flavone derivatives as dual agents with acetylcholinesterase inhibition and antioxidant activity as potential anti-alzheimer agents. J Chem 8587260:1–16

    Article  Google Scholar 

  • Cummings J, Lee G, Nahed P, Kambar MEZN, Zhong K, Fonseca J (2022) Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement (N Y) 8(1):e12295

    Article  PubMed  Google Scholar 

  • Dada FA, Oyeleye SI, Adefegha SA, Oboh G (2021) Extracts from almond (Terminalia catappa) leaf and stem bark mitigate the activities of crucial enzymes and oxidative stress associated with hypertension in cyclosporine A-stressed rats. J Food Biochem 45(3):e13435

    Article  CAS  PubMed  Google Scholar 

  • De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemist 40(35):10447–10457

    Article  Google Scholar 

  • de Freitas SM, Dias KST, Gontijo VS, Ortiz CJC, Viegas C Jr (2018) Multi-target directed drugs as a modern approach for drug design towards Alzheimer’s disease: an update. Curr Med Chem 25(29):3491–3525

    Article  Google Scholar 

  • de la Monte SM (2009) Insulin resistance and Alzheimer’s disease. BMB Rep 42(8):475–481

    Article  PubMed  Google Scholar 

  • Deng Y, Li B, Liu Y, Iqbal K, Grundke-Iqbal I, Gong CX (2009) Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: implication for Alzheimer’s disease. Am J Pathol 175(5):2089–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Martino RM, De Simone A, Andrisano V, Bisignano P, Bisi A, Gobbi S et al (2016) Versatility of the curcumin scaffold: discovery of potent and balanced dual BACE-1 and GSK-3β inhibitors. J Med Chem 59(2):531–544

    Article  PubMed  Google Scholar 

  • Dias KS, Viegas C Jr (2014) Multi-target directed drugs: a modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr Neuropharmacol 12(3):239–255

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Bachiller MI, Pérez C, González-Muñoz GC, Conde S, López MG, Villarroya M et al (2010) Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J Med Chem 53(13):4927–4937

    Article  PubMed  Google Scholar 

  • Fernández-Bachiller MI, Pérez C, Monjas L, Rademann J, Rodríguez-Franco MI (2012) New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J Med Chem 55(3):1303–1317

    Article  PubMed  Google Scholar 

  • Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM (2016) Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 14(1):101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folk DS, Franz KJ (2010) A prochelator activated by beta-secretase inhibits Abeta aggregation and suppresses copper-induced reactive oxygen species formation. J Am Chem Soc 132:4994–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu AK, Hung KW, Yuen MY, Zhou X, Mak DS, Chan IC et al (2016) IL-33 ameliorates Alzheimer’s disease-like pathology and cognitive decline. Proc Natl Acad Sci U S A 113(19):E2705–E2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garay RP, Grossberg GT (2017) AVP-786 for the treatment of agitation in dementia of the Alzheimer’s type. Expert Opin Investig Drugs 26(1):121–132

    Article  CAS  PubMed  Google Scholar 

  • Glynn-Servedio BE, Ranola TS (2017) AChE inhibitors and NMDA receptor antagonists in advanced Alzheimer’s disease. Consult Pharm 32(9):511–551

    Article  PubMed  Google Scholar 

  • Gong CX, Liu F, Iqbal K (2016) O-GlcNAcylation: a regulator of tau pathology and neurodegeneration. Alzheimers Dement 12(10):1078–1089

    Article  PubMed  Google Scholar 

  • Goschorska M, Gutowska I, Baranowska-Bosiacka I, Piotrowska K, Metryka E, Safranow K et al (2018) Influence of acetylcholinesterase inhibitors used in Alzheimer’s disease treatment on the activity of antioxidant enzymes and the concentration of glutathione in THP-1 macrophages under fluoride-induced oxidative stress. Int J Environ Res Public Health 16(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  • Greig NH, Lahiri DK, Sambamurti K (2002) Butyrylcholinesterase: an important new target in Alzheimer’s disease therapy. Int Psychogeriatr 14(Suppl 1):77–91

