Skip to main content

Synthesis and Applications of Graphene and Its Nanocomposites

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 290 Accesses

Abstract

Graphene has been a material of interest, especially since the discovery of its free-standing form in 2003. The discovery provided hope to researchers looking for breakthroughs in the field that had not seen significant growth for long. Incremental improvements are not enough to meet the exponentially growing demands for cheap, convenient, and high-performing technologies. Graphene has the potential to provide new ways of achieving goals that previously seemed impossible by redefining the frontiers of science. It is because of the unprecedented material properties of graphene that were never demonstrated before by any other material. Novel and better material properties open up doors to new technologies and advancements in existing ones. However, it is imperative to obtain the material of suitable quality at a reasonable cost for it to compete with prevailing alternatives. In this chapter, various methods for synthesizing graphene have been discussed with a particular focus on the liquid-phase exfoliation (LPE) of graphite. Characterization with Raman spectroscopy, electron diffraction, and microscopy-based tools have been explored. The chapter also reviews applications of graphene in a few emerging areas. Graphene-based composites, with emphasis on their syntheses and applications, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yazyev OV (2016) Theory of magnetism in graphitic materials. In: Esquinazi P (eds) Basic physics of functionalized graphite. Springer Series in Materials Science, Springer, Cham. 244

    Google Scholar 

  2. Popov IA, Bozhenko KV, Boldyrev AI (2012) Is Graphene Aromatic? Nano Res 5(2):117–123

    Article  CAS  Google Scholar 

  3. Wallace PR (1947) The Band Theory of Graphite. Phys Rev 71:622

    Article  CAS  Google Scholar 

  4. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  Google Scholar 

  5. E. Reich, Nobel prize committee under fire. Nature (2010)

    Google Scholar 

  6. Kundhikanjana W, Lai K, Wang H, Dai H, Kelly MA, Shen Z (2009) Hierarchy of electronic properties of chemically derived and pristine graphene probed by microwave imaging. Nano Lett 9(11):3762–3765

    Article  CAS  Google Scholar 

  7. Ghosh S, Nika DL, Pokatilov EP, Balandin AA (2009) Heat conduction in graphene: experimental study and theoretical interpretation. New J Phys 11:095012

    Article  Google Scholar 

  8. Ovid’ko IA (2013) Mechanical properties of graphene. Rev Adv Mater Sci 34, 1–11

    Google Scholar 

  9. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355

    Article  CAS  Google Scholar 

  10. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  CAS  Google Scholar 

  11. Lemme MC (2009) Current status of graphene transistors. Solid State Phenom 156–158:499–509

    Article  Google Scholar 

  12. Atalaya J, Isacsson A, Kinaret JM (2008) Continuum elastic modeling of graphene resonators. Nano Lett 8(12):4196–4200

    Article  CAS  Google Scholar 

  13. Wei Z, Chen Y, Dames C (2013) Negative correlation between in-plane bonding strength and cross-plane thermal conductivity in a model layered material. Appl Phys Lett 102:011901

    Article  Google Scholar 

  14. Pop E, Varshney V, Roy AK (2012) Thermal properties of graphene: Fundamentals and applications. MRS Bull 37:1273–1281

    Article  CAS  Google Scholar 

  15. Rho H, Jang YS, Bae H, Cha A-N, Lee SH, Ha J-S (2021) Fanless, porous graphene-copper composite heat sink for micro devices. Sci Rep 11:17607

    Article  CAS  Google Scholar 

  16. Pirruccio G, Moreno LM, Lozano G, Rivas JG (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6):4810–4817

    Article  CAS  Google Scholar 

  17. Pang S, Hernandez Y, Feng X, Müllen K (2011) Graphene as transparent electrode material for organic electronics. Adv Mater 23(25):2779–2795

    Article  CAS  Google Scholar 

  18. Tetlow H, Posthuma de Boer J, Ford IJ, Vvedensky DD, Coraux J, Kantorovich L (2014) Growth of epitaxial graphene: Theory and experiment. Phys Rep 542:195–295

    Article  CAS  Google Scholar 

  19. Muñoz R, Gómez-Aleixandre C (2013) Review of CVD synthesis of graphene. Chem Vap Deposition 19:297–322

    Article  Google Scholar 

  20. Cai M, Thorpe D, Adamson DH, Schniepp HC (2012) Methods of graphite exfoliation. J Mater Chem 22:24992–25002

    Article  CAS  Google Scholar 

  21. Niilisk A, Kozlova J, Alles H, Aarik J, Sammelselg V (2016) Raman characterization of stacking in multi-layer graphene grown on Ni. Carbon 98:658–665

    Article  CAS  Google Scholar 

  22. Eckmann A, Felten A, Mishchenko A, Britnell L, Ralph Krupke, Novoselov KS, Casiraghi C (2012) Probing the nature of defects in graphene by raman spectroscopy. Nano Lett. 12, 3925–3930

    Google Scholar 

  23. Beams R, Cancado LG, Novotny L (2015) Raman characterization of defects and dopants in graphene. J Phys: Condens Matter 27, 083002

    Google Scholar 

  24. Cong C, Yu T, Wang H (2010) Raman study on the G mode of graphene for determination of edge orientation. ACS Nano 4(6):3175–3180

    Article  CAS  Google Scholar 

  25. Proctor JE, Gregoryanz E, Novoselov KS, Lotya M, Coleman JN, Halsall MP (2009) High-pressure Raman spectroscopy of graphene. Phys Rev B 80:073408

    Article  Google Scholar 

  26. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett 7(9):2645–2649

    Article  CAS  Google Scholar 

  27. Suh YJ, Park SY, Kim MJ (2009) High resolution TEM and electron diffraction study of graphene layers. Microsc Microanal 15(S2):1168–1169

    Article  Google Scholar 

  28. Yu Z, Song A, Sun L, Li Y, Gao L, Peng H, Ma T, Liu Z, Luo J (2020) Understanding interlayer contact conductance in twisted bilayer graphene. Small 16:1902844

    Article  CAS  Google Scholar 

  29. Teklu A, Barry C, Palumbo M, Weiwadel C, Kuthirummal N, Flagg J (2019) Mechanical characterization of reduced graphene oxide using AFM. Adv Condens Matter Phys 2019:8713965

    Article  Google Scholar 

  30. Collins R (30 Dec, 2021) Graphene market & 2D materials assessment 2021–2031, IDTechEx, https://www.idtechex.com/en/research-report/graphene-market-and-2d-materials-assessment-2021-2031/789

  31. Hybrid Solutions Graphene, Turtle Wax, (30 Dec, 2021) https://www.turtlewax.com/collections/hybrid-solutions-graphene

  32. Graphene 360+, Head, (30 Dec, 2021) https://www.head.com/en/sports/tennis/technology/graphene360plus

  33. G-Series, inov-8, (30 Dec, 2021) https://www.inov-8.com/row/g-series

  34. G1 wonders, (30 Dec, 2021) https://g1wonders.com/shop/

  35. Graphene XT, (30 Dec, 2021) https://www.graphene-xt.com/en/

  36. Badami D (1962) Graphitization of α-Silicon carbide. Nature 193:569–570

    Article  CAS  Google Scholar 

  37. Norimatsu W, Kusunoki M (2014) Growth of graphene from SiC{0001} surfaces and its mechanisms. Semicond Sci Technol 29:064009

    Article  CAS  Google Scholar 

  38. Rohbeck N, Xiao P (2014) Effects of thermal treatment on the mechanical integrity of silicon carbide in HTR fuel up to 2200℃. J Nucl Mater 451:168–178

    Article  CAS  Google Scholar 

  39. Badami DV (1965) X-Ray studies of graphite formed by decomposing silicon carbide. Carbon 3(1):53–57

    Article  CAS  Google Scholar 

  40. Berger C, Song Z, Li T, Li X, Ogbazghi AY, Feng R, Dai Z, Marchenkov AN, Conrad EH, First PN, de Heer WA (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J Phys Chem B 108(52):19912–19916

    Article  CAS  Google Scholar 

  41. Wofford JM, Oliveira MH Jr, Schumann T, Jenichen B, Ramsteiner M, Jahn U, Fölsch S, Lopes JMJ, Riechert H (2014) Molecular beam epitaxy of graphene on ultra-smooth nickel: growth mode and substrate interactions. New J Phys 16:093055

    Article  CAS  Google Scholar 

  42. Zheng R, Xu Z, Khanaki A, Tian H, Zuo Z, Zheng J-G, Liu J (2017) Low-temperature growth of graphene on iron substrate by molecular beam epitaxy. Thin Solid Films 627:39–43

    Article  CAS  Google Scholar 

  43. Garcia JM, He R, Jiang MP, Yan J, Pinczuk A, Zuev YM, Kim KS, Kim P, Baldwin K, West KW, Pfeiffer LN (2010) Multilayer graphene films grown by molecular beam deposition. Solid State Commun 150:809–811

    Article  CAS  Google Scholar 

  44. Cheng TS, Davies A, Summerfield A, Cho YJ, Cebula I, Hill RJA, Mellor CJ, Khlobystov AN, Taniguchi T, Watanabe K, Beton PH, Foxon CT, Eaves L, Novikova SV (2016) High temperature MBE of graphene on sapphire and hexagonal boron nitride flakes on sapphire. J Vac Sci Technol B 34:02L101

