Skip to main content

Ceria-Based Nano-composites: A Comparative Study on Their Contributions to Important Catalytic Processes

  • Chapter
  • First Online:
Synthesis and Applications of Nanomaterials and Nanocomposites

Part of the book series: Composites Science and Technology ((CST))

  • 274 Accesses

Abstract

CeO2 has been an important functional material due to its unique oxygen storage capacity and ability to form Ce3+/Ce4+ redox system. The abilities of CeO2 can be further modified by forming composites with noble metals and metal oxides, which can lead to the design of unique catalysts for different catalytic processes. Hereby, the use of CeO2 based composites in the important gas phase, liquid phase and photocatalytic reactions, namely—water–gas shifting, oxidation of alcohol, water splitting, photocatalytic degradation of organic pollutants, Suzuki–Miyaura coupling etc. have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Intelligence Report: Business Shifts in the Global Catalytic Process Industries, 2017–2023. In: Catal. Group. https://www.catalystgrp.com/multiclient_studies/intelligence-report-business-shifts-global-catalytic-process-industries-2017-2023/. Accessed 8 Sep 2020

  2. Wisniak J (2010) The history of catalysis. From the beginning to nobel prizes. Educ Quím 21:60–69. https://doi.org/10.1016/S0187-893X(18)30074-0

    Article  CAS  Google Scholar 

  3. Wang D, Astruc D (2017) The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem Soc Rev 46:816–854. https://doi.org/10.1039/C6CS00629A

    Article  CAS  Google Scholar 

  4. Dumesic JA, Huber GW, Boudart M (2008) Principles of heterogeneous catalysis. In: Handbook of heterogeneous catalysis. American Cancer Society

    Google Scholar 

  5. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116:5987–6041. https://doi.org/10.1021/acs.chemrev.5b00603

    Article  CAS  Google Scholar 

  6. Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F (2021) Ceria-based materials for thermocatalytic and photocatalytic organic synthesis. ACS Catal 11:9618–9678. https://doi.org/10.1021/acscatal.1c02443

    Article  CAS  Google Scholar 

  7. Rodriguez JA, Grinter DC, Liu Z, Palomino RM, Senanayake SD (2017) Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem Soc Rev 46:1824–1841. https://doi.org/10.1039/C6CS00863A

    Article  CAS  Google Scholar 

  8. Fauzi AA, Jalil AA, Hassan NS, Aziz FFA, Azami MS, Hussain I, Saravanan R, Vo D-VN (2022) A critical review on relationship of CeO2-based photocatalyst towards mechanistic degradation of organic pollutant. Chemosphere 286:131651. https://doi.org/10.1016/j.chemosphere.2021.131651

    Article  CAS  Google Scholar 

  9. Wang J, Xiao X, Liu Y, Pan K, Pang H, Wei S (2019) The application of CeO2-based materials in electrocatalysis. J Mater Chem A 7:17675–17702. https://doi.org/10.1039/C9TA04804A

    Article  CAS  Google Scholar 

  10. Trovarelli A, Fornasiero P (2013) Catalysis by ceria and related materials. World Scientific

    Book  Google Scholar 

  11. Li Q, Song L, Liang Z, Sun M, Wu T, Huang B, Luo F, Du Y, Yan C-H (2021) A review on Ceo2-based electrocatalyst and photocatalyst in energy conversion. Adv Energy Sustain Res 2:2000063. https://doi.org/10.1002/aesr.202000063

    Article  CAS  Google Scholar 

  12. Ruiz Puigdollers A, Schlexer P, Tosoni S, Pacchioni G (2017) Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal 7:6493–6513. https://doi.org/10.1021/acscatal.7b01913

    Article  CAS  Google Scholar 

  13. Guozhong C (2004) Nanostructures and nanomaterials: synthesis, properties and applications. World Scientific

    Google Scholar 

  14. Jiang Y, Adams JB, van Schilfgaarde M (2005) Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. J Chem Phys 123:064701. https://doi.org/10.1063/1.1949189

    Article  CAS  Google Scholar 

  15. Mullins DR, Albrecht PM, Calaza F (2013) Variations in reactivity on different crystallographic orientations of cerium oxide. Top Catal 56:1345–1362. https://doi.org/10.1007/s11244-013-0146-7

    Article  CAS  Google Scholar 

  16. Mai H-X, Sun L-D, Zhang Y-W, Si R, Feng W, Zhang H-P, Liu H-C, Yan C-H (2005) Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B 109:24380–24385. https://doi.org/10.1021/jp055584b

    Article  CAS  Google Scholar 

  17. Alcala R, DeLaRiva A, Peterson EJ, Benavidez A, Garcia-Vargas CE, Jiang D, Pereira-Hernández XI, Brongersma HH, ter Veen R, Staněk J, Miller JT, Wang Y, Datye A (2021) Atomically dispersed dopants for stabilizing ceria surface area. Appl Catal B Environ 284:119722. https://doi.org/10.1016/j.apcatb.2020.119722

    Article  CAS  Google Scholar 

  18. Khan MA, Enam-Ul-Haq JMS, Xu C, Ahmad Shah SS, Nazir MA, Imran M, Assiri MA, Ahmad A, Hussain S (2021) Facile synthesis of ceria-based composite oxide materials by combustion for high-performance solid oxide fuel cells. Ceram Int 47:22035–22041. https://doi.org/10.1016/j.ceramint.2021.04.223

