Skip to main content

Advertisement

Log in

Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), the major cause of dementia in middle- to old-aged individuals, is multifactorial. Independent of the etiology, whether genetic or non-genetic, this disease is characterized by extracellular β-amyloid plaques and intraneuronal neurofibrillary tangles of abnormally hyperphosphorylated tau. However, the molecular mechanisms of neither AD nor other tauopathies are completely understood. To date, the most popular hypothesis of AD is the “Amyloid cascade hypothesis”, according to which β-amyloid, the cleavage product of β-amyloid precursor protein (APP), is neurotoxic and causes neurodegeneration and dementia. However, this hypothesis is inconsistent with the presence in normal aged human brain of the β-amyloid plaque burden similar to that in AD, and the absence of neurofibrillary pathology and neurodegeneration in mutated APP, presenilin-1 and presenilin-2 transgenic mice that show extensive β-amyloid plaque pathology. Here we propose an alternate hypothesis, the “Metabolic/signal transduction hypothesis”, which is consistent both with the pathology seen in AD and other tauopathies and as well as all experimental animal conditions. In this hypothesis, with increasing age, the fluidity of neuronal membranes is progressively reduced, which makes it less resistant to environmental/metabolic insults affecting one or more signal transduction pathways, which lead to a protein phosphorylation/dephosphorylation imbalance and abnormal hyperphosphorylation of tau. The hyperphosphorylated tau sequesters normal tau, MAP1 and MAP2, which results in breakdown of the microtubule network and, consequently, a progressive retrograde degeneration of the affected neurons and, ultimately, dementia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alonso A del C, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci USA 91:5562–5566

    Google Scholar 

  2. Alonso A del C, Grundke-Iqbal I, Iqbal K (1996) Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 2:783–787

    Google Scholar 

  3. Alonso A del C, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of MAP1 and MAP2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci USA. 94:298–303

  4. Alonso A del C, Zaidi T, Wu Q, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K (2001) Interaction of tau isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 276:37967–37973

    Article  CAS  PubMed  Google Scholar 

  5. Alonso A del C, Zaidi T, Novak M, Grundke-Iqbal I, Iqbal K (2001) Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci USA 98:6923–6928

    Google Scholar 

  6. Alonso A del C, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K (2004) Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem 279:34878–34881

    Google Scholar 

  7. Arnold CS, Johnson GV, Cole RN, Dong DL, Lee M, Hart GW (1996) The microtubule-associated protein tau is extensively modified with O-linked N0-acetylglucosamine. J Biol Chem 271:28741–28744

    Article  CAS  PubMed  Google Scholar 

  8. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    Article  Google Scholar 

  9. Bancher C, Brunner C, Lassmann H, Budka H, Jellinger K, Wiche G, Seitelberger F, Grundke-Iqbal I, Iqbal K, Wisniewski HM (1989) Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 477:90–99

    CAS  PubMed  Google Scholar 

  10. Bennecib M, Gong CX, Grundke-Iqbal I, Iqbal K (2001) Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEBS Lett 490:15–22

    Article  Google Scholar 

  11. Cho JH, Johnson GV (2003) Glycogen synthase kinase 3beta phosphorylates tau at both primed and unprimed sites. Differential impact on microtubule binding. J Biol Chem 278:187–193

    Article  Google Scholar 

  12. Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88:349–358

    Google Scholar 

  13. Chohan M, Haque N, Alonso A del C, El-Akkad E, Grundke-Iqbal I, Grover A, Iqbal K. (2004) Hyperphosphorylation-induced self-assembly of murine tau: a comparison with human tau. J Neural Transm (in press)

  14. Coria F, Castaño B, Frangione B (1987) Brain amyloid in normal aging and cerebral amyloid angiopathy is antigenically related to Alzheimer’s disease beta-protein. Am J Pathol 129:422–428

    CAS  PubMed  Google Scholar 

  15. Cruz JC, Tseng HC, Goldman JA, Shih H, Tsai LH (2003) Aberrant cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483

    Article  Google Scholar 

  16. Dickson DW, Farlo J, Davies P, Crystal H, Fuld P, Yen SH (1988) Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am J Pathol 132:86–101

    CAS  PubMed  Google Scholar 

  17. Dickson DW, Crystal HA, Mattiace LA, Masur DM, Blau AD, Davies P, Yen SH, Aronson M (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189

    Article  CAS  PubMed  Google Scholar 

  18. Finch C, Tanzi RE (1997) Genetics of aging. Science 278:407–411

    Article  CAS  PubMed  Google Scholar 

  19. Ghetti B, Piccardo P, Spillantini MG, Ichimiya Y, Porro M, Perrini F, Kitamoto T, Tateishi J, Seiler C, Frangione B, Busiani O, Giaccone G, Prelli F, Goedert M. Dlouhy SR, Tagliavini F (1996) Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc Natl Acad Sci USA 93:744–748