    Article  Google Scholar 

  45. Dabrowski J, Lippert G, Avila J, Baringhaus J, Colambo I, Dedkov YuS, Herziger F, Lupina G, Maultzsch J, Schaffus T, Schroeder T, Kot M, Tegenkamp C, Vignaud D, Asensio M-C (2016) Understanding the growth mechanism of graphene on Ge/Si(001) surfaces. Sci Rep 6:31639

    Article  CAS  Google Scholar 

  46. Dillemans L, Tran T, Bhuiyan NK, Smets T, Menghini M, Lieten R, Seo JW, Locquet J-P (2011) Epitaxial growth of V2O3 on Al2O3 by reactive MBE. MRS Online Proc Libr 1292:61–66

    Article  Google Scholar 

  47. Schumann T, Lopes JMJ, Wofford JM, Oliveira MH Jr, Dubslaff M, Hanke M, Jahn U, Geelhaar L, Riechert H (2015) The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy. J Cryst Growth 425:274–278

    Article  CAS  Google Scholar 

  48. Hernández-Rodríguez I, García JM, Martín-Gago JA, de Andrés PL, Méndez J (2015) Graphene growth on Pt(111) and Au(111) using a MBE carbon solid-source. Diam Relat Mater 57:58–62

    Article  Google Scholar 

  49. Wang M, Luo D, Wang B, Ruoff RS (2021) Synthesis of Large-Area Single-Crystal Graphene. Trends Chem. 3(1):15–33

    Article  CAS  Google Scholar 

  50. Cushing GW, Johanek V, Navin JK, Harrison I (2015) Graphene Growth on Pt(111) by ethylene chemical vapor deposition at surface temperatures near 1000 K. J Phys Chem C 119(9):4759–4768

    Article  CAS  Google Scholar 

  51. Chung WR, Zhao Y, Oye M, Nguyen C (2011) Graphene synthesis by thermal-CVD method. In: 2011 11th IEEE International Conference on Nanotechnology, Portland Marriott, August 15–18

    Google Scholar 

  52. An H, Lee W-J, Jung J (2011) Graphene synthesis on Fe foil using thermal CVD. Curr Appl Phys 11:S81–S85

    Article  Google Scholar 

  53. Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surf Sci 264:261–270

    Article  CAS  Google Scholar 

  54. Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836–20843

    Article  CAS  Google Scholar 

  55. McLellan RB (1969) The solubility of carbon in solid gold, copper, and silver. Scr Mater 3:389–392

    CAS  Google Scholar 

  56. Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11(11):4547–4554

    Article  CAS  Google Scholar 

  57. Kalita G, Wakita K, Umeno M (2012) Low temperature growth of graphene film by microwave assisted surface wave plasma CVD for transparent electrode application. RSC Adv 2:2815–2820

    Article  CAS  Google Scholar 

  58. Li N, Zhen Z, Zhang R, Xu Z, Zheng Z, He L (2021) Nucleation and growth dynamics of graphene grown by radio frequency plasma-enhanced chemical vapor deposition. Sci Rep 11:6007

    Article  CAS  Google Scholar 

  59. Huet B, Raskin J-P, Snyder DW, Redwing JM (2020) Fundamental limitations in transferred CVD graphene caused by Cu catalyst surface morphology. Carbon 163:95–104

    Article  CAS  Google Scholar 

  60. Chen Z, Qi Y, Chen X, Zhang Y, Liu Z (2019) Direct CVD growth of graphene on traditional glass: methods and mechanisms. Adv Mater 31:1803639

    Article  Google Scholar 

  61. Niyogi S, Bekyarova E, Itkis ME, McWilliams JJ, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721

    Article  CAS  Google Scholar 

  62. Yu P, Lowe SE, Simon GP, Zhong YL (2015) Electrochemical exfoliation of graphite and production of functional graphene. Curr Opin Colloid Interface Sci 20:329–338

    Article  CAS  Google Scholar 

  63. Munuera JM, Paredes JI, Villar-Rodil S, Ayán-Varela M, Pagán A, Aznar-Cervantes SD, Cenis JL, Martínez-Alonso A, Tascón JMD (2015) High quality, low oxygen content and biocompatible graphene nanosheets obtained by anodic exfoliation of different graphite types. Carbon 94:729–739

    Article  CAS  Google Scholar 

  64. Liu F, Wang C, Sui X, Riaz MA, Xu M, Wei L, Chen Y (2019) Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 1(2):173–199

    Article  Google Scholar 

  65. Parvez K, Wu Z-S, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136(16):6083–6091

    Article  CAS  Google Scholar 

  66. Liu J, Poh CK, Zhan D, Lai L, Lim SH, Wang L, Liu X, Sahoo NG, Li C, Shen Z, Lin J (2013) Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy 2:377–386

    Article  CAS  Google Scholar 

  67. Achee TC, Sun W, Hope JT, Quitzau SG, Sweeney CB, Shah SA, Habib T, Green MJ (2018) High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci Rep 8:14525

    Article  Google Scholar 

  68. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  69. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312

    Article  CAS  Google Scholar 

  70. Sengupta I, Chakraborty S, Talukdar M, Pal S, Chakraborty S (2018) Thermal reduction of graphene oxide: How temperature influences purity. J Mater Res 33(23):4113–4122

    Article  CAS  Google Scholar 

  71. Salunke BK, Kim BS (2016) Facile synthesis of graphene using a biological method. RSC Adv 6:17158–17162

    Article  CAS  Google Scholar 

  72. Hamilton CE, Lomeda JR, Sun Z, Tour JM, Barron AR (2009) High-Yield organic dispersions of unfunctionalized graphene. Nano Lett 9(10):3460–3462

    Article  CAS  Google Scholar 

  73. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, Mcgovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 3, 563–568

    Google Scholar 

  74. Haar S, El Gemayel M, Shin Y, Melinte G, Squillaci MA, Ersen O, Casiraghi C, Ciesielski A, Samorì P (2015) Enhancing the liquid-phase exfoliation of graphene in organic solvents upon addition of n-Octylbenzene. Sci Rep 5:16684

    Article  CAS  Google Scholar 

  75. Bourlinos AB, Georgakilas V, Zboril R, Steriotis TA, Stubos AK (2009) Liquid-Phase exfoliation of graphite towards solubilized graphenes. Small 5(16):1841–1845

    Article  CAS  Google Scholar 

  76. Telkhozhayeva M, Teblum E, Konar R, Girshevitz O, Perelshtein I, Aviv H, Tischler YR, Nessim GD (2021) Higher ultrasonic frequency liquid phase exfoliation leads to larger and monolayer to Few-Layer flakes of 2D layered materials. Langmuir 37(15):4504–4514

    Article  CAS  Google Scholar 

  77. Monajjemi M (2017) Liquid-phase exfoliation (LPE) of graphite towards graphene: An ab initio study. J Mol Liq 230:461–472

    Article  CAS  Google Scholar 

  78. Shin Y, Just-Baringo X, Boyes M, Panigrahi A, Zarattini M, Chen Y, Liu X, Morris G, Prestat E, Kostarelos K, Vranic S, Larrosa I, Casiraghi C (2021) Enhanced liquid phase exfoliation of graphene in water using an insoluble bis-pyrene stabiliser. Faraday Discuss 227:46–60

    Article  CAS  Google Scholar 

  79. Li Z, Young RJ, Backes C, Zhao W, Zhang X, Zhukov AA, Tillotson E, Conlan AP, Ding F, Haigh SJ, Novoselov KS, Coleman JN (2020) Mechanisms of liquid-phase exfoliation for the production of graphene. ACS Nano 14(9):10976–10985

    Article  CAS  Google Scholar 

  80. Yi M, Shen Z, Ma S, Zhang X (2012) A mixed-solvent strategy for facile and green preparation of graphene by liquid-phase exfoliation of graphite. J Nanopart Res 14:1003

    Article  Google Scholar 

  81. Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bon SB, Piccinini M, Illescas J, Mariani A (2011) High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem 21:3428–3431

    Article  CAS  Google Scholar 

  82. Du W, Lu J, Sun P, Zhu Y, Jiang X (2013) Organic salt-assisted liquid-phase exfoliation of graphite to produce high-quality graphene. Chem Phys Lett 568–569:198–201

    Article  Google Scholar 

  83. Qiu X, Bouchiat V, Colombet D, Ayela F (2019) Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip.’ RSC Adv 9:3232–3238

    Article  CAS  Google Scholar 

  84. Alinejad B, Mahmoodi K (2017) Synthesis of graphene nanoflakes by grinding natural graphite together with NaCl in a planetary ball mill. Funct Mater Lett 10:1750047

    Article  CAS  Google Scholar 

  85. Lin T, Tang Y, Wang Y, Bi H, Liu Z, Huang F, Xie X, Jiang M (2013) Scotch tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulphur composites for high-performance lithium-sulfur batteries. Energy Environ Sci 6:1283

    Article  CAS  Google Scholar 

  86. Alam MF, Khan MS, Uddin I, Khan SN, Ahmad I (2020) Exfoliation synthesis of graphene and optimization with alkali halides salts. Surf Interfaces 20:100548