    Article  CAS  Google Scholar 

  19. Tovt A, Stetsovych V, Dvořák F, Johánek V, Mysliveček J (2019) Ordered phases of reduced ceria as inverse model catalysts. Appl Surf Sci 465:557–563. https://doi.org/10.1016/j.apsusc.2018.09.068

    Article  CAS  Google Scholar 

  20. Rodriguez JA, Graciani J, Evans J, Park JB, Yang F, Stacchiola D, Senanayake SD, Ma S, Pérez M, Liu P, Sanz JFdez, Hrbek J (2009) Water-gas shift reaction on a highly active inverse CeOx/Cu(111) catalyst: unique role of ceria nanoparticles. Angew Chem Int Ed 48:8047–8050. https://doi.org/10.1002/anie.200903918

  21. Castellarin-Cudia C, Surnev S, Schneider G, Podlucky R, Ramsey MG, Netzer FP (2004) Strain-induced formation of arrays of catalytically active sites at the metal–oxide interface. Surf Sci 554:L120–L126. https://doi.org/10.1016/j.susc.2004.01.059

    Article  CAS  Google Scholar 

  22. Hansen TW, DeLaRiva AT, Challa SR, Datye AK (2013) Sintering of Catalytic nanoparticles: particle migration or Ostwald ripening? Acc Chem Res 46:1720–1730. https://doi.org/10.1021/ar3002427

    Article  CAS  Google Scholar 

  23. Tauster SJ, Fung SC (1978) Strong metal-support interactions: occurrence among the binary oxides of groups IIA–VB. J Catal 55:29–35. https://doi.org/10.1016/0021-9517(78)90182-3

    Article  CAS  Google Scholar 

  24. Grabchenko MV, Mamontov GV, Zaikovskii VI, La Parola V, Liotta LF, Vodyankina OV (2020) The role of metal–support interaction in Ag/CeO2 catalysts for CO and soot oxidation. Appl Catal B Environ 260:118148. https://doi.org/10.1016/j.apcatb.2019.118148

    Article  CAS  Google Scholar 

  25. Li P, Chen X, Li Y, Schwank JW (2019) A review on oxygen storage capacity of CeO2-based materials: influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. New Insight Environ Catal 18th NCC 327:90–115. https://doi.org/10.1016/j.cattod.2018.05.059

  26. Cargnello M, Doan-Nguyen VVT, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Fornasiero P, Murray CB (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341:771–773. https://doi.org/10.1126/science.1240148

    Article  CAS  Google Scholar 

  27. Spezzati G, Benavidez AD, DeLaRiva AT, Su Y, Hofmann JP, Asahina S, Olivier EJ, Neethling JH, Miller JT, Datye AK, Hensen EJM (2019) CO oxidation by Pd supported on CeO2(100) and CeO2(111) facets. Appl Catal B Environ 243:36–46. https://doi.org/10.1016/j.apcatb.2018.10.015

    Article  CAS  Google Scholar 

  28. Boronat M, Corma A (2010) Oxygen activation on gold nanoparticles: separating the influence of particle size, particle shape and support interaction. Dalton Trans 39:8538–8546. https://doi.org/10.1039/C002280B

    Article  CAS  Google Scholar 

  29. Konsolakis M (2016) The role of Copper-Ceria interactions in catalysis science: recent theoretical and experimental advances. Appl Catal B Environ 198:49–66. https://doi.org/10.1016/j.apcatb.2016.05.037

    Article  CAS  Google Scholar 

  30. ndi LIS, Simándi LI (2003) Advances in catalytic activation of dioxygen by metal complexes. Springer Science & Business Media

    Google Scholar 

  31. Solomon EI, Ginsbach JW, Heppner DE, Kieber-Emmons MT, Kjaergaard CH, Smeets PJ, Tian L, Woertink JS (2010) Copper dioxygen (bio)inorganic chemistry. Faraday Discuss 148:11–39. https://doi.org/10.1039/C005500J

    Article  Google Scholar 

  32. James TE, Hemmingson SL, Ito T, Campbell CT (2015) Energetics of Cu adsorption and adhesion onto reduced CeO2(111) surfaces by calorimetry. J Phys Chem C 119:17209–17217. https://doi.org/10.1021/acs.jpcc.5b04621

    Article  CAS  Google Scholar 

  33. Branda MM, Hernández NC, Sanz JFdez, Illas F (2010) Density functional theory study of the interaction of Cu, Ag, and Au atoms with the regular CeO2(111) Surface. J Phys Chem C 114:1934–1941. https://doi.org/10.1021/jp910782r

  34. Cui L, Tang Y, Zhang H, Hector LG, Ouyang C, Shi S, Li H, Chen L (2012) First-principles investigation of transition metal atom M (M = Cu, Ag, Au) adsorption on CeO2(110). Phys Chem Chem Phys 14:1923–1933. https://doi.org/10.1039/C2CP22720G

    Article  CAS  Google Scholar 

  35. Chen L-J, Tang Y, Cui L, Ouyang C, Shi S (2013) Charge transfer and formation of Ce3+ upon adsorption of metal atom M (M = Cu, Ag, Au) on CeO2 (100) surface. J Power Sources 234:69–81. https://doi.org/10.1016/j.jpowsour.2013.01.121