    Article  PubMed  Google Scholar 

  • Guillot-Sestier MV, Doty KR, Town T (2015) Innate immunity fights Alzheimer’s disease. Trends Neurosci 38(11):674–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SP, Patil VM (2020) Recent studies on design and development of drugs against Alzheimer’s disease (AD) based on inhibition of BACE-1 and other AD-causative agents. Curr Top Med Chem 20(13):1195–1213

    Article  CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    Article  CAS  PubMed  Google Scholar 

  • Hiremathad A, Chand K, Esteves AR, Cardoso SM, Ramsay RR, Chaves S et al (2016) Tacrine-allyl/propargylcysteine-benzothiazole trihybrids as potential anti-Alzheimer’s drug candidates. RSC Adv 6(58):53519–53532

    Article  CAS  Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  • Hori Y, Takeda S, Cho H, Wegmann S, Shoup TM, Takahashi K et al (2015) A food and drug administration-approved asthma therapeutic agent impacts amyloid β in the brain in a transgenic model of Alzheimer disease. J Biol Chem 290(4):1966–1978

    Article  CAS  PubMed  Google Scholar 

  • Hosea NA, Radić Z, Tsigelny I, Berman HA, Quinn DM, Taylor P (1996) Aspartate 74 as a primary determinant in acetylcholinesterase governing specificity to cationic organophosphonates. Biochemistry 35(33):10995–11004

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2000) Brain glucose and energy metabolism abnormalities in sporadic Alzheimer disease. Causes and consequences: an update. Exp Gerontol 35(9–10):1363–1372

    Article  CAS  PubMed  Google Scholar 

  • Hoyer S (2004) Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. Eur J Pharmacol 490(1–3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Hoyer W, Grönwall C, Jonsson A, Ståhl S, Härd T (2008) Stabilization of a beta-hairpin in monomeric Alzheimer’s amyloid-beta peptide inhibits amyloid formation. Proc Natl Acad Sci U S A 105(13):5099–5104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Huang Y-D, Pan T et al (2019) Design, synthesis, and biological evaluation of dual-target inhibitors of acetylcholinesterase (AChE) and phosphodiesterase 9A (PDE9A) for the treatment of Alzheimer’s disease. ACS Chem Neurosci 10(1):537–551

    Article  CAS  PubMed  Google Scholar 

  • Huang W, Tang L, Shi Y, Huang S, Xu L, Sheng R et al (2011) Searching for the multi-target-directed ligands against Alzheimer’s disease: discovery of quinoxaline-based hybrid compounds with AChE, H3R, and BACE 1 inhibitory activities. Bioorg Med Chem 19(23):7158–7167

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim MM, Gabr MT (2019) Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen Res 14(3):437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inestrosa NC, Alvarez A, Pérez CA, Moreno RD, Vicente M, Linker C (1996) Acetylcholinesterase accelerates assembly of amyloid-beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16(4):881–891

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (1996) Molecular mechanism of Alzheimer’s neurofibrillary degeneration and therapeutic intervention. Ann N Y Acad Sci 777:132–138

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Grundke-Iqbal I (2005) Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies. Acta Neuropathol 109(1):25–31

    Article  CAS  PubMed  Google Scholar 

  • Iqbal K, Liu F, Gong CX (2016) Tau and neurodegenerative disease: the story so far. Nat Rev Neurol 12(1):15–27

    Article  CAS  PubMed  Google Scholar 

  • Iraji A, Firuzi O, Khoshneviszadeh M, Tavakkoli M, Mahdavi M, Nadri H et al (2017) Multifunctional iminochromene-2H-carboxamide derivatives containing different aminomethylene triazole with BACE1 inhibitory, neuroprotective and metal chelating properties targeting Alzheimer’s disease. Eur J Med Chem 141:690–702

    Article  CAS  PubMed  Google Scholar 

  • Ismaili L, Refouvelet B, Benchekroun M, Brogi S, Brindisi M et al (2017) Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog Neurobiol 151:4–34

    Article  CAS  PubMed  Google Scholar 

  • Jiang X, Lu H, Li J, Liu W, Wu Q, Xu Z et al (2020) A natural BACE1 and GSK3β dual inhibitor notopterol effectively ameliorate the cognitive deficits in APP/PS1 Alzheimer’s mice by attenuating amyloid-β and tau pathology. Clin Transl Med 10(3):e50