    Article  CAS  Google Scholar 

  87. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473(5–6):51–87

    Article  CAS  Google Scholar 

  88. Dresselhaus MS, Dresselhaus G, Jorio A, Souza Filho AG, Saito R, Raman (2002) spectroscopy on isolated single wall carbon nanotubes. Carbon 40, 2043–2061

    Google Scholar 

  89. Artur CG, Miller R, Meyer M, Le Ru EC, Etchegoin PG (2012) Single-molecule SERS detection of C60. Phys Chem Chem Phys 14:3219–3225

    Article  CAS  Google Scholar 

  90. Jorio A (2012) Raman spectroscopy in graphene-based systems: prototypes for nanoscience and nanometrology. ISRN Nanomater. 2012:234216

    Google Scholar 

  91. Jorio A, Dresselhaus MS, Saito R, Dresselhaus G (2011) Raman spectroscopy in graphene related systems. Wiley-VCH, Weinheim, Germany

    Book  Google Scholar 

  92. You Y, Ni Z, Yu T, Shen Z (2008) Edge chirality determination of graphene by Raman spectroscopy. Appl Phys Lett 93:163112

    Article  Google Scholar 

  93. Luo Z, Cong C, Zhang J, Xiong Q, Yu T (2012) The origin of sub-bands in the Raman D-band of graphene. Carbon 50:4252–4258

    Article  CAS  Google Scholar 

  94. Papanai GS, Sharma I, Gupta BK (2020) Probing number of layers and quality assessment of mechanically exfoliated graphene via Raman fingerprint. Mater Today Commun 22:100795

    Article  CAS  Google Scholar 

  95. Tang B, Guoxin H, Gao H (2010) Raman spectroscopic characterization of graphene. Appl Spectrosc Rev 45(5):369–407

    Article  CAS  Google Scholar 

  96. Popov VN, Lambin P (2013) Theoretical Raman intensity of the G and 2D bands of strained graphene. Carbon 54:86–93

    Article  CAS  Google Scholar 

  97. Geng D, Wu B, Guo Y, Huang L, Xue Y, Chen J, Yu G, Jiang L, Hu W, Liu Y (2012) Uniform hexagonal graphene flakes and films grown on liquid copper surface. PNAS 21:7992–7996

    Article  Google Scholar 

  98. Shen Y, Lua AC (2013) A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Sci Rep 3:3037

    Article  Google Scholar 

  99. Li J, Ji H, Zhang X, Wang X, Jin Z, Wang D, Wan L-J (2014) Controllable atmospheric pressure growth of mono-layer, bi-layer and tri-layer graphene. Chem Commun 50:11012–11015

    Article  CAS  Google Scholar 

  100. Luo B, Chen B, Wang A, Geng D, Xu J, Wang H, Zhang Z, Peng L, Xu Z, Yu G (2016) Chemical vapor deposition of bilayer graphene with layer-resolved growth through dynamic pressure control. J. Mater. Chem. C 4:7464–7471

    Article  CAS  Google Scholar 

  101. Sengupta J, Das K, Nandi UN, Jacob C (2019) Substrate free synthesis of graphene nanoflakes by atmospheric pressure chemical vapour deposition using Ni powder as a catalyst. Bull Mater Sci 42:136

    Article  Google Scholar 

  102. Cui T, Lv R, Huang Z-H, Zhu H, Jia Y, Chen S, Wang K, Wu D, Kang F (2012) Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells. Nanoscale Res Lett 7:453

    Article  Google Scholar 

  103. Kaur A, Kaur J, Singh RC (2018) Green exfoliation of graphene nanosheets based on freezing induced volumetric expansion of carbonated water. Mater Res Express 5:085601

    Article  Google Scholar 

  104. Zhao W, Xia B, Lin L, Xiao X, Liu P, Lin X, Peng H, Zhu Y, Yu R, Lei P, Wang J, Zhang L, Xu Y, Zhao M, Peng L, Li Q, Duan W, Liu Z, Fan S, Jiang K (2017) Low-energy transmission electron diffraction and imaging of large-area graphene. Sci Adv 3:e1603231

    Article  Google Scholar 

  105. Shearer CJ, Slattery AD, Stapleton AJ, Shapter JG, Gibson CT (2016) Accurate thickness measurement of graphene. Nanotechnology 27:125704

    Article  Google Scholar 

  106. Kim HJ, Lee S-M, Oh Y-S, Yang Y-H, Lim YS, Yoon DH, Lee C, Kim J-Y, Ruoff RS (2014) Unoxidized graphene/alumina nanocomposite: fracture- and wear-resistance effects of graphene on alumina matrix. Sci Rep 4:5176

    Article  CAS  Google Scholar 

  107. Yan Z, Lin J, Peng Z, Sun Z, Zhu Y, Li L, Xiang C, Samuel EL, Kittrell C, Tour JM (2012) Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 6(10):9110–9117

    Article  CAS  Google Scholar 

  108. Haghighian N, Convertino D, Miseikis V, Bisio F, Morgante A, Coletti C, Canepa M, Cavalleri O (2018) Rippling of graphitic surfaces: a comparison between few-layer graphene and HOPG. Phys Chem Chem Phys 20:13322–13330

    Article  CAS  Google Scholar 

  109. Prakash G, Capano MA, Bolen ML, Zemlyanov D, Reifenberger RG (2010) AFM study of ridges in few-layer epitaxial graphene grown on the carbon-face of 4H–SiC(000–1). Carbon 48(9):2383–2393

    Article  CAS  Google Scholar 

  110. Ramphal IA, Hagerman ME (2019) Nanoscale morphology, tribology and electrical properties of polyaniline/graphene oxide/LAPONITE composites investigated using atomic force microscopy. Nanoscale 11:20876–20883

    Article  CAS  Google Scholar 

  111. Lina L-Y, Kim D-E, Kim W-K, Jun S-C (2011) Friction and wear characteristics of multi-layer graphene films investigated by atomic force microscopy. Surf Coat Technol 205(20):4864–4869

    Article  Google Scholar 

  112. Hauquier F, Alamarguy D, Viel P, Noël S, Filoramo A, Huc V, Houzé F, Palacin S (2012) Conductive-probe AFM characterization of graphene sheets bonded to gold surfaces. Appl Surf Sci 258(7):2920–2926

    Article  CAS  Google Scholar 

  113. Wei Z, Wang D, Kim S, Kim S-Y, Hu Y, Yakes MK, Laracuente AR, Dai Z, Marder SR, Berger C, King WP, De Heer WA, Sheehan PE, Riedo E (2010) Nanoscale tunable reduction of graphene oxide for graphene electronics. Science 328(5984):1373–1376

    Article  CAS  Google Scholar 

  114. Dennard RH, Gaensslen FH, Yu H, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid-State Circuits 9(5):256–268

    Article  Google Scholar 

  115. Xue J, Li T, Deng Y, Yu Z (2010) Full-chip leakage analysis for 65nm CMOS technology and beyond. Integration 43:353–364

    Article  Google Scholar 

  116. Lemme MC, Echtermeyer TJ, Baus M, Kurz H (2007) A graphene field-effect device. IEEE Electron Device Lett 28(4):282–284

    Article  CAS  Google Scholar 

  117. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496

    Article  CAS  Google Scholar 

  118. Hayashi CK, Garmire DG, Yamauchi TJ, Torres CM, Ordonez RC (2020) High on-off ratio graphene switch via electrical double layer gating. IEEE Access 8:92314–92321

    Google Scholar 

  119. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP, Shen ZX (2008) Uniaxial strain on graphene: Raman spectroscopy study and bandgap opening. ACS Nano 2:2301–2305

    Article  CAS  Google Scholar 

  120. Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232

    Article  CAS  Google Scholar 

  121. Robinson JA, LaBella M III, Trumbull KA, Weng X, Cavelero R, Daniels T, Hughes Z, Hollander M, Fanton M, Snyder D (2010) Epitaxial graphene materials integration: Effects of dielectric overlayers on structural and electronic properties. ACS Nano 4:2667–2672

    Article  CAS  Google Scholar 

  122. Ahmed T, Biswas A, Subrina S (2021) Enhanced performance of strained graphene wrapped channel cylindrical FET. In: 2021 IEEE Region 10 Symposium (TENSYMP), 1–4

    Google Scholar 

  123. Li P, Zeng RZ, Liao YB, Zhang QW, Zhou JH (2019) A novel graphene metal semi-insulator semiconductor transistor and its new super-low power mechanism. Sci Rep 9:3642

    Article  Google Scholar 

  124. Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A, Watanabe K, Taniguchi T, Haigh SJ, Geim AK, Tartakovskii AI, Novoselov KS (2015) Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat Mater 14:301–306

    Article  CAS  Google Scholar 

  125. Rodríguez-Mas F, Ferrer JC, Alonso JL, de Ávila SF, Valiente D (2021) Reduced graphene oxide inserted into PEDOT:PSS layer to enhance the electrical behaviour of light-emitting diodes. Nanomaterials 11:645

    Article  Google Scholar 

  126. Yoo D, Lee K, Tchoe Y, Guha P, Ali A, Saroj RK, Lee S, Hamidul Islam ABM, Kim M, Yi G-C (2021) Dimension—and position‑controlled growth of GaN microstructure arrays on graphene films for flexible device applications. Sci Rep 11, 17524