    Article  CAS  Google Scholar 

  36. Growth, structure, and stability of Ag on CeO2(111): synchrotron radiation photoemission studies. J Phys Chem C. https://pubs.acs.org/doi/abs/10.1021/jp112392y. Accessed 25 Mar 2020

  37. Luches P, Pagliuca F, Valeri S, Illas F, Preda G, Pacchioni G (2012) Nature of Ag islands and nanoparticles on the CeO2(111) surface. J Phys Chem C 116:1122–1132. https://doi.org/10.1021/jp210241c

    Article  CAS  Google Scholar 

  38. (2006) Oxygen reduction reactions in the SOFC cathode of Ag/CeO2. Solid State Ion 177:939–947. https://doi.org/10.1016/j.ssi.2006.02.029

  39. (2009) Soot combustion over silver-supported catalysts. Appl Catal B Environ 91:489–498. https://doi.org/10.1016/j.apcatb.2009.06.019

  40. Farmer JA, Campbell CT (2010) Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329:933–936. https://doi.org/10.1126/science.1191778

    Article  CAS  Google Scholar 

  41. Green M (1969) Work function: measurements and results. In: Solid state surface science. M. Dekker

    Google Scholar 

  42. Hölzl J, Schulte FK, Wagner H (1979) Work functions of metals. Solid Surf Phys

    Google Scholar 

  43. Saravanan R, Agarwal S, Gupta VK, Khan MM, Gracia F, Mosquera E, Narayanan V, Stephen A (2018) Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. J Photochem Photobiol Chem 353:499–506. https://doi.org/10.1016/j.jphotochem.2017.12.011

    Article  CAS  Google Scholar 

  44. Chang S, Li M, Hua Q, Zhang L, Ma Y, Ye B, Huang W (2012) Shape-dependent interplay between oxygen vacancies and Ag–CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J Catal 293:195–204. https://doi.org/10.1016/j.jcat.2012.06.025

    Article  CAS  Google Scholar 

  45. (2016) Soot oxidation over CeO2 and Ag/CeO2: factors determining the catalyst activity and stability during reaction. J Catal 337:188–198. https://doi.org/10.1016/j.jcat.2016.01.019

  46. Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew Chem Int Ed 44:4778–4781. https://doi.org/10.1002/anie.200500659

    Article  CAS  Google Scholar 

  47. Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Water gas shift reaction on Cu and Au nanoparticles supported on CeO2(111) and ZnO(000$\bar 1$): intrinsic activity and importance of support interactions. Angew Chem Int Ed 46:1329–1332. https://doi.org/10.1002/anie.200603931

    Article  CAS  Google Scholar 

  48. Branda MM, Castellani NJ, Grau-Crespo R, de Leeuw NH, Hernandez NC, Sanz JF, Neyman KM, Illas F (2009) On the difficulties of present theoretical models to predict the oxidation state of atomic Au adsorbed on regular sites of CeO2(111). J Chem Phys 131:094702. https://doi.org/10.1063/1.3216102

    Article  CAS  Google Scholar 

  49. Castellani NJ, Branda MM, Neyman KM, Illas F (2009) Density functional theory study of the adsorption of au atom on cerium oxide: effect of low-coordinated surface sites. J Phys Chem C 113:4948–4954. https://doi.org/10.1021/jp8094352

    Article  CAS  Google Scholar 

  50. Zhang C, Michaelides A, King DA, Jenkins SJ (2008) Structure of gold atoms on stoichiometric and defective ceria surfaces. J Chem Phys 129:194708. https://doi.org/10.1063/1.3009629

    Article  CAS  Google Scholar 

  51. Engel J, Schwartz E, Catlow CRA, Roldan A (2020) The influence of oxygen vacancy and Ce 3+ ion positions on the properties of small gold clusters supported on CeO 2-x (111). J Mater Chem A

    Google Scholar 

  52. Lin Y, Wu Z, Wen J, Ding K, Yang X, Poeppelmeier KR, Marks LD (2015) Adhesion and atomic structures of gold on ceria nanostructures: the role of surface structure and oxidation state of ceria supports. Nano Lett 15:5375–5381. https://doi.org/10.1021/acs.nanolett.5b02694

    Article  CAS  Google Scholar 

  53. Hu Z, Li B, Sun X, Metiu H (2011) Chemistry of doped oxides: the activation of surface oxygen and the chemical compensation effect. J Phys Chem C 115:3065–3074. https://doi.org/10.1021/jp110333z

    Article  CAS  Google Scholar 

  54. Hu Z, Metiu H (2011) Effect of dopants on the energy of oxygen-vacancy formation at the surface of ceria: local or global? J Phys Chem C 115:17898–17909. https://doi.org/10.1021/jp205432r

    Article  CAS  Google Scholar 

  55. Zhang J, Yang Y, Liu J, Xiong B (2021) Mechanistic understanding of CO2 hydrogenation to methane over Ni/CeO2 catalyst. Appl Surf Sci 558:149866. https://doi.org/10.1016/j.apsusc.2021.149866

    Article  CAS  Google Scholar 

  56. Shen H, Dong Y, Yang S, He Y, Wang Q, Cao Y, Wang W, Wang T, Zhang Q, Zhang H (2022) Identifying the roles of Ce3+−OH and Ce−H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst. Nano Res. https://doi.org/10.1007/s12274-022-4207-8