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones DT, Vemuri P, Murphy MC, Gunter JL, Senjem ML, Machulda MM et al (2012) Non-stationarity in the “resting brain’s” modular architecture. PLoS One 7:e39731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khachaturian ZS (1994) Calcium hypothesis of Alzheimer’s disease and brain aging. Ann N Y Acad Sci 747:1–11

    Article  CAS  PubMed  Google Scholar 

  • Koeberle A, Werz O (2014) Multi-target approach for natural products in inflammation. Drug Discov Today 19(12):1871–1882

    Article  CAS  PubMed  Google Scholar 

  • Kogen H, Toda N, Tago K, Marumoto S, Takami K, Ori M et al (2002) Design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter targeting potential agents for Alzheimer’s disease. Org Lett 4(20):3359–3362

    Article  CAS  PubMed  Google Scholar 

  • Lane RM, Potkin SG, Enz A (2006) Targeting acetylcholinesterase and butyrylcholinesterase in dementia. Int J Neuropsychopharmacol 9(1):101–124

    Article  CAS  PubMed  Google Scholar 

  • Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Lange JH, Coolen HK, van der Neut MA, Borst AJ, Stork B, Verveer PC et al (2010) Design, synthesis, biological properties, and molecular modeling investigations of novel tacrine derivatives with a combination of acetylcholinesterase inhibition and cannabinoid CB1 receptor antagonism. J Med Chem 53(3):1338–1346

    Article  CAS  PubMed  Google Scholar 

  • Lanthier C, Payan H, Liparulo I, Hatat B, Lecoutey C et al (2019) Novel multi target-directed ligands targeting 5-HT4 receptors with in cellulo antioxidant properties as promising leads in Alzheimer’s disease. Eur J Med Chem 182:111596

    Article  CAS  PubMed  Google Scholar 

  • Li W, Pi R, Chan HHN, Hongjun F, Nelson TK et al (2005) Novel dimeric acetylcholinesterase inhibitor Bis(7)-tacrine, but not donepezil, prevents glutamate-induced neuronal apoptosis by blocking N-methyl-d-aspartate receptors. J Biol Chem 280(18):18179–18188

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang H, Long J, Pan G, He T, Anichtchik O et al (2018) Systematic analysis and biomarker study for Alzheimer’s disease. Sci Rep 8:17394

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Chu S, Liu Y, Chen N (2019) Neuroprotective effects of anthraquinones from rhubarb in central nervous system diseases. Evid Based Complement Alternat Med 2019:3790728

    PubMed  PubMed Central  Google Scholar 

  • Li F, Li Y, Deng ZP, Zhu XJ, Zhang ZG, Zhang XD et al (2022a) Traditional uses, phytochemistry, pharmacology and clinical applications of Cortex Juglandis Mandshuricae: a comprehensive review. J Ethnopharmacol 285:114887

    Article  CAS  PubMed  Google Scholar 

  • Li X, Feng X, Sun X, Hou N, Han F, Liu Y (2022b) Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front Aging Neurosci 14:937486

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovell M, Robertson J, Teesdale W, Campbell J, Markesbery W (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    Article  CAS  PubMed  Google Scholar 

  • Lyketsos CG, Sheppard JM, Steele CD, Kopunek S, Steinberg M, Baker AS et al (2000) Randomized, placebo-controlled, double-blind clinical trial of sertraline in the treatment of depression complicating Alzheimer’s disease: initial results from the depression in Alzheimer’s disease study. Am J Psychiatry 157(10):1686–1689

    Article  CAS  PubMed  Google Scholar 

  • Makhoba XH, Viegas C Jr, Mosa RA, Viegas FPD, Pooe OJ (2020) Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des Devel Ther 14:3235–3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallender WD, Szegletes T, Rosenberry TL (2000) Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway. Biochemist 39(26):7753–7763

    Article  CAS  Google Scholar 

  • Marasco D, Vicidomini C, Krupa P, Cioffi F, Huy PDQ, Li MS et al (2021) Plant isoquinoline alkaloids as potential neuro drugs: a comparative study of the effects of benzo[c]phenanthridine and berberine-based compounds on β-amyloid aggregation. Chem Biol Interact 334:109300