    Google Scholar 

  20. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    Article  CAS  PubMed  Google Scholar 

  21. Götz J. Chen F, Dorpe J van, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science 293:1491–1495

    Article  CAS  PubMed  Google Scholar 

  22. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM (1986) Microtubule-associated protein tau: a component of Alzheimer paired helical filaments. J Biol Chem 261:6084-6089

    CAS  PubMed  Google Scholar 

  23. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 93:4913-4917

    Google Scholar 

  24. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    CAS  PubMed  Google Scholar 

  25. Hart GW (1997) Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins Annu Rev Biochem 66:315–335

    Google Scholar 

  26. Holcomb L, Gordon MN, McGowan E, Xu Y, Benkovic S, Jantzen P et al (1998) Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med 4:97–100

    Google Scholar 

  27. Hutton M, Lendon CL, Rizsazu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, et al (1998) Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  CAS  PubMed  Google Scholar 

  28. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, Wisniewski HM, Alafuzoff I, Winblad B (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet II:421-426

    Article  Google Scholar 

  29. Iqbal K, Grundke-Iqbal I, Smith AJ, George L, Tung YC, Zaidi T (1989) Identification and localization of a tau peptide to paired helical filaments of Alzheimer disease Proc Natl Acad Sci USA 86:5646-5650

    Google Scholar 

  30. Iqbal K, Zaidi T, Bancher C, Grundke-Iqbal I (1994) Alzheimer paired helical filaments: restoration of the biological activity by dephosphorylation. FEBS Lett 349:104–108

    Article  CAS  PubMed  Google Scholar 

  31. Jicha GA, Weaver C, Lane E, Vianna C, Kress Y, Rockwood J, Davies P (1999) cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J Neurosci 19:486–494

    Google Scholar 

  32. Katzman R, Terry RD, DeTeresa R, Brown R, Davies P, Fuld P, Renling X, Peck A (1988) Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol 23:138–144

    CAS  PubMed  Google Scholar 

  33. Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule associated protein tau are elevated in Alzheimer’s disease brain: a radioimmunoslot-blot assay for nanograms of the protein J Neurochem 59:750–753

    Google Scholar 

  34. Khatoon S, Grundke-Iqbal I, Iqbal K (1994) Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett 351:80–84

    Article  CAS  PubMed  Google Scholar 

  35. Köpke E, Tung YC, Shaikh S, Alonso A del C, Iqbal K, Grundke-Iqbal I (1993) Microtubule associated protein tau: abnormal phosphorylation of a non-paired helical filament pool in Alzheimer disease J Biol Chem 268:24374–24384

  36. Lau LF, Schachter JB, Seymour PA, Sanner MA (2002) Tau protein phosphorylation as a therapeutic target in Alzheimer’s disease. Curr Top Med Chem 2:395–415

    Google Scholar 

  37. Lee VMY, Balin BJ, Otvos L Jr, Trojanowski JQ, (1991) A68: A major subunit of paired helical filaments and derivatized forms of normal tau. Science 251:675–678

    CAS  PubMed  Google Scholar 

  38. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, Duinen SG van, Bots GT, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126

    CAS  PubMed  Google Scholar 

  39. Lewis J, McGowan E, Rockwood J, Melrose H, Nacharaju P, Van Slegtenhorst M, Gwinn-Hardy K, Murphy MP, Baker M, Yu X, Duff K, Hardy J, Corrall A, Lin WL, Yen SH, Dickson DW, Davies DW, Hutton M. (2000) Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat Genet 25:402–405

    Google Scholar 

  40. Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, McGowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    Article  CAS  PubMed  Google Scholar 

  41. Liu F, Zaidi T, Grundke-Iqbal I, Iqbal K, Gong CX (2002) Aberrant glycosylation modulates phosphorylation of tau by protein kinase A and dephosphorylation of tau by protein phosphatase 2A and 5. Neuroscience 115:829–837

    Google Scholar 

  42. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2002) Involvement of aberrant glycosylation in phosphorylation of tau by cdk5 and GSK-3β. FEBS Lett 530:209–214

    Article  CAS  PubMed  Google Scholar 

  43. Liu F, Iqbal K, Grundke-Iqbal I, Hart GW, Gong CX (2004) O-GlcNAcylation regulates phosphorylation of tau: a novel mechanism involved in Alzheimer’s disease. Proc Natl Acad Sci USA 101:10804–10809