    Article  Google Scholar 

  57. Yang L, Pastor-Pérez L, Gu S, Sepúlveda-Escribano A, Reina TR (2018) Highly efficient Ni/CeO2-Al2O3 catalysts for CO2 upgrading via reverse water-gas shift: effect of selected transition metal promoters. Appl Catal B Environ 232:464–471. https://doi.org/10.1016/j.apcatb.2018.03.091

    Article  CAS  Google Scholar 

  58. Chafi Z, Keghouche N, Minot C (2007) DFT study of Ni–CeO2 interaction: adsorption and insertion. Surf Sci 601:2323–2329. https://doi.org/10.1016/j.susc.2007.03.041

    Article  CAS  Google Scholar 

  59. Wang X, Shen M, Wang J, Fabris S (2010) Enhanced oxygen buffering by substitutional and interstitial Ni point defects in ceria: a first-principles DFT+U study. J Phys Chem C 114:10221–10228. https://doi.org/10.1021/jp101100f

    Article  CAS  Google Scholar 

  60. Trovarelli A (2002) Fundamentals and applications of ceria in combustion reactions. In: catalysis by ceria and related materials. World Scientific

    Google Scholar 

  61. Shyu JZ, Otto K (1989) Characterization of Pt/γ-alumina catalysts containing ceria. J Catal 115:16–23. https://doi.org/10.1016/0021-9517(89)90003-1

    Article  CAS  Google Scholar 

  62. He B, Wang J, Ma D, Tian Z, Jiang L, Xu Y, Cheng S (2018) Interaction of Pd single atoms with different CeO2 crystal planes: a first-principles study. Appl Surf Sci 433:1036–1048. https://doi.org/10.1016/j.apsusc.2017.10.134

    Article  CAS  Google Scholar 

  63. Xin Y, Zhang N, Lv Y, Wang J, Li Q, Zhang Z (2020) From nanoparticles to single atoms for Pt/CeO2: synthetic strategies, characterizations and applications. J Rare Earths. https://doi.org/10.1016/j.jre.2020.03.007

    Article  Google Scholar 

  64. Sedighi M, Rostami AA, Alizadeh E (2017) Enhanced electro-oxidation of ethanol using Pt–CeO2 electrocatalyst prepared by electrodeposition technique. Int J Hydrog Energy 42:4998–5005. https://doi.org/10.1016/j.ijhydene.2016.12.014

    Article  CAS  Google Scholar 

  65. Xu C, Shen PK (2004) Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. Chem Commun 2238–2239. https://doi.org/10.1039/B408589B

  66. Kakaei K, Rahimi A, Husseindoost S, Hamidi M, Javan H, Balavandi A (2016) Fabrication of Pt–CeO2 nanoparticles supported sulfonated reduced graphene oxide as an efficient electrocatalyst for ethanol oxidation. Int J Hydrog Energy 41:3861–3869. https://doi.org/10.1016/j.ijhydene.2016.01.013

    Article  CAS  Google Scholar 

  67. Xu C, Shen PK (2005) Electrochamical oxidation of ethanol on Pt-CeO2/C catalysts. J Power Sources 142:27–29. https://doi.org/10.1016/j.jpowsour.2004.10.017

    Article  CAS  Google Scholar 

  68. Mori T, Ou DR, Zou J, Drennan J (2012) Present status and future prospect of design of Pt–cerium oxide electrodes for fuel cell applications. Prog Nat Sci Mater Int 22:561–571. https://doi.org/10.1016/j.pnsc.2012.11.010

    Article  Google Scholar 

  69. Derevyannikova EA, Kardash TY, Stadnichenko AI, Stonkus OA, Slavinskaya EM, Svetlichnyi VA, Boronin AI (2019) Structural insight into strong Pt–CeO2 interaction: from single Pt atoms to PtOx clusters. J Phys Chem C 123:1320–1334. https://doi.org/10.1021/acs.jpcc.8b11009

    Article  CAS  Google Scholar 

  70. Devaiah D, Smirniotis PG (2017) Effects of the Ce and Cr contents in Fe–Ce–Cr ferrite spinels on the high-temperature water-gas shift reaction. Ind Eng Chem Res 56:1772–1781. https://doi.org/10.1021/acs.iecr.6b04707

    Article  CAS  Google Scholar 

  71. Pal DB, Chand R, Upadhyay SN, Mishra PK (2018) Performance of water gas shift reaction catalysts: a review. Renew Sustain Energy Rev 93:549–565. https://doi.org/10.1016/j.rser.2018.05.003

    Article  CAS  Google Scholar 

  72. Ebrahimi P, Kumar A, Khraisheh M (2020) A review of recent advances in water-gas shift catalysis for hydrogen production. Emergent Mater 3:881–917. https://doi.org/10.1007/s42247-020-00116-y

    Article  CAS  Google Scholar 

  73. Andreeva D, Tabakova T, Ilieva L (2012) Ceria-based gold catalysts: synthesis, properties, and catalytic performance for the wgs and prox processes. In: Catalysis by ceria and related materials. Imperial College Press, pp 497–564

    Google Scholar 

  74. Odabaşı Ç, Günay ME, Yıldırım R (2014) Knowledge extraction for water gas shift reaction over noble metal catalysts from publications in the literature between 2002 and 2012. Int J Hydrog Energy 39:5733–5746. https://doi.org/10.1016/j.ijhydene.2014.01.160