    Article  CAS  PubMed  Google Scholar 

  • Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Yardin C et al (2013) Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev 12(1):289–309

    Article  CAS  PubMed  Google Scholar 

  • Masand N, Gupta SP, Khosa RL, Patil VM (2017) Heterocyclic secretase inhibitors for the treatment of Alzheimer’s disease: an overview. Cent Nerv Syst Agents Med Chem 17(1):3–25

    Article  CAS  Google Scholar 

  • Mattson MP, Chan SL (2001) Dysregulation of cellular calcium homeostasis in Alzheimer’s disease: bad genes and bad habits. J Mol Neurosci 17(2):205–224

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, Rogers J, McGeer EG (1994) Neuroimmune mechanisms in Alzheimer disease pathogenesis. Alzheimer Dis Assoc Disord 8(3):149–158

    Article  CAS  PubMed  Google Scholar 

  • Meleddu R, Distinto S, Cirilli R, Alcaro S, Yanez M, Sanna ML et al (2017) Through scaffold modification to 3, 5-diaryl-4, 5-dihydroisoxazoles: new potent and selective inhibitors of monoamine oxidase B. J Enzyme Inhib Med Chem 32:264–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng G, Zhong X, Mei H (2012) A systematic investigation into aging related genes in brain and their relationship with Alzheimer’s disease. PLoS ONE 11(3):e0150624

    Article  Google Scholar 

  • Mishra P, Kumar A, Panda G (2019) Anti-cholinesterase hybrids as multi-target-directed ligands against Alzheimer’s disease (1998–2018). Bioorg Med Chem 27(6):895–930

    Article  CAS  PubMed  Google Scholar 

  • Mohamed T, Zhao X, Habib LK, Yang J, Rao PP (2011) Design, synthesis and structure-activity relationship (SAR) studies of 2,4-disubstituted pyrimidine derivatives: dual activity as cholinesterase and Aβ-aggregation inhibitors. Bioorg Med Chem 19(7):2269–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohamed T, Yeung JC, Vasefi MS, Beazely MA, Rao PP (2012) Development and evaluation of multifunctional agents for potential treatment of Alzheimer’s disease: application to a pyrimidine-2,4-diamine template. Bioorg Med Chem Lett 22(14):4707–4712

    Article  CAS  PubMed  Google Scholar 

  • Mohamed T, Osman W, Tin G, Rao PP (2013) Selective inhibition of human acetylcholinesterase by xanthine derivatives: in vitro inhibition and molecular modeling investigations. Bioorg Med Chem Lett 23(15):4336–4341

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802(1):2–10

    Article  CAS  PubMed  Google Scholar 

  • Morphy R, Kay C, Rankovic Z (2004) From magic bullets to designed multiple ligands. Drug Discov Today 9(15):641–651

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Mishra AK, Peer GDG, Bagabir SA, Haque S, Pandey RP et al (2021) The interplay of the unfolded protein response in neurodegenerative diseases: a therapeutic role of curcumin. Front Aging Neurosci 13:767493

    Article  PubMed  PubMed Central  Google Scholar 

  • Nesi G, Sestito S, Digiacomo M, Rapposelli S (2017) Oxidative stress, mitochondrial abnormalities and proteins deposition: multitarget approaches in Alzheimer’s disease. Curr Top Med Chem 17(27):3062–3079

    PubMed  Google Scholar 

  • Ni W, Wang H, Li X et al (2018) Novel Tadalafil derivatives ameliorates scopolamine-induced cognitive impairment in mice via inhibition of acetylcholinesterase (AChE) and phosphodiesterase 5 (PDE5). ACS Chem Neurosci 9(7):1625–1636

    Article  CAS  PubMed  Google Scholar 

  • Noori T, Dehpour AR, Sureda A, Sobarzo-Sanchez E, Shirooie S (2021) Role of natural products for the treatment of Alzheimer’s disease. Eur J Pharmacol 898:173974