    Google Scholar 

  127. Chen Y-X, Lu D, Wang G-G, Huangfu J, Wu Q-B, Wang X-F, Liu L-F, Ye D-M, Yan B, Han J (2020) Highly efficient orange emissive graphene quantum dots prepared by acid-free method for white LEDs. ACS Sustain Chem Eng 8(17):6657–6666

    Article  CAS  Google Scholar 

  128. Wang X, Tian H, Mohammad MA, Li C, Wu C, Yang Y, Ren T-L (2015) A spectrally tunable all-graphene-based flexible field-effect light-emitting device. Nat Commun 6:7767

    Article  CAS  Google Scholar 

  129. Lim YS, Hung YM (2021) Anomalously enhanced light-emitting diode cooling via nucleate boiling using graphene-nanoplatelets coatings. Energy Convers Manag 244:114522

    Article  CAS  Google Scholar 

  130. Bullock CJ, Bussy C (2019) Biocompatibility considerations in the design of graphene biomedical materials. Adv Mater Interfaces 6:1900229

    Article  Google Scholar 

  131. Syama S, Mohanan PV (2016) Safety and biocompatibility of graphene: A new generation nanomaterial for biomedical application. Int J Biol Macromol 86:546–555

    Article  CAS  Google Scholar 

  132. Torrente-Rodrı´guez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, Rossiter HB, Gao W (2020) SARS-CoV-2 RapidPlex: A graphene-based multiplexed telemedicine platform for rapid and Low-Cost COVID-19 Diagnosis and Monitoring. Matter 3, 1981–1998

    Google Scholar 

  133. Molinero-Fernandez A, Arruza L, Lopez MA, Escarpa A (2020) On-the-fly rapid immunoassay for neonatal sepsis diagnosis: C-reactive protein accurate determination using magnetic graphene-based micromotors. Biosens Bioelectron 158:112156

    Article  CAS  Google Scholar 

  134. Li G, Lu Z, Luan X, Wang Z, Liu F, Liu L (2021) Measurement method of akkermansia muciniphila by graphene-based transistor for diseases diagnosis. IEEE Trans Nanotechnol 20(1):332–337

    Article  CAS  Google Scholar 

  135. Jeon J, Lee J, -in So J, Lee JB, Lee H, Chang Y, Shin S, Jo J, Ban C (2020) Homogeneous fluorescent aptasensor for active tuberculosis diagnosis by direct quantification of circulating TB7.7 based on aptamer beacon with graphene oxide. Sens Actuators B Chem 317, 128126

    Google Scholar 

  136. Siew QY, Pang EL, Loh H-S, Tan MTT (2021) Highly sensitive and specific graphene/TiO2 impedimetric immunosensor based on plant-derived tetravalent envelope glycoprotein domain III (EDIII) probe antigen for dengue diagnosis. Biosens Bioelectron 176:112895

    Article  CAS  Google Scholar 

  137. Afshar EG, Zarrabi A, Dehshahri A, Ashrafizadeh M, Dehghannoudeh G, Behnam B, Mandegary A, Pardakhty A, Mohammadinejad R, Tavakol S (2020) Graphene as a promising multifunctional nanoplatform for glioblastoma theranostic applications. FlatChem 22:100173

    Article  Google Scholar 

  138. Majidi R, Nadafan M (2020) Detection of exhaled gas by γ -graphyne and twin-graphene for early diagnosis of lung cancer: A density functional theory study. Phys Lett A 384:126036

    Article  CAS  Google Scholar 

  139. Nasrollahpour H, Isildak I, Rashidi M-R, Hashemi EA, Naseri A, Khalilzadeh B (2021) Ultrasensitive bioassaying of HER-2 protein for diagnosis of breast cancer using reduced graphene oxide/chitosan as nanobiocompatible platform. Cancer Nano 12:10

    Article  CAS  Google Scholar 

  140. Barrera CC, Groot H, Vargas WL, Narváez DM (2020) Efficacy and molecular effects of a reduced graphene Oxide/Fe3O4 nanocomposite in photothermal therapy against cancer. Int J Nanomedicine 15

    Google Scholar 

  141. Ardakania TS, Meidanchia A, Shokria A, Shakeri-Zadeh A (2020) Fe3O4@Au/reduced graphene oxide nanostructures: Combinatorial effects of radiotherapy and photothermal therapy on oral squamous carcinoma KB cell line. Ceram Int 46:28676–28685

    Article  Google Scholar 

  142. Jia X, Xu W, Ye Z, Wang Y, Dong Q, Wang E, Li D, Wang J (2020) Functionalized graphene@gold nanostar/lipid for pancreatic cancer gene and photothermal synergistic therapy under photoacoustic/photothermal imaging dual-modal guidance. Small 16:2003707

    Article  CAS  Google Scholar 

  143. Lima-Sousa R, de Melo-Diogo D, Alves CG, Cabral CSD, Miguel SP, Mendonça AG, Correia IJ (2020) Injectable in situ forming thermo-responsive graphene based hydrogels for cancer chemo-photothermal therapy and NIR light-enhanced antibacterial applications. Mater Sci Eng C 117:11129

    Article  Google Scholar 

  144. Hao L, Song H, Zhan Z, Lv Y (2020) Multifunctional reduced graphene oxide-based nanoplatform for synergistic targeted chemo-photothermal therapy. ACS Appl Bio Mater 3:5213–5222

    Article  CAS  Google Scholar 

  145. Yang S, Wang X, He P, Xu A, Wang G, Duan J, Shi Y, Ding G (2021) Graphene quantum dots with pyrrole N and pyridine N: Superior reactive oxygen species generation efficiency for metal-free sonodynamic tumor therapy. Small 17:2004867

    Article  CAS  Google Scholar 

  146. Li Z, Wang D, Xu M, Wang J, Hu X, Anwar S, Tedesco AC, Moraisde PC, Bi H (2020) Fluorine-containing graphene quantum dots with a high singlet oxygen generation applied for photodynamic therapy. J Mater Chem B 8, 2598, 2606

    Google Scholar 

  147. Liu X, Yan B, Li Y, Ma X, Jiao W, Shi K, Zhang T, Chen S, He Y, Liang X-J, Fan H (2020) Graphene Oxide-Grafted Magnetic Nanorings Mediated Magnetothermodynamic Therapy Favoring Reactive Oxygen Species-Related Immune Response for Enhanced Antitumor Efficacy. ACS Nano 14:1936–1950

    Article  CAS  Google Scholar 

  148. Raslan A, del Burgo LS, Ciriza J, Pedraz JL (2020) Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm 580:119226

    Article  CAS  Google Scholar 

  149. Bellet P, Gasparotto M, Pressi S, Fortunato A, Scapin G, Mba M, Menna E, Filippini F (2021) Graphene-Based scaffolds for regenerative medicine. Nanomaterials 11:404

    CAS  Google Scholar 

  150. Low FW, Lai CW, Abd Hamid SB (2017) Study of reduced graphene oxide film incorporated of TiO2 species for efficient visible light driven dye-sensitized solar cell. J Mater Sci: Mater Electron. 28, 3819–3836

    Google Scholar 

  151. Sun S, Gao L, Liu Y (2010) Enhanced dye-sensitized solar cell using graphene- photoanode prepared by heterogeneous coagulation. Appl Phys Lett 96:083113

    Article  Google Scholar 

  152. Basu K, Selopal GS, Mohammadnezad M, Akilimali R, Wang ZM, Zhao H, Vetrone F, Rosei F (2020) Hybrid graphene/metal oxide anodes for efficient and stable dye sensitized solar cell. Electrochim Acta 349:136409

    Article  CAS  Google Scholar 

  153. Mustafa MN, Sulaiman Y (2020) Optimization of titanium dioxide decorated by graphene quantum dot as a light scatterer for enhanced dye-sensitized solar cell performance. J Electroanal Chem 876:114516

    Article  CAS  Google Scholar 

  154. Casaluci S, Gemmi M, Pellegrini V, Carloa AD, Bonaccorso F (2016) Graphene-based large area dye-sensitized solar cell modules. Nanoscale 8:5368–5378

    Article  CAS  Google Scholar 

  155. Oh WC, Cho KY, Jung CH, Areerob Y (2020) Hybrid of Graphene based on quaternary Cu2ZnNiSe4–WO3 Nanorods for Counter Electrode in Dye-sensitized Solar Cell Application. Sci Rep 10:4738

    Article  CAS  Google Scholar 

  156. Miao X, Tongay S, Petterson MK, Berke K, Rinzler AG, Appleton BR, Hebard AF (2012) High efficiency graphene solar cells by chemical doping. Nano Lett 12:2745–2750

    Article  CAS  Google Scholar 

  157. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:263302

    Article  Google Scholar 

  158. Ramli NF, Fahsyar PNA, Ludin NA, Teridi MAM, Ibrahim MA, Sepeai S (2021) Graphene dispersion as a passivation layer for the enhancement of perovskite solar cell stability. Mater Chem Phys 257:123798

    Article  CAS  Google Scholar 

  159. Rehman MA, Roy SB, Gwak D, Akhtar I, Nasir N, Kumar S, Khan MF, Heo K, Chun S-H, Seo Y (2020) Solar cell based on vertical graphene nano hills directly grown on Silicon. Carbon 164:235–243