    Article  CAS  Google Scholar 

  75. Andreeva D, Idakiev V, Tabakova T, Ilieva L, Falaras P, Bourlinos A, Travlos A (2002) Low-temperature water-gas shift reaction over Au/CeO2 catalysts. Catal Today 72:51–57. https://doi.org/10.1016/S0920-5861(01)00477-1

    Article  CAS  Google Scholar 

  76. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science. https://doi.org/10.1126/science.1150038

    Article  Google Scholar 

  77. López Cámara A, Cortés Corberán V, Martínez-Arias A, Barrio L, Si R, Hanson JC, Rodriguez JA (2020) Novel manganese-promoted inverse CeO2/CuO catalyst: In situ characterization and activity for the water-gas shift reaction. Catal Today 339:24–31. https://doi.org/10.1016/j.cattod.2019.01.014

    Article  CAS  Google Scholar 

  78. Mudiyanselage K, Senanayake SD, Feria L, Kundu S, Baber AE, Graciani J, Vidal AB, Agnoli S, Evans J, Chang R, Axnanda S, Liu Z, Sanz JF, Liu P, Rodriguez JA, Stacchiola DJ (2013) Importance of the metal-oxide interface in catalysis. In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 52:5101–5105. https://doi.org/10.1002/anie.201210077

    Article  CAS  Google Scholar 

  79. Polster CS, Zhang R, Cyb MT, Miller JT, Baertsch CD (2010) Selectivity loss of Pt/CeO2 PROX catalysts at low CO concentrations: mechanism and active site study. J Catal 273:50–58. https://doi.org/10.1016/j.jcat.2010.04.017

    Article  CAS  Google Scholar 

  80. Si R, Raitano J, Yi N, Zhang L, Chan S-W, Flytzani-Stephanopoulos M (2012) Structure sensitivity of the low-temperature water-gas shift reaction on Cu–CeO2 catalysts. Catal Today 180:68–80. https://doi.org/10.1016/j.cattod.2011.09.008

    Article  CAS  Google Scholar 

  81. Si R, Flytzani-Stephanopoulos M (2008) Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew Chem Int Ed 47:2884–2887. https://doi.org/10.1002/anie.200705828

    Article  CAS  Google Scholar 

  82. Chen Y, Li X, Li J, Du Y, Peng Q, Wu L, Xinjun L (2021) CeO2-TiO2 hybid-nanotubes with tunable oxygen vacancies as the support to confine Pt nanoparticles for the low-temperature water-gas shift reaction. ChemistrySelect 6:11900–11907. https://doi.org/10.1002/slct.202102823

    Article  CAS  Google Scholar 

  83. Suchorski Y, Wrobel R, Becker S, Weiss H (2008) CO oxidation on a CeOx/Pt(111) inverse model catalyst surface: catalytic promotion and tuning of kinetic phase diagrams. J Phys Chem C 112:20012–20017. https://doi.org/10.1021/jp806033v

    Article  CAS  Google Scholar 

  84. Matte LP, Thill AS, Lobato FO, Novôa MT, Muniz AR, Poletto F, Bernardi F (2022) Reduction-driven 3D to 2D transformation of Cu nanoparticles. Small 2106583. https://doi.org/10.1002/smll.202106583

  85. Li Z, Zhang X, Shi Q, Gong X, Xu H, Li G (2021) Morphology effect of ceria supports on gold nanocluster catalyzed CO oxidation. Nanoscale Adv 3:7002–7006. https://doi.org/10.1039/D1NA00680K

    Article  CAS  Google Scholar 

  86. Yi G, Xu Z, Guo G, Tanaka K, Yuan Y (2009) Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H2-rich gas over Au/CeO2 catalyst. Chem Phys Lett 479:128–132. https://doi.org/10.1016/j.cplett.2009.08.011

    Article  CAS  Google Scholar 

  87. Martens JA, Bogaerts A, De Kimpe N, Jacobs PA, Marin GB, Rabaey K, Saeys M, Verhelst S (2017) The chemical route to a carbon dioxide neutral world. Chemsuschem 10:1039–1055. https://doi.org/10.1002/cssc.201601051

    Article  CAS  Google Scholar 

  88. Keshri KS, Bhattacharjee S, Singha A, Bhaumik A, Chowdhury B (2022) Synthesis of cyclic carbonates of different epoxides using CO2 as a C1 building block over Ag/TUD-1 mesoporous silica catalyst: a solvent free approach. Mol Catal 522:112234. https://doi.org/10.1016/j.mcat.2022.112234

    Article  CAS  Google Scholar 

  89. Chang K, Zhang H, Cheng M, Lu Q (2020) Application of ceria in CO2 conversion catalysis. ACS Catal 10:613–631. https://doi.org/10.1021/acscatal.9b03935

    Article  CAS  Google Scholar 

  90. Winter LR, Chen R, Chen X, Chang K, Liu Z, Senanayake SD, Ebrahim AM, Chen JG (2019) Elucidating the roles of metallic Ni and oxygen vacancies in CO2 hydrogenation over Ni/CeO2 using isotope exchange and in situ measurements. Appl Catal B Environ 245:360–366. https://doi.org/10.1016/j.apcatb.2018.12.069