    Article  CAS  PubMed  Google Scholar 

  • Nwidua LL, Elmorsyb E, Thorntonb J, Wijamunigeb B, Wijesekara A (2017) Anti-acetylcholinesterase activity and antioxidant properties of extracts and fractions of Carpolobia lutea. Pharm Biol 55(1):1875–1883

    Article  Google Scholar 

  • O’Gorman C, Jones A, Tabuteau H (2019) AXS-05 (dextromethorphan/bupropion): psychopharmacology and the potential for therapeutic application in the treatment of neuropsychiatric symptoms. Eur Neuropsychopharmacol 11:686

    Google Scholar 

  • Oboh G, Ademiluyi AO, Oyeleye SI, Olasehinde TA, Boligon AA (2017) Modulation of some markers of erectile dysfunction and malonaldehyde levels in isolated rat penile tissue with unripe and ripe plantain peels: identification of the constituents of the plants using HPLC. Pharm Biol 55(1):1920–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh JM, Jang HJ, Kang MG, Song S, Kim DY, Kim JH et al (2021) Acetylcholinesterase and monoamine oxidase-B inhibitory activities by ellagic acid derivatives isolated from Castanopsis cuspidata var. sieboldii. Sci Rep 11(1):1–15

    Google Scholar 

  • Ojo OA, Ojo AB, Oyinloye BE et al (2019) Ocimum gratissimum Linn. Leaves reduce the key enzymes activities relevant to erectile dysfunction in isolated penile and testicular tissues of rats. BMC Complement Altern Med 19(1):71

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz CJC, de Freitas SM, Gontijo VS, Viegas FPD, Dias KST, Viegas C et al (2019) Design of multi-target directed ligands as a modern approach for the development of innovative drug candidates for Alzheimer’s disease. Methods Pharm Toxico 1:255–351

    Google Scholar 

  • Pan W, Hu K, Bai P, Yu L, Ma Q, Li T et al (2016) Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 26(10):2539–2543

    Article  CAS  PubMed  Google Scholar 

  • Pan T, Xie S, Zhou Y, Hu J, Luo H, Li X, Huang L (2019) Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer’s disease: design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids. Bioorg Med Chem Lett 29(16):2150–2152

    Article  CAS  PubMed  Google Scholar 

  • Panza F, Seripa D, Solfrizzi V, Imbimbo BP, Lozupone M, Leo A et al (2016) Emerging drugs to reduce abnormal β-amyloid protein in Alzheimer’s disease patients. Expert Opin Emerg Drugs 21(4):377–391

    Article  CAS  PubMed  Google Scholar 

  • Pasqualetti P, Bonomini C, Dal Forno G, Paulon L, Sinforiani E, Marra C et al (2009) A randomized controlled study on effects of ibuprofen on cognitive progression of Alzheimer’s disease. Aging Clin Exp Res 21(2):102–110

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Areales FJ, Turcu AL, Barniol-Xicota M, Pont C, Pivetta D, Espargaró A et al (2019) A novel class of multitarget anti-Alzheimer benzohomoadamantane–chlorotacrine hybrids modulating cholinesterases and glutamate NMDA receptors. Eur J Med Chem 180:613–626

    Article  PubMed  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1977) Necropsy evidence of central cholinergic deficits in senile dementia. Lancet 1(8004):189

    Article  CAS  PubMed  Google Scholar 

  • Piemontese L, Vitucci G, Catto M, Laghezza A, Perna FM, Rullo M, Loiodice F, Capriati V, Solfrizzo M (2018) Natural scaffolds with multi-target activity for the potential treatment of Alzheimer’s disease. Molecules 23(9):2182

    Article  PubMed  PubMed Central  Google Scholar 

  • Pohanka M (2015) The perspective of caffeine and caffeine derived compounds in therapy. Bratisl Lek Listy 116(9):520–530

    CAS  PubMed  Google Scholar 

  • Pohanka M (2018) Oxidative stress in Alzheimer disease as a target for therapy. Bratisl Lek Listy 119(9):535–543