    Article  Google Scholar 

  160. Lin T, Huang F, Lianga J, Wang Y (2011) A facile preparation route for boron-doped graphene, and its CdTe solar cell application. Energy Environ Sci 4:862–865

    Article  Google Scholar 

  161. Wang C, Li D, Too CO, Wallace GG (2009) Electrochemical Properties of Graphene Paper Electrodes Used in Lithium Batteries. Chem Mater 21:2604–2606

    Article  CAS  Google Scholar 

  162. Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of Nitrogen-Doped graphene films for lithium battery application. ACS Nano 4(11):6337–6342

    Article  CAS  Google Scholar 

  163. Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA, Liu J, Zhang J-G (2011) Hierarchically porous graphene as a lithium-air battery electrode. Nano Lett 11:5071–5078

    Article  CAS  Google Scholar 

  164. Shao G, Hanaor DAH, Wang J, Kober D, Li S, Wang X, Shen X, Bekheet MF, Gurlo A (2020) Polymer-Derived SiOC integrated with a graphene aerogel as a highly stable li-ion battery anode. ACS Appl Mater Interfaces 12:46045–46056

    Article  CAS  Google Scholar 

  165. Han X, Zhang Z, Chen H, Zhang Q, Chen S, Yang Y (2020) On the interface design of si and multilayer graphene for a high-performance li-ion battery anode. ACS Appl Mater Interfaces 12:44840–44849

    Article  CAS  Google Scholar 

  166. Ma T, Su TY, Zhang L, Yang J-W, Yao H-B, Lu L-L, Liu Y-F, He C, Yu S-H (2021) Scallion-Inspired graphene scaffold enabled high rate lithium metal battery. Nano Lett 21:2347–2355

    Article  CAS  Google Scholar 

  167. Chen H, Guo F, Liu Y, Huang T, Zheng B, Ananth N, Xu Z, Gao W, Gao C (2017) A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv Mater 29:1605958

    Article  Google Scholar 

  168. Chen H, Xu H, Wang S, Huang T, Xi J, Cai S, Guo F, Xu Z, Gao W, Gao C (2017) Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv 3, 12, eaao7233

    Google Scholar 

  169. Zhang J, Jiang J, Lib H, Zhao XS (2011) A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ Sci 4:4009–4015

    Article  CAS  Google Scholar 

  170. Le LT, Ervin MH, Qiu H, Fuchs BE, Lee WY (2011) Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem commun 13:355–358

    Article  CAS  Google Scholar 

  171. Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L (2012) Renewing Functionalized Graphene as Electrodes for High-Performance Supercapacitors. Adv Mater 24:6348–6355

    Article  CAS  Google Scholar 

  172. Kim H, Park K-Y, Hong J, Kang K (2014) All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Sci Rep 4:5278

    Article  CAS  Google Scholar 

  173. Guo H, Jiao1 T, Zhang Q, Guo W, Peng Q, Yan X. (2015) Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment. Nanoscale Res Lett 10, 272

    Google Scholar 

  174. Jiao T, Guo H, Zhang Q, Peng Q, Tang Y, Yan X, Li B (2015) Reduced graphene oxide-based silver nanoparticle-containing composite hydrogel as highly efficient dye catalysts for wastewater treatment. Sci Rep 5:11873

    Article  CAS  Google Scholar 

  175. Zhong Y, Mahmud S, He Z, Yang Y, Zhang Z, Guo F, Chen Z, Xiong Z, Zhao Y (2020) Graphene oxide modified membrane for highly efficient wastewater treatment by dynamic combination of nanofiltration and catalysis. J Hazard Mater 397:122774

    Article  CAS  Google Scholar 

  176. Ikram M, Raza A, Imran M, Ul-Hamid A, Shahbaz A, Ali S (2020) Hydrothermal synthesis of silver decorated reduced graphene oxide (rGO) nanoflakes with effective photocatalytic activity for wastewater treatment. Nanoscale Res Lett 15:95

    Article  CAS  Google Scholar 

  177. Tabish TA, Memon FA, Gomez DE, Horsell DW, Zhang S (2018) A facile synthesis of porous graphene for efcient water and wastewater treatment. Sci Rep 8:1817

    Article  Google Scholar 

  178. Zhao G, Li J, Ren X, Chen C, Wang X (2011) Few-Layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ Sci Technol 45:10454–10462

    Article  CAS  Google Scholar 

  179. Zhang K, Kemp KC, Chandra V (2012) Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett 81:127–130

    Article  CAS  Google Scholar 

  180. Marjani A, Nakhjiri AT, Adimi M, Jirandehi HF, Shirazian S (2020) Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci Rep 10:2049

    Article  CAS  Google Scholar 

  181. Zhang J, Lu X, Shi C, Yan B, Gong L, Chen J, Xiang L, Xu H, Liu Q, Zeng H (2019) Unraveling the molecular interaction mechanism between graphene oxide and aromatic organic compounds with implications on wastewater treatment. Chem Eng J 358:842–849

    Article  CAS  Google Scholar 

  182. Kumar V, Lee Y-S, Shin J-W, Kim K-H, Kukkar D, Tsang YF (2020) Potential applications of graphene-based nanomaterials as adsorbent for removal of volatile organic compounds. Environ Int 135:105356

    Article  CAS  Google Scholar 

  183. Jung W, Jeong MH, Ahn KH, Kim T, Kim YH (2020) Reduced graphene-oxide filter system for removing filterable and condensable particulate matter from source. J Hazard Mater 391:122223

    Article  CAS  Google Scholar 

  184. Tao L-Q, Zhang K-N, Tian H, Liu Y, Wang D-Y, Chen Y-Q, Yang Y, Ren T-L (2017) Graphene-paper pressure sensor for detecting human motions. ACS Nano 11:8790–8795

    Article  CAS  Google Scholar 

  185. Pang Y, Zhang K, Yang Z, Jiang S, Ju Z, Li Y, Wang X, Wang D, Jian M, Zhang Y, Liang R, Tian H, Yang Y, Ren T-L (2018) Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 12:2346–2354

    Article  CAS  Google Scholar 

  186. Yang Z, Wang D-Y, Pang Y, Li Y-X, Wang Q, Zhang T-Y, Wang J-B, Liu X, Yang Y-Y, Jian J-M, Jian M-Q, Zhang Y-Y, Yang Y, Ren T-L (2018) Simultaneously detecting subtle and intensive human motions based on a silver nanoparticles bridged graphene strain sensor. ACS Appl Mater Interfaces 10:3948–3954

    Article  CAS  Google Scholar 

  187. Yang Z, Pang Y, Han X-L, Yang Y, Ling J, Jian M, Zhang Y, Yang Y, Ren T-L (2018) Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12:9134–9141

    Article  CAS  Google Scholar 

  188. Qiao Y, Li X, Jian J, Wu Q, Wei Y, Shuai H, Hirtz T, Zhi Y, Deng G, Wang Y, Gou G, Xu J, Cui T, Tian H, Yang Y, Ren T-L (2020) Substrate-Free multilayer graphene electronic skin for intelligent diagnosis. ACS Appl Mater Interfaces 12:49945–49956

    Article  CAS  Google Scholar 

  189. He J, Xiao P, Lu W, Shi J, Zhang L, Liang Y, Pan C, Kuo S-W, Chen T (2019) A Universal high accuracy wearable pulse monitoring system via high sensitivity and large linearity graphene pressure sensor. Nano Energy 59:422–433

    Article  CAS  Google Scholar 

  190. Yang T, Jiang X, Zhong Y, Zhao X, Lin S, Li J, Li X, Xu J, Li Z, Zhu H (2017) A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sens. 2:967–974

    Article  CAS  Google Scholar 

  191. Liu W, Liu N, Yue Y, Rao J, Cheng F, Su J, Liu Z, Gao Y (2018) Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 14:1704149

    Article  Google Scholar 

  192. Prabhakaran A, Nayak P (2020) Surface engineering of laser-scribed graphene sensor enables nonenzymatic glucose detection in human body fluids. ACS Appl Nano Mater 3:391–398

    Article  CAS  Google Scholar 

  193. Zhang Y, Li N, Xiang Y, Wang D, Zhang P, Wang Y, Lu S, Xu R, Zhao J (2020) A flexible non-enzymatic glucose sensor based on copper nanoparticles anchored on laser-induced graphene. Carbon 156:506–513

    Article  CAS  Google Scholar 

  194. Zhenga Z, Wang H (2019) Different elements doped graphene sensor for CO2 greenhouse gases detection: The DFT study. Chem Phys Lett 721:33–37

    Article  Google Scholar 

  195. Seekaew Y, Wongchoosuk C (2019) A novel graphene-based electroluminescent gas sensor for carbon dioxide detection. Appl Surf Sci 479:525–531

    Article  CAS  Google Scholar 

  196. Liu G, Tan Q, Kou H, Zhang L, Wang J, Lv W, Dong H, Xiong J (2018) A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 18:1400

    Article  Google Scholar 

  197. Davaji B, Cho HD, Malakoutian M, Lee J-K, Panin G, Kang TW, Lee CH (2017) A patterned single layer graphene resistance temperature sensor. Sci Rep 7, 8811