    Article  CAS  Google Scholar 

  91. Senanayake SD, Ramírez PJ, Waluyo I, Kundu S, Mudiyanselage K, Liu Z, Liu Z, Axnanda S, Stacchiola DJ, Evans J, Rodriguez JA (2016) Hydrogenation of CO2 to methanol on CeOx/Cu(111) and ZnO/Cu(111) catalysts: role of the metal-oxide interface and importance of Ce3+ sites. J Phys Chem C 120:1778–1784. https://doi.org/10.1021/acs.jpcc.5b12012

    Article  CAS  Google Scholar 

  92. Zhu J, Su Y, Chai J, Muravev V, Kosinov N, Hensen EJM (2020) Mechanism and nature of active sites for methanol synthesis from CO/CO2 on Cu/CeO2. ACS Catal 10:11532–11544. https://doi.org/10.1021/acscatal.0c02909

    Article  CAS  Google Scholar 

  93. Wang Y, Zhao J, Wang T, Li Y, Li X, Yin J, Wang C (2016) CO2 photoreduction with H2O vapor on highly dispersed CeO2/TiO2 catalysts: surface species and their reactivity. J Catal 337:293–302. https://doi.org/10.1016/j.jcat.2015.12.030

    Article  CAS  Google Scholar 

  94. Yang S-C, Pang SH, Sulmonetti TP, Su W-N, Lee J-F, Hwang B-J, Jones CW (2018) Synergy between ceria oxygen vacancies and Cu nanoparticles facilitates the catalytic conversion of CO2 to CO under mild conditions. ACS Catal 8:12056–12066. https://doi.org/10.1021/acscatal.8b04219

    Article  CAS  Google Scholar 

  95. Wilson K, Lee AF (2013) Chapter 2: Mechanistic studies of alcohol selective oxidation. In: Heterogeneous catalysts for clean technology: spectroscopy, design, and monitoring. Wiley

    Google Scholar 

  96. Abad A, Almela C, Corma A, García H (2006) Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts. Tetrahedron 62:6666–6672. https://doi.org/10.1016/j.tet.2006.01.118

    Article  CAS  Google Scholar 

  97. Abad A, Concepción P, Corma A, García H (2005) A collaborative effect between gold and a support induces the selective oxidation of alcohols. Angew Chem Int Ed 44:4066–4069. https://doi.org/10.1002/anie.200500382

    Article  CAS  Google Scholar 

  98. Zheng H, Wei Z-H, Hu X-Q, Xu J, Xue B (2019) Atmospheric selective oxidation of benzyl alcohol catalyzed by Pd nanoparticles supported on CeO2 with various morphologies. ChemistrySelect 4:5470–5475

    Article  CAS  Google Scholar 

  99. Xin P, Li J, Xiong Y, Wu X, Dong J, Chen W, Wang Y, Gu L, Luo J, Rong H, Chen C, Peng Q, Wang D, Li Y (2018) Revealing the active species for aerobic alcohol oxidation by using uniform supported palladium catalysts. Angew Chem 130:4732–4736. https://doi.org/10.1002/ange.201801103

    Article  Google Scholar 

  100. Abad A, Corma A, García H (2008) Catalyst parameters determining activity and selectivity of supported gold nanoparticles for the aerobic oxidation of alcohols: the molecular reaction mechanism. Chem Eur J 14:212–222. https://doi.org/10.1002/chem.200701263

  101. Gazsi A, Bánsági T, Solymosi F (2009) Hydrogen formation in the reactions of methanol on supported Au catalysts. Catal Lett 131:33–41. https://doi.org/10.1007/s10562-009-0052-6

    Article  CAS  Google Scholar 

  102. Gazsi A, Koós A, Bánsági T, Solymosi F (2011) Adsorption and decomposition of ethanol on supported Au catalysts. Catal Today 160:70–78. https://doi.org/10.1016/j.cattod.2010.05.007

    Article  CAS  Google Scholar 

  103. Sheng P-Y, Bowmaker GA, Idriss H (2004) The reactions of ethanol over Au/CeO2. Appl Catal Gen 261:171–181. https://doi.org/10.1016/j.apcata.2003.10.046

    Article  CAS  Google Scholar 

  104. Yee A, Morrison SJ, Idriss H (1999) A study of the reactions of ethanol on CeO2 and Pd/CeO2 by steady state reactions, temperature programmed desorption, and in situ FT-IR. J Catal 186:279–295. https://doi.org/10.1006/jcat.1999.2563

    Article  CAS  Google Scholar 

  105. Yee A, Morrison SJ, Idriss H (2000) A study of ethanol reactions over Pt/CeO2 by temperature-programmed desorption and in Situ FT-IR spectroscopy: evidence of benzene formation. J Catal 191:30–45. https://doi.org/10.1006/jcat.1999.2765

    Article  CAS  Google Scholar 

  106. Guan Y, Ligthart DAJM, Pirgon-Galin Ö, Pieterse JAZ, van Santen RA, Hensen EJM (2011) Gold stabilized by nanostructured ceria supports: nature of the active sites and catalytic performance. Top Catal 54:424–438. https://doi.org/10.1007/s11244-011-9673-2

    Article  CAS  Google Scholar 

  107. Haider P, Kimmerle B, Krumeich F, Kleist W, Grunwaldt J-D, Baiker A (2008) Gold-catalyzed aerobic oxidation of benzyl alcohol: effect of gold particle size on activity and selectivity in different solvents. Catal Lett 125:169–176. https://doi.org/10.1007/s10562-008-9567-5