    CAS  PubMed  Google Scholar 

  • Pradhan K, Das G, Kar C, Mukherjee N, Khan J, Mahata T (2020) Rhodamine-based metal chelator: a potent inhibitor of metal-catalyzed amyloid toxicity. ACS Omega 5(30):18958–18967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prati F, Uliassi E, Bolognesi M (2014) Two diseases, one approach: multitarget drug discovery in Alzheimer’s and neglected tropical diseases. MedChemComm 5(7):853–861

    Article  CAS  Google Scholar 

  • Prati F, Bottegoni G, Bolognesi ML, Cavalli A (2018) BACE-1 inhibitors: from recent single-target molecules to multitarget compounds for Alzheimer’s disease. J Med Chem 61(3):619–637

    Article  CAS  PubMed  Google Scholar 

  • Proschak E et al (2019) Polypharmacology by design: a medicinal chemist’s perspective on multitargeting compounds. J Med Chem 62(2):420–444

    Article  CAS  PubMed  Google Scholar 

  • Qin W, Haroutunian V, Katsel P et al (2009) PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch Neurol 66:352–361

    Article  PubMed  PubMed Central  Google Scholar 

  • Radić Z, Reiner E, Taylor P (1991) Role of the peripheral anionic site on acetylcholinesterase: inhibition by substrates and coumarin derivatives. Mol Pharmacol 39(1):98–104

    PubMed  Google Scholar 

  • Rampa A, Gobbi S, Di Martino RMC, Belluti F, Bisi A (2017) Dual BACE-1/GSK-3ß inhibitors to combat Alzheimer’s disease: a focused review. Curr Top Med Chem 17(31):3361–3369

    Article  CAS  PubMed  Google Scholar 

  • Ribaudo G, Ongaro A, Zagotto G, Memo M, Gianoncelli A (2020) Therapeutic potential of phosphodiesterase inhibitors against neurodegeneration: the perspective of the medicinal chemist. ACS Chem Neurosci 11(12):1726–1739

    Article  CAS  PubMed  Google Scholar 

  • Riederer P, Danielczyk W, Grünblatt E (2004) Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 25(1–2):271–277

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Lavado J, Gallardo-Garrido C, Mallea M, Bustos V, Osorio R, Hödar-Salazar M et al (2020) Synthesis, in vitro evaluation and molecular docking of a new class of indolylpropyl benzamidopiperazines as dual AChE and SERT ligands for Alzheimer’s disease. Eur J Med Chem 198:112368

    Article  PubMed  Google Scholar 

  • Rosini M, Simoni E, Minarini A, Melchiorre C (2015) Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem Res 39:1914–1923

    Article  Google Scholar 

  • Rossi M, Freschi M, de Camargo NL, Salerno A, de Melo Viana Teixeira S, Nachon F (2021) Sustainable drug discovery of multi-target-directed ligands for Alzheimer’s disease. J Med Chem 64(8):4972–4990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvador GA, Uranga RM, Giusto NM (2010) Iron and mechanism of neurotoxicity. Int J Alzheimers Dis 2011:720658

    PubMed  PubMed Central  Google Scholar 

  • Sastre M, Ritchie CW, Hajji N (2015) Metal ions in Alzheimer’s disease brain. JSM Alzheimer’s Dis Relat Dement 2(1):1014

    Google Scholar 

  • Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH (2019) Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem Rev 119(2):1221–1322

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano FG, Tapia-Rojas C, Carvajal FJ, Cisternas P, Viayna E, Sola I et al (2016) Rhein-huprine derivatives reduce cognitive impairment, synaptic failure and amyloid pathology in AβPPswe/PS-1 mice of different ages. Curr Alzheimer Res 13(9):1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Pachauri V, Flora SJS (2018) Advances in multi-functional ligands and the need for metal-related pharmacology for the management of Alzheimer disease. Front Pharmacol 9:1247

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheng J, Zhang S, Wu L, Kumar G, Liao Y, Gk P, Fan H (2022) Inhibition of phosphodiesterase: a novel therapeutic target for the treatment of mild cognitive impairment and Alzheimer’s disease. Front Aging Neurosci 14:1019187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Parameswaran S, Thakur M, Patra S (2017) Development of xanthine based inhibitors targeting phosphodiesterase 9A. Lett Drug Design Discov 14(10):1122–1137