    Google Scholar 

  198. Yang J, Luo S, Zhou X, Li J, Fu J, Yang W, Wei D (2019) Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces 11:14997–15006

    Article  CAS  Google Scholar 

  199. Pang Y, Jian J, Tu T, Yang Z, Ling J, Li Y, Wang X, Qiao Y, Tian H, Yang Y, Ren T-L (2018) Wearable humidity sensor based on porous graphene network for respiration monitoring. Biosens Bioelectron 116:123–129

    Article  CAS  Google Scholar 

  200. Liang C, Niu G, Chen X, Zhou Z, Yi Z, Ye X, Duan T, Yi Y, Xiao S (2019) Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance. Opt Commun 436:57–62

    Article  CAS  Google Scholar 

  201. Kaidarova A, Liu W, Swanepoel L, Almansouri A, Geraldi NR, Duarte CM, Kosel (2021) Flexible hall sensor made of laser-scribed graphene. npj Flex. Electron. 5, 2

    Google Scholar 

  202. Yu F, Camilli L, Wang T, Mackenzie DMA, Curioni M, Akid R, Bøggild P (2018) Complete long-term corrosion protection with chemical vapour deposited graphene. Carbon 132:78–84

    Article  CAS  Google Scholar 

  203. Ghauri FA, Raza MA, Baig MS, Ibrahim S (2017) Corrosion study of the graphene oxide and reduced graphene oxide-based epoxy coatings. Mater Res Express 4:125601

    Article  Google Scholar 

  204. Ye Y, Zhang D, Liu T, Liu Z, Pu J, Liu W, Zhao H, Li X, Wang L (2019) Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon 142:164–176

    Article  CAS  Google Scholar 

  205. Qiu S, Li W, Zheng W, Zhao H, Wang L (2017) Synergistic effect of polypyrrole-intercalated graphene for enhanced corrosion protection of aqueous coating in 3.5% NaCl Solution. ACS Appl Mater Interfaces 9, 34294–34304

    Google Scholar 

  206. Cui C, Lim ATO, Huang J (2017) A cautionary note on graphene anti-corrosion coatings. Nat Nanotechnol 12:834–835

    Article  CAS  Google Scholar 

  207. Xu X, Yi D, Wang Z, Yu J, Zhang Z, Qiao R, Sun Z, Hu Z, Gao P, Peng H, Liu Z, Yu D, Wang E, Jiang Y, Ding F, Liu K (2018) Greatly enhanced anticorrosion of cu by commensurate graphene coating. Adv Mater 30:1702944

    Article  Google Scholar 

  208. Jin H, Zhang T, Bing W, Dong S, Tian L (2019) Antifouling performance and mechanism of elastic graphene–silicone rubber composite membranes. J Mater Chem B 7:488–497

    Article  CAS  Google Scholar 

  209. Jin H, Bing W, Tian L, Wang P, Zhao J (2019) Combined effects of color and elastic modulus on antifouling performance: a study of graphene Oxide/Silicone Rubber Composite Membranes. Materials 12, 2608

    Google Scholar 

  210. Selim MS, Fatthallah NA, Higazy SA, Hao Z, Mo PJ (2021) A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J Colloid Interface Sci 606:367–383

    Article  Google Scholar 

  211. Jiang T, Qi L, Qin W (2019) Improving the environmental compatibility of marine sensors by surface functionalization with graphene oxide. Anal Chem 91:13268–13274

    Article  CAS  Google Scholar 

  212. Fazli-Shokouhi S, Nasirpouri F, Khatamian M (2019) Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties. J Coat Technol Res 16(4):983–997

    Article  CAS  Google Scholar 

  213. Zhang W, Cheng W, Ziemann E, Be’er A, Lu X, Elimelech M, Bernstein R (2018) Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties. J Membr Sci 565, 293–302

    Google Scholar 

  214. Li X, Zhao W, Yin R, Huang X, Qian L (2018) A highly porous polyaniline-graphene composite used for electrochemical supercapacitors. Eng Sci 3, 89–95

    Google Scholar 

  215. Singh K, Ohlan A, Pham VH, Balasubramaniyan R, Varshney S, Jang J, Hur SH, Choi WM, Kumar M, Dhawan SK, Kong BS, Chung JS (2013) Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5, 2411

    Google Scholar 

  216. Kuila T, Bose S, Khanra P, Kim NH, Rhee KY, Lee JH (2011) Characterization and properties of in situ emulsion polymerized poly(methyl methacrylate)/graphene nanocomposites. Compos Part A 42:1856–1861

    Article  Google Scholar 

  217. Thomassin J-M, Trifkovic M, Alkarmo W, Detrembleur C, Jerome C, Macosko C (2014) Poly(methyl methacrylate)/Graphene oxide nanocomposites by a precipitation polymerization process and their dielectric and rheological characterization. Macromolecules 47:2149–2155

    Article  CAS  Google Scholar 

  218. Zabihi Z, Araghi H, Rodriguez PEDS, Boujakhrout A, Villalonga R (2019) Vapor sensing and interface properties of reduced graphene oxide–poly(methyl methacrylate) nanocomposite. J Mater Sci: Mater Electron 30, 2908–2919

    Google Scholar 

  219. Yuan X (2011) Enhanced interfacial interaction for effective reinforcement of poly(vinyl alcohol) nanocomposites at low loading of graphene. Polym Bull 67:1785–1797

    Article  CAS  Google Scholar 

  220. Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  CAS  Google Scholar 

  221. Wang X, Liu X, Yuan H, Liu H, Liu C, Li T, Yan C, Yan X, Shen C, Guo Z (2018) Non-covalently functionalized graphene strengthened poly(vinyl alcohol). Mater Des 139:372–379

    Article  CAS  Google Scholar 

  222. Zhou T, Chen F, Tang C, Bai H, Zhang Q, Deng H, Fu Q (2011) The preparation of high performance and conductive poly (vinyl alcohol)/graphene nanocomposite via reducing graphite oxide with sodium hydrosulfite. Compos Sci Technol 71:1266–1270

    Article  CAS  Google Scholar 

  223. Li B, Luo J, Huang X, Lin L, Wang L, Hu M, Tang L, Xue H, Gao J, Mai Y-W (2020) A highly stretchable, super-hydrophobic strain sensor based on polydopamine and graphene reinforced nanofiber composite for human motion monitoring. Compos Part B 181:107580

    Article  CAS  Google Scholar 

  224. Amani J, Maleki M, Khoshroo A, Sobhani-Nasab A, Rahimi-Nasrabadi M (2018) An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal Biochem 548:53–59

    Article  CAS  Google Scholar 

  225. Kumar SK, Castro M, Saiter A, Delbreilh L, Feller JF, Thomas S, Grohens Y (2013) Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  CAS  Google Scholar 

  226. Yu Z, Dai T, Yuan S, Zou H, Liu P (2020) Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels. ACS Appl Mater Interfaces 12:30990–31001

    Article  CAS  Google Scholar 

  227. Ganguly S, Ghosh S, Das P, Das TK, Ghosh SK, Das NC (2020) Poly(N-vinylpyrrolidone)-stabilized colloidal graphene-reinforced poly(ethylene-co-methyl acrylate) to mitigate electromagnetic radiation pollution. Polym Bull 77:2923–2943

    Article  CAS  Google Scholar 

  228. Wang X, Yang H, Song L, Hu Y, Xing W, Lu H (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72, 1–6

    Google Scholar 

  229. Hajian M, Reisi MR, Koohmareh GA, Jam ARZ (2012) Preparation and characterization of Polyvinylbutyral/Graphene Nanocomposite. J Polym Res 19:9966

    Article  Google Scholar 

  230. Chen J, Ge J, Zhang L, Li Z, Li J, Sun Y, Qu L (2016) Reduced graphene oxide nanosheets functionalized with poly(styrene sulfonate) as a peroxidase mimetic in a colorimetric assay for ascorbic acid. Microchim Acta 183:1847–1853

    Article  CAS  Google Scholar 

  231. Wu Y, Deng P, Tian Y, Feng J, Xiao J, Li J, Liu J, Li G, He Q (2020) Simultaneous and sensitive determination of ascorbic acid, dopamine and uric acid via an electrochemical sensor based on PVP-graphene composite. J Nanobiotechnol 18:112

    Article  CAS  Google Scholar 

  232. Yasin G, Arif M, Nizam MN, Shakeel M, Khan MA, Khan WQ, Hassan TM, Abbas Z, Farahbakhsh I, Zuo Y (2018) Effect of surfactant concentration in electrolyte on the fabrication and properties of nickel-graphene nanocomposite coating synthesized by electrochemical co-deposition. RSC Adv 8:20039–20047

    Article  CAS  Google Scholar 

  233. Jabbar A, Yasin G, Khan WQ, Anwar MY, Korai RM, Nizam MN, Muhyodin G (2017) Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. RSC Adv 7:31100–31109

    Article  CAS  Google Scholar 

  234. Algul H, Tokur M, Ozcan S, Uysal M, Cetinkaya T, Akbulut H, Alp A (2015) The effect of graphene content and sliding speed on the wear mechanism of nickel–graphene nanocomposites. Appl Surf Sci 359:340–348