    Article  CAS  Google Scholar 

  108. Sudarsanam P, Mallesham B, Durgasri DN, Reddy BM (2014) Physicochemical and catalytic properties of nanosized Au/CeO2 catalysts for eco-friendly oxidation of benzyl alcohol. J Ind Eng Chem 20:3115–3121. https://doi.org/10.1016/j.jiec.2013.11.053

    Article  CAS  Google Scholar 

  109. Lei L, Liu H, Wu Z, Qin Z, Wang G, Ma J, Luo L, Fan W, Wang J (2019) Aerobic oxidation of alcohols over isolated single Au atoms supported on CeO2 nanorods: catalysis of interfacial [O–Ov–Ce–O–Au] sites. ACS Appl Nano Mater 2:5214–5223. https://doi.org/10.1021/acsanm.9b01091

    Article  CAS  Google Scholar 

  110. Nahm T-U, Jung R, Kim J-Y, Park W-G, Oh S-J, Park J-H, Allen JW, Chung S-M, Lee YS, Whang CN (1998) Electronic structure of disordered Au-Pd alloys studied by electron spectroscopies. Phys Rev B 58:9817–9825. https://doi.org/10.1103/PhysRevB.58.9817

    Article  CAS  Google Scholar 

  111. Olmos CM, Chinchilla LE, Villa A, Delgado JJ, Hungría AB, Blanco G, Prati L, Calvino JJ, Chen X (2019) Size, nanostructure, and composition dependence of bimetallic Au–Pd supported on ceria–zirconia mixed oxide catalysts for selective oxidation of benzyl alcohol. J Catal 375:44–55. https://doi.org/10.1016/j.jcat.2019.05.002

    Article  CAS  Google Scholar 

  112. Zhang S, Chang C, Huang Z, Ma Y, Gao W, Li J, Qu Y (2015) Visible-light-activated Suzuki-Miyaura coupling reactions of aryl chlorides over the multifunctional Pd/Au/porous nanorods of CeO2 catalysts. ACS Catal 5:6481–6488. https://doi.org/10.1021/acscatal.5b01173

    Article  CAS  Google Scholar 

  113. Chen Z, Vorobyeva E, Mitchell S, Fako E, Ortuño MA, López N, Collins SM, Midgley PA, Richard S, Vilé G, Pérez-Ramírez J (2018) A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat Nanotechnol 13:702–707. https://doi.org/10.1038/s41565-018-0167-2

    Article  CAS  Google Scholar 

  114. Carrettin S, Corma A, Iglesias M, Sánchez F (2005) Stabilization of Au(III) on heterogeneous catalysts and their catalytic similarities with homogeneous Au(III) metal organic complexes. Appl Catal Gen 291:247–252. https://doi.org/10.1016/j.apcata.2005.01.047

    Article  CAS  Google Scholar 

  115. Borkowski T, Dobosz J, Tylus W, Trzeciak AM (2014) Palladium supported on Al2O3–CeO2 modified with ionic liquids as a highly active catalyst of the Suzuki-Miyaura cross-coupling. J Catal 319:87–94. https://doi.org/10.1016/j.jcat.2014.08.007

    Article  CAS  Google Scholar 

  116. Ali S, Basak S, Sikdar S, Roy M (2021) Synergetic effects of green synthesized CeO2 nanorod-like catalyst for degradation of organic pollutants to reduce water pollution. Environ Nanotechnol Monit Manag 16:100539. https://doi.org/10.1016/j.enmm.2021.100539

    Article  CAS  Google Scholar 

  117. Zhao W, Dong Q, Sun C, Xia D, Huang H, Yang G, Wang G, Leung DYC (2021) A novel Au/g-C3N4 nanosheets/CeO2 hollow nanospheres plasmonic heterojunction photocatalysts for the photocatalytic reduction of hexavalentchromium and oxidation of oxytetracycline hydrochloride. Chem Eng J 409:128185. https://doi.org/10.1016/j.cej.2020.128185

    Article  CAS  Google Scholar 

  118. Rahemi Ardekani S, Sabour Rouh Aghdam A, Nazari M, Bayat A, Saievar-Iranizad E, Liavali MN (2019) Synthesis and characterization of photocatalytically active crumpled-shape nanocomposites of nitrogen and sulfur co-doped ZnO–CeO2. Sol Energy Mater Sol Cells 203:110195. https://doi.org/10.1016/j.solmat.2019.110195

    Article  CAS  Google Scholar 

  119. Kesarla MK, Fuentez-Torres MO, Alcudia-Ramos MA, Ortiz-Chi F, Espinosa-González CG, Aleman M, Torres-Torres JG, Godavarthi S (2019) Synthesis of g-C3N4/N-doped CeO2 composite for photocatalytic degradation of an herbicide. J Mater Res Technol 8:1628–1635. https://doi.org/10.1016/j.jmrt.2018.11.008

    Article  CAS  Google Scholar 

  120. Madkour M, Ali AA, Abdel Nazeer A, Al Sagheer F, Belver C (2020) A novel natural sunlight active photocatalyst of CdS/SWCNT/CeO2 heterostructure: in depth mechanistic insights for the catalyst reactivity and dye mineralization. Appl Surf Sci 499:143988. https://doi.org/10.1016/j.apsusc.2019.143988