    Article  CAS  Google Scholar 

  • Small DH, CA ML, Small DH (1999) Alzheimer’s disease and the amyloid beta protein: what is the role of amyloid? J Neurochem 73(2):443–449

    Article  CAS  PubMed  Google Scholar 

  • Stahl SM (2019) Dextromethorphan/bupropion: a novel Oral NMDA (N-methyl-d-aspartate) receptor antagonist with multimodal activity. CNS Spectr 24:461–466

    Article  PubMed  Google Scholar 

  • Stern N, Gacs A, Tátrai E, Flachner B, Hajdú I, Dobi K (2022) Dual inhibitors of AChE and BACE-1 for reducing Aβ in Alzheimer’s disease: from in silico to in vivo. Int J Mol Sci 23(21):13098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20 Suppl 2(Suppl 2):S265–S279

    Article  PubMed  Google Scholar 

  • Talevi A (2015) Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol 6:205

    Article  PubMed  PubMed Central  Google Scholar 

  • Talevi A, Bellera CL, Di Ianni M, Gantner M, Bruno-Blanch LE, Castro EA (2012) CNS drug development—lost in translation? Mini Rev Med Chem 12(10):959–970

    Article  CAS  PubMed  Google Scholar 

  • Tan Y, Deng Y, Qing H (2012) Calcium channel blockers and Alzheimer’s disease. Neural Regen Res 7(2):137–140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa P, Upadhyay SP, Suo WZ, Singh V, Gurung P, Lee ES et al (2021) Chalcone and its analogs: therapeutic and diagnostic applications in Alzheimer’s disease. Bioorg Chem 108:104681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda N, Tago K, Marumoto S, Takami K, Ori M et al (2003) Design, synthesis and structure-activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer’s disease. Bioorg Med Chem 11(9):1935–1955

    Article  CAS  PubMed  Google Scholar 

  • Toda N, Kaneko T, Kogen H (2010) Development of an efficient therapeutic agent for Alzheimer’s disease: design and synthesis of dual inhibitors of acetylcholinesterase and serotonin transporter. Chem Pharm Bull (Tokyo) 58(3):273–287

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RK, Goshain O, Ayyannan SR (2013) Design, synthesis, in vitro MAO-B inhibitory evaluation, and computational studies of some 6-nitrobenzothiazole-derived semicarbazones. ChemMedChem 8(3):462–474

    Article  CAS  PubMed  Google Scholar 

  • Turgutalp B, Bhattarai P, Ercetin T, Luise C, Reis R, Gurdal EE et al (2022) Correction to “discovery of potent cholinesterase inhibition-based multi-target-directed lead compounds for synaptoprotection in Alzheimer’s disease”. J Med Chem 65(18):12292–12318

    Article  CAS  PubMed  Google Scholar 

  • Uddin MS, Al Mamun A, Kabir MT, Ashraf GM, Bin-Jumah MN, Abdel-Daim MM (2021) Multi-target drug candidates for multifactorial Alzheimer’s disease: AChE and NMDAR as molecular targets. Mol Neurobiol 58(1):281–303

    Article  PubMed  Google Scholar 

  • Wang T (2017) New drug research and development for Alzheimer’s pathology: present and prospect. Shanghai Arch Psychiatry 29(4):237–239

    CAS  PubMed  Google Scholar 

  • Wang ZM, Xie SS, Li XM, Wu JJ, Wang XB, Kong LY (2015) Multifunctional 3-schiff base-4-hydroxycoumarin derivatives with monoamine oxidase inhibition, anti-β-amyloid aggregation, metal chelation, antioxidant and neuroprotection properties against Alzheimer’s disease. RSC Adv 5(86):70395–70409

    Article  CAS  Google Scholar 

  • Wang X, Sun G, Feng T, Zhang J, Huang X, Wang T et al (2019) Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 10:787–803

    Article  Google Scholar 

  • Wareski P, Vaarmann A, Choubey V, Safiulina D, Liiv J, Kuum M et al (2009) PGC-1{alpha} and PGC-1{beta} regulate mitochondrial density in neurons. J Biol Chem 284(32):21379–21385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watkins PB, Zimmerman HJ, Knapp MJ, Gracon SI, Lewis KW (1994) Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 271(13):992–998. https://doi.org/10.1001/jama.1994.03510370044030