    Google Scholar 

  44. Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, Deng HM, Gong CX, Grundke-Iqbal I, Iqbal K, Wang JZ (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J Biol Chem 279:50078–50088

    Google Scholar 

  45. Mah VH, Eskin TA, Kazee AM, Lapham L, Higgins GA (1992) In situ hybridization of calcium/calmodulin dependent protein kinase II and tau mRNAs; species differences and relative preservation in Alzheimer’s disease. Brain Res Mol Brain Res 12:85–94

    Article  CAS  PubMed  Google Scholar 

  46. Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58:188–197

    CAS  PubMed  Google Scholar 

  47. Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39:409–421

    Article  CAS  PubMed  Google Scholar 

  48. Oddo S, Billings L, Kesslak JP, Cribbs DH, LaFerla FM (2004) Aβ immunotherapy leads to clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    Article  Google Scholar 

  49. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, Andreadis A, Wiederholt WC, Raskind M, Schellenberg GD (1998) Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol 43:815–825

    CAS  PubMed  Google Scholar 

  50. Roses AD (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400

    Article  CAS  PubMed  Google Scholar 

  51. Sengupta A, Kabat J, Novak M, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Phosphorylation of tau at both Thr 231 and Ser 262 is required for maximal inhibition of its binding to microtubules. Arch Biochem Biophys 357:299–309

    Article  Google Scholar 

  52. Sironi JJ, Yen SH, Gondal JA, Wu Q, Grundke-Iqbal I, Iqbal K (1998) Ser-262 in human recombinant tau protein is a markedly more favorable site for phosphorylation by CaMKII than PKA or PhK. FEBS Lett 436:471–475

    Article  Google Scholar 

  53. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B (1998) Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci USA 95:7737–7741

    Google Scholar 

  54. Tanemura K, Akagi T, Murayama M, Kikuchi N, Murayama O, Hashikawa T, Yoshiike Y, Park JM, Matsuda K, Nakao S, Sun X, Sato S, Yamaguchi H, Takashima A (2001) Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiol Dis 8:1036–1045

    Article  CAS  PubMed  Google Scholar 

  55. Tatebayashi Y, Miyasaka T, Chui DH, Akagi T, Mishima K, Iwasaki K, Fujiwara M, Tanemura K, Murayama M, Ishiguro K, Planel E, Sato S, Hashikawa T, Takashima A (2002) Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proc Natl Acad Sci USA 99:13896–13901

    Google Scholar 

  56. Tolnay M, Probst A (2003) The neuropathological spectrum of neurodegenerative tauopathies. IUBMB Life 55:299–305

    Google Scholar 

  57. Van Duinen SG, Castanol EM, Prelli F, Bots GT, Luyendijk W, Frangione B (1987) Hereditary cerebral hemorrhage with amyloidosis in patients of Dutch origin is related to Alzheimer disease. Proc Natl Acad Sci USA 84:5991–5994

    Google Scholar 

  58. Wang JZ, Gong CX, Zaidi T, Grundke-Iqbal I, Iqbal K (1995) Dephosphorylation of Alzheimer paired helical filaments by protein phosphatase-2A and -2B. J Biol Chem 270:4854–4860

    Article  CAS  PubMed  Google Scholar 

  59. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Glycosylation of microtubule-associated protein tau: an abnormal posttranslational modification in Alzheimer’s disease. Nat Med 2:871–875

    Google Scholar 

  60. Wang JZ, Grundke-Iqbal I, Iqbal K (1996) Restoration of biological activity of Alzheimer abnormally phosphorylated by dephosphorylation with protein phosphatase-2A, -2B and -1. Brain Res Mol Brain Res 38:200–208

    Article  Google Scholar 

  61. Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    Google Scholar 

  62. Zheng-Fischhofer Q, Biernat J, Mandelkow EM, Illenberger S, Godemann R, Mandelkow E (1998) Sequential phosphorylation of Tau by glycogen synthase kinase-3beta and protein kinase A at Thr212 and Ser214 generates the Alzheimer-specific epitope of antibody AT100 and requires a paired-helical-filament-like conformation. Eur J Biochem 252:542–555

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Janet Biegelson and Sonia Warren for secretarial assistance. Studies in our laboratories were supported in part by the New York State Office of Mental Retardation and Developmental Disabilities and NIH grant AG19158, Alzheimer’s Association (Chicago, IL) grant IIRG-00-2002 and a grant from the Institute for the Study of Aging (ISOA), New York.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Iqbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, K., Grundke-Iqbal, I. Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies. Acta Neuropathol 109, 25–31 (2005). https://doi.org/10.1007/s00401-004-0951-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-004-0951-y

Keywords

Navigation