    Article  CAS  Google Scholar 

  235. Xiang L, Shen Q, Zhang Y, Bai W, Nie C (2019) One-step electrodeposited Ni-graphene composite coating with excellent tribological properties. Surf Coat Technol 373:38–46

    Article  CAS  Google Scholar 

  236. Hau TV, Trinh PV, Nam NPH, Tu NV, Lam VD, Phuong DD, Minh PN, Thang BH (2020) Electrodeposited nickel–graphene nanocomposite coating: effect of graphene nanoplatelet size on its microstructure and hardness. RSC Adv 10:22080–22090

    Article  Google Scholar 

  237. Chang S-W, Nair AK, Buehler MJ (2013) Nanoindentation study of size effects in nickel–graphene nanocomposites. Philos Mag Lett 93(4):196–203

    Article  CAS  Google Scholar 

  238. Chang S-W, Nair AK, Buehler MJ (2012) Geometry and temperature effects of the interfacial thermal conductance in copper—and nickel–graphene nanocomposites. J Phys: Condens Matter 24, 245301

    Google Scholar 

  239. Khobragade N, Sikdar K, Kumar B, Bera S, Roy D (2019) Mechanical and electrical properties of copper-graphene nanocomposite fabricated by high pressure torsion. J Alloys Compd 776:123–132

    Article  CAS  Google Scholar 

  240. Wang S, Han S, Xin G, Lin J, Wei R, Lian J, Sun K, Zu X, Yu Q (2018) High-quality graphene directly grown on Cu nanoparticles for Cu-graphene nanocomposites. Mater Des 139:181–187

    Article  CAS  Google Scholar 

  241. Pavithra CLP, Sarada BV, Rajulapati KV, Rao TN, Sundararajan G (2014) A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness. Sci Rep 4:4049

    Article  Google Scholar 

  242. Huang J, Xie Z, Huang Y, Xie L, Luo S, Fan Q, Zeng T, Zhang Y, Wang S, Zhang M, Xie Z, Deng X (2020) Electrochemical immunosensor with Cu(I)/Cu(II)-chitosan-graphene nanocomposite-based signal amplifcation for the detection of newcastle disease virus. Sci Rep 10:13869

    Article  CAS  Google Scholar 

  243. Shabnam L, Faisal SN, Roy AK, Haque E, Minett AI, Gomes VG (2017) Doped graphene/Cu nanocomposite: A high sensitivity non-enzymatic glucose sensor for food. Food Chem 221:751–759

    Article  CAS  Google Scholar 

  244. Yuan W, Gu Y, Li L (2012) Green synthesis of graphene/Ag nanocomposites. Appl Surf Sci 261:753–758

    Article  CAS  Google Scholar 

  245. Khan ME, Khan MM, Cho MH (2015) Biogenic synthesis of a Ag–graphene nanocomposite with efficient photocatalytic degradation, electrical conductivity and photoelectrochemical performance. New J Chem 39:8121–8129

    Article  CAS  Google Scholar 

  246. Shen J, Shi M, Li N, Yan B, Ma H, Hu Y, Ye M (2010) Facile synthesis and application of ag-chemically converted graphene nanocomposite. Nano Res 3:339–349

    Article  CAS  Google Scholar 

  247. Pasricha R, Gupta S, Srivastava AK (2009) A facile and novel synthesis of ag–graphene-based nanocomposites. Small 5(20):2253–2259

    Article  CAS  Google Scholar 

  248. Wang P, Liu Z-G, Chen X, Meng F-L, Liu J-H, Huang X-J (2013) UV irradiation synthesis of an Au–graphene nanocomposite with enhanced electrochemical sensing properties. J. Mater. Chem. A 1:9189

    Article  CAS  Google Scholar 

  249. Khan ME, Khan MM, Cho MH (2015) Green synthesis, photocatalytic and photoelectrochemical performance of an Au–Graphene nanocomposite. RSC Adv 5:26897–26904

    Article  CAS  Google Scholar 

  250. Govindhan M, Amiri M, Chen A (2015) Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens Bioelectron 66:474–480

    Article  CAS  Google Scholar 

  251. Çiplak Z, Yildiz N, Çalimli Ay (2015) Investigation of graphene/ag nanocomposites synthesis parameters for two different synthesis methods. Fuller Nanotub Carbon Nanostructures 23, 4, 361–370

    Google Scholar 

  252. Tahernejad-Javazmi F, Shabani-Nooshabadi M, Karimi-Maleh H (2019) 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos Part B 172:666–670

    Article  CAS  Google Scholar 

  253. Vengatesan MR, Darawsheh IFF, Govindan B, Alhseinat E, Banat F (2019) Ag-Cu bimetallic nanoparticle decorated graphene nanocomposite as an effective anode material for hybrid capacitive deionization (HCDI) System. Electrochim Acta 297:1052–1062

    Article  CAS  Google Scholar 

  254. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2010) TiO2-Graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-Graphene truly different from other TiO2-Carbon composite materials? ACS Nano 4(12):7303–7314

    Article  CAS  Google Scholar 

  255. Zhang Y, Tang Z-R, Fu X, Xu Y-J (2011) Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: what advantage does graphene have over its forebear carbon nanotube? ACS Nano 5(9):7426–7435

    Article  CAS  Google Scholar 

  256. Qiu J, Lai C, Wang Y, Li S, Zhang S (2014) Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium-ion batteries. Chem Eng J 256:247–254

    Article  CAS  Google Scholar 

  257. Le Z, Liu F, Nie P, Li X, Liu X, Bian Z, Chen G, Wu HB, Lu Y (2017) Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2−Graphene nanocomposite enables high performance sodium-ion capacitors. ACS Nano 11:2952–2960

    Article  CAS  Google Scholar 

  258. Fan Y, Lu H-T, Liu J-H, Yang C-P, Jing Q-S, Zhang Y-X, Yang X-K, Huang K-J (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite. Colloids Surf B: Biointerfaces 83:78–82

    Article  CAS  Google Scholar 

  259. Lee S, Oh J, Kim D, Piao Y (2016) A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions. Talanta 160:528–536

    Article  CAS  Google Scholar 

  260. Sua H, Ye Z, Hmidi N (2017) High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids and Surfaces A: Physicochem. Eng. Aspects 522, 161–172

    Google Scholar 

  261. Yuan Y, Jiang W, Wang Y, Shen P, Li F, Li P, Zhao F, Gao H (2014) Hydrothermal preparation of Fe2O3/graphene nanocomposite and its enhanced catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci 303:354–359

    Article  CAS  Google Scholar 

  262. Xiao L, Schroeder M, Kluge S, Balducci A, Hagemann U, Schulz C, Wiggers H (2015) Direct self-assembly of Fe2O3/reduced graphene oxide nanocomposite for high-performance lithium-ion batteries. J Mater Chem A 3:11566–11574

    Article  CAS  Google Scholar 

  263. Jiang W, Liang F, Wang J, Su L, Wu Y, Wang L (2014) Enhanced electrochemical performances of FeOx–graphene nanocomposites as anode materials for alkaline nickel–iron batteries. RSC Adv 4:15394–15399

    Article  CAS  Google Scholar 

  264. Ren H, Bai Y, Wang X, Ni Q, Wang Z, Li Y, Chen G, Wu F, Xu H, Wu C (2019) High-Capacity interstitial Mn-Incorporated MnxFe3−xO4/Graphene nanocomposite for sodium-ion battery anodes. ACS Appl Mater Interfaces 11:37812–37821

    Article  CAS  Google Scholar 

  265. Liang C, Song P, Ma A, Shi X, Gub H, Wang L, Qiu H, Kong J, Gu J (2019) Highly oriented three-dimensional structures of Fe3O4 decorated CNTs/reduced graphene oxide foam/epoxy nanocomposites against electromagnetic pollution. Compos Sci Technol 181:107683

    Article  CAS  Google Scholar 

  266. Shen B, Zhai W, Tao M, Ling J, Zheng W (2013) Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl Mater Interfaces 5:11383–11391

    Article  CAS  Google Scholar 

  267. Wang B, Wu X-L, Shu C-Y, Guo Y-G, Wang C-R (2010) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20:10661–10664

    Article  CAS  Google Scholar 

  268. Rai AK, Anh LT, Gim J, Mathew V, Kang J, Paul BJ, Singh NK, Song J, Kim J (2013) Facile approach to synthesize CuO/reduced graphene oxide nanocomposite as anode materials for lithium-ion battery. J Power Sources 244:435–441

    Article  CAS  Google Scholar 

  269. Perreault LL, Colò F, Meligrana G, Kim K, Fiorilli S, Bella F, Nair JR, Vitale-Brovarone C, Florek J, Kleitz F, Gerbaldi C (2018) Spray-Dried mesoporous mixed Cu-Ni Oxide@Graphene nanocomposite microspheres for high power and durable li-ion battery anodes. Adv Energy Mater 8:1802438

    Article  Google Scholar 

  270. Orhan Z, Cinan E, Çaldıran Z, Kurucu Y, Daş E (2020) Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p‑Si junction diode. J Mater Sci: Mater Electron 31, 12715–12724

    Google Scholar 

  271. Luo L, Zhu Li, Wang Z (2012) Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode. Bioelectrochemistry 88, 156–163