    Article  CAS  PubMed  Google Scholar 

  • Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU et al (2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature 414(6860):212–216

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson ST, Sanacora G (2019) A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today 24(2):606–615

    Article  CAS  PubMed  Google Scholar 

  • Woodcock J, Griffin JP, Behrman RE et al (2011) Development of novel combination therapies. N Engl J Med 364(11):985–987

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Chan P, Wang T, Hong Z, Wang S, Kuang W et al (2021) A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer’s dementia. Alzheimers Res Ther 13(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Van Hoecke L, Vandenbroucke RE (2022) The impact of systemic inflammation on Alzheimer’s disease pathology. Front Immunol 12:796867

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang A, Liu C, Wu J, Kou X, Shen R (2021) A review on α-mangostin as a potential multi-target directed ligand for Alzheimer’s disease. Eur J Pharmacol 897:173950

    Article  CAS  PubMed  Google Scholar 

  • Youdim MB, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126:317–326

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz U (2015) Alzheimer’s disease. Radiologe 55(5):386–388

    Article  CAS  PubMed  Google Scholar 

  • Zagórska A, Jaromin A (2020) Perspectives for new and more efficient multifunctional ligands for Alzheimer’s disease therapy. Molecules 25(15):3337

    Article  PubMed  PubMed Central  Google Scholar 

  • Zatta P, Zambenedetti P, Milanese M (1999) Activation of monoamine oxidase type-B by aluminum in rat brain homogenate. Neuroreport 10:3645–3648

    Article  CAS  PubMed  Google Scholar 

  • Zatta P, Drago D, Bolognin S, Sensi SL (2009) Alzheimer’s disease, metal ions, and metal homeostatic therapy. Trends Pharmacol Sci 30:346–355

    Article  CAS  PubMed  Google Scholar 

  • Zha X, Lamba D, Zhang L, Lou Y, Xu C, Kang D et al (2016) Novel Tacrine-benzofuran hybrids as potent multitarget-directed ligands for the treatment of Alzheimer’s disease: design, synthesis, biological evaluation, and X-ray crystallography. J Med Chem 59(1):114–131

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA et al (2013) Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 153(3):707–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Griciuc A, Hudry E, Wan Y, Quinti L, Ward J, Forte AM (2018) Cromolyn reduces levels of the Alzheimer’s disease-associated amyloid β-protein by promoting microglial phagocytosis. Sci Rep 8(1):1144

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou LY, Zhu Y, Jiang YR, Zhao XJ, Guo D (2017) Design, synthesis and biological evaluation of dual acetylcholinesterase and phosphodiesterase 5A inhibitors in treatment for Alzheimer’s disease. Bioorg Med Chem Lett 27(17):4180–4184

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Jiang X, He S, Jiang H, Feng F, Liu W et al (2019) Rational design of multitarget-directed ligands: strategies and emerging paradigms. J Med Chem 62:8881–8914

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Raina AK, Perry G, Smith MA (2004) Alzheimer’s disease: the two-hit hypothesis. Lancet Neurol 3(4):219–226

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Xiao K, Ma L, Xiong B, Fu Y, Yu H (2009) Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase. Bioorg Med Chem 17(4):1600–1613

    Article  CAS  PubMed  Google Scholar 

  • Zuccarello E, Acquarone E, Calcagno E, Argyrousi EK, Deng SX, Landry DW, Arancio O, Fiorito J (2020) Development of novel phosphodiesterase 5 inhibitors for the therapy of Alzheimer’s disease. Biochem Pharmacol 176:113818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, V.M., Masand, N., Gautam, V., Kaushik, S., Wu, D. (2023). Multi-Target-Directed Ligand Approach in Anti-Alzheimer’s Drug Discovery. In: Kumar, D., Patil, V.M., Wu, D., Thorat, N. (eds) Deciphering Drug Targets for Alzheimer’s Disease. Springer, Singapore. https://doi.org/10.1007/978-981-99-2657-2_13

Download citation

Publish with us

Policies and ethics