    Google Scholar 

  272. Gayathri S, Jayabal P, Kottaisamy M, Ramakrishnan V (2014) Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties. J Appl Phys 115:173504

    Article  Google Scholar 

  273. Lonkar SP, Pillai V, Abdala A (2019) Solvent-free synthesis of ZnO-graphene nanocomposite with superior photocatalytic activity. Appl Surf Sci 465:1107–1113

    Article  CAS  Google Scholar 

  274. Yukird J, Kongsittikul P, Qin J, Chailapakul O, Rodthongkum N (2018) ZnO@graphene nanocomposite modified electrode for sensitive and simultaneous detection of Cd (II) and Pb (II). Synth Met 245:251–259

    Article  CAS  Google Scholar 

  275. Anand K, Singh O, Singh MP, Kaur J, Singh RC (2014) Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuator B 195:409–415

    Article  CAS  Google Scholar 

  276. Jayabal P, Gayathri S, Sasirekha V, Mayandi J, Ramakrishnan V (2014) Preparation and characterization of ZnO/graphene nanocomposite for improved photovoltaic performance. J Nanopart Res 16:2640

    Article  Google Scholar 

  277. Moradi S, Sobhgol SA, Hayati F, Isari AA, Kakavandi B, Bashardoust P, Anvaripour B (2020) Performance and reaction mechanism of MgO/ZnO/Graphene ternary nanocomposite in coupling with LED and ultrasound waves for the degradation of sulfamethoxazole and pharmaceutical wastewater. Sep Purif Technol 251:117373

    Article  CAS  Google Scholar 

  278. Chen W, Song K, Mi L, Feng X, Zhang J, Cui S, Liu C (2017) Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J. Mater. Chem. A 5, 10027-10038

    Google Scholar 

  279. Su D, Ahn H-J, Wang G (2013) SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49:3131–3133

    Article  CAS  Google Scholar 

  280. Zhang D, Chang H, Li P, Liu R, Xue Q (2016) Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens Actuators B 225:233–240

    Article  CAS  Google Scholar 

  281. Zhang M, Lei D, Yu X, Chen L, Li Q, Wang Y, Wang T, Cao G (2012) Graphene oxide oxidizes stannous ions to synthesize tin sulfide–graphene nanocomposites with small crystal size for high performance lithium ion batteries. J Mater Chem 22:23091–23097

    Article  CAS  Google Scholar 

  282. Ma T, Sun L, Niu Q, Xu Y, Zhu K, Liu X, Guo X, Zhang J (2019) N-doped carbon-coated Tin sulfide/graphene nanocomposite for enhanced lithium storage. Electrochim Acta 300:131–137

    Article  CAS  Google Scholar 

  283. Shi J, Wang Y, Su Q, Cheng F, Kong X, Lin J, Zhu T, Liang S, Pan A (2018) N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries. Chem Eng J 353:606–614

    Article  CAS  Google Scholar 

  284. Yang B, Zuo X, Chen P, Zhou L, Yang X, Zhang H, Li G, Wu M, Ma Y, Jin S, Chen X (2015) Nanocomposite of tin sulfide nanoparticles with reduced graphene oxide in high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 7:137–143

    Article  CAS  Google Scholar 

  285. Wu J, Wu Z, Ding H, Wei Y, Huang W, Yang X, Li Z, Qiu L, Wang X (2020) Flexible, 3D SnS2/Reduced graphene oxide heterostructured NO2 sensor. Sens Actuators B: Chem 305:127445

    Article  CAS  Google Scholar 

  286. Johny J, Sepulveda-Guzman S, Krishnan B, Avellaneda DA, Aguilar Martinez JA, Anantharaman MR, Shaji S (2019) Tin sulfide: Reduced graphene oxide nanocomposites for photovoltaic and electrochemical applications. Sol Energy Mater Sol Cells 189, 53–62

    Google Scholar 

  287. Kapadnis RS, Bansode SB, Supekar AT, Bhujbal PK, Kale SS, Jadkar SR, Pathan HM (2020) Cadmium telluride/cadmium sulfide thin films solar cells: a review. ES Energy Environ 10:3–12

    CAS  Google Scholar 

  288. Zeng P, Zhang Q, Peng T, Zhang X (2011) One-pot synthesis of reduced graphene oxide–cadmium sulfide nanocomposite and its photocatalytic hydrogen production. Phys Chem Chem Phys 13:21496–21502

    Article  CAS  Google Scholar 

  289. Peng T, Li K, Zeng P, Zhang Q, Zhang X (2012) Enhanced photocatalytic hydrogen production over graphene oxide−cadmium sulfide nanocomposite under visible light irradiation. J Phys Chem C 116:22720–22726

    Article  CAS  Google Scholar 

  290. Alhammadi S, Minnam Reddy VR, Gedi S, Park H, Sayed MS, Shim J-J, Kim WK (2020) Performance of Graphene–CdS hybrid nanocomposite thin film for applications in Cu(In,Ga)Se2 Solar Cell and H2 Production. Nanomaterials 10, 245

    Google Scholar 

  291. Ge L, Hong Q, Li H, Liu C, Li F (2019) Direct-Laser-Writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv Funct Mater 29:1904000

    Article  Google Scholar 

  292. Roshan H, Sheikhi MH, Faramarzi Haghighi MK, Padidar P (2020) High-Performance room temperature methane gas sensor based on lead sulfide/reduced graphene oxide nanocomposite. IEEE Sens. J. 20, 5

    Google Scholar 

  293. Qu B, Chen Y, Zhang M, Hu L, Lei D, Lu B, Li Q, Wang Y, Chen L, Wang T (2012) β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors. Nanoscale 4:7810–7816

    Article  CAS  Google Scholar 

  294. Zhu J, Zhou W, Zhou Y, Cheng X, Yang J (2019) Cobalt sulfide/reduced graphene oxide nanocomposite with enhanced performance for supercapacitors. J Electron Mater 48:1531–1539

    Article  CAS  Google Scholar 

  295. Ramachandran R, Felix S, Saranya M, Santhosh C, Velmurugan V, Chakkravarthy Ragupathy BP, Jeong SK, Grace AN (2013) Synthesis of cobalt sulfide-graphene (CoS/G) nanocomposites for supercapacitor applications. IEEE Trans. Nanotechnol. 12, 6, 985–990

    Google Scholar 

  296. Huang G, Chen T, Wang Z, Chang K, Chen W (2013) Synthesis and electrochemical performances of cobalt sulfides/graphene nanocomposite as anode material of Li-ion battery. J Power Sources 235:122–128

    Article  CAS  Google Scholar 

  297. Prasad J, Singh AK, Yadav AN, Kumar A, Tomar M, Srivastava A, Kumar P, Gupta V, Singh K (2020) Molybdenum disulfide-wrapped carbon nanotube-reduced graphene oxide (CNT/MoS2-rGO) nanohybrids for excellent and fast removal of electromagnetic interference pollution. ACS Appl Mater Interfaces 12:40828–40837

    Article  CAS  Google Scholar 

  298. Khan M, Yousaf AB, Chen M, Wei C, Wu X, Huang N, Qi Z, Li L (2016) Molybdenum sulfide/graphene-carbon nanotube nanocomposite material for electrocatalytic applications in hydrogen evolution reactions. Nano Res 9(3):837–848

    Article  CAS  Google Scholar 

  299. Peng W, Wang W, Han G, Huang Y, Zhang Y (2020) Fabrication of 3D flower-like MoS2/graphene composite as high-performance electrode for capacitive deionization. Desalination 473:114191

    Article  CAS  Google Scholar 

  300. Yang YJ, Li W, Wu X (2014) Copper sulfide/reduced graphene oxide nanocomposite for detection of hydrazine and hydrogen peroxide at low potential in neutral medium. Electrochim Acta 123:260–267

    Article  CAS  Google Scholar 

  301. Shi F, Zheng W, Wang W, Hou F, Lei B, Sun Z, Sun W (2015) Application of graphene-copper sulfide nanocomposite modified electrode for electrochemistry and electrocatalysis of haemoglobin. Biosens Bioelectron 64:131–137

    Article  CAS  Google Scholar 

  302. Wang A, Wang H, Zhang S, Mao C, Song J, Niu H, Jin B, Tian Y (2013) Controlled synthesis of nickel sulfide/graphene oxide nanocomposite for high-performance supercapacitor. Appl Surf Sci 282:704–708

    Article  CAS  Google Scholar 

  303. Xing Z, Chu Q, Ren X, Tian J, Asiri AM, Alamry KA, Al-Youbi AO, Sun X (2013) Biomolecule-assisted synthesis of nickel sulfides/reduced graphene oxide nanocomposites as electrode materials for supercapacitors. Electrochem commun 32:9–13

    Article  CAS  Google Scholar 

  304. Huang K-J, Wang L, Liu Y-J, Gan T, Liu Y-M, Wang L-L, Fan Y (2013) Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim Acta 107:379–387

    Article  CAS  Google Scholar 

  305. Wu D, Wang C, Wu M, Chao Y, He P, Ma J (2020) Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem 43:24–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Asif, M., Ahmad, I. (2023). Synthesis and Applications of Graphene and Its Nanocomposites. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_2

Download citation

Publish with us

Policies and ethics