    Article  CAS  Google Scholar 

  121. Taratayko A, Larichev Y, Zaikovskii V, Mikheeva N, Mamontov G (2021) Ag–CeO2/SBA-15 composite prepared from Pluronic P123@SBA-15 hybrid as catalyst for room-temperature reduction of 4-nitrophenol. Catal Today 375:576–584. https://doi.org/10.1016/j.cattod.2020.05.001

    Article  CAS  Google Scholar 

  122. Zuo X, Ma S, Wu Q, Xiong J, He J, Ma C, Chen Z (2021) Nanometer CeO2 doped high silica ZSM-5 heterogeneous catalytic ozonation of sulfamethoxazole in water. J Hazard Mater 411:125072. https://doi.org/10.1016/j.jhazmat.2021.125072

    Article  CAS  Google Scholar 

  123. Mittal H, Babu R, Dabbawala AA, Stephen S, Alhassan SM (2020) Zeolite-Y incorporated karaya gum hydrogel composites for highly effective removal of cationic dyes. Colloids Surf Physicochem Eng Asp 586:124161. https://doi.org/10.1016/j.colsurfa.2019.124161

    Article  CAS  Google Scholar 

  124. Hu W, Yang J (2017) Two-dimensional van der Waals heterojunctions for functional materials and devices. J Mater Chem C 5:12289–12297. https://doi.org/10.1039/C7TC04697A

    Article  CAS  Google Scholar 

  125. Cano-Franco JC, Álvarez-Láinez M (2019) Effect of CeO2 content in morphology and optoelectronic properties of TiO2-CeO2 nanoparticles in visible light organic degradation. Mater Sci Semicond Process 90:190–197. https://doi.org/10.1016/j.mssp.2018.10.017

    Article  CAS  Google Scholar 

  126. Taddesse AM, Bekele T, Diaz I, Adgo A (2021) Polyaniline supported CdS/CeO2/Ag3PO4 nanocomposite: An “A-B” type tandem n-n heterojunctions with enhanced photocatalytic activity. J Photochem Photobiol Chem 406:113005. https://doi.org/10.1016/j.jphotochem.2020.113005

    Article  CAS  Google Scholar 

  127. Xu Q, Zhang L, Cheng B, Fan J, Yu J (2020) S-scheme heterojunction photocatalyst. Chem 6:1543–1559. https://doi.org/10.1016/j.chempr.2020.06.010

    Article  CAS  Google Scholar 

  128. Munawar T, Mukhtar F, Nadeem MS, Manzoor S, Ashiq MN, Mahmood K, Batool S, Hasan M, Iqbal F (2022) Fabrication of dual Z-scheme TiO2-WO3-CeO2 heterostructured nanocomposite with enhanced photocatalysis, antibacterial, and electrochemical performance. J Alloys Compd 898:162779. https://doi.org/10.1016/j.jallcom.2021.162779

    Article  CAS  Google Scholar 

  129. Shen J, Shen J, Zhang W, Yu X, Tang H, Zhang M, Zulfiqar LQ (2019) Built-in electric field induced CeO2/Ti3C2-MXene Schottky-junction for coupled photocatalytic tetracycline degradation and CO2 reduction. Ceram Int 45:24146–24153. https://doi.org/10.1016/j.ceramint.2019.08.123

    Article  CAS  Google Scholar 

  130. Tanaka A, Hashimoto K, Kominami H (2012) Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. J Am Chem Soc 134:14526–14533. https://doi.org/10.1021/ja305225s

    Article  CAS  Google Scholar 

  131. Wei X, Wang X, Pu Y, Liu A, Chen C, Zou W, Zheng Y, Huang J, Zhang Y, Yang Y, Naushad M, Gao B, Dong L (2021) Facile ball-milling synthesis of CeO2/g-C3N4 Z-scheme heterojunction for synergistic adsorption and photodegradation of methylene blue: characteristics, kinetics, models, and mechanisms. Chem Eng J 420:127719. https://doi.org/10.1016/j.cej.2020.127719

    Article  CAS  Google Scholar 

  132. Vignesh S, Chandrasekaran S, Srinivasan M, Anbarasan R, Perumalsamy R, Arumugam E, Shkir M, Algarni H, AlFaify S (2022) TiO2-CeO2/g-C3N4 S-scheme heterostructure composite for enhanced photo-degradation and hydrogen evolution performance with combined experimental and DFT study. Chemosphere 288:132611. https://doi.org/10.1016/j.chemosphere.2021.132611

    Article  CAS  Google Scholar 

  133. Wen X-J, Niu C-G, Zhang L, Liang C, Zeng G-M (2018) A novel Ag2O/CeO2 heterojunction photocatalysts for photocatalytic degradation of enrofloxacin: possible degradation pathways, mineralization activity and an in depth mechanism insight. Appl Catal B Environ 221:701–714. https://doi.org/10.1016/j.apcatb.2017.09.060

    Article  CAS  Google Scholar 

  134. Magdalane CM, Kaviyarasu K, Vijaya JJ, Siddhardha B, Jeyaraj B, Kennedy J, Maaza M (2017) Evaluation on the heterostructured CeO2/Y2O3 binary metal oxide nanocomposites for UV/Vis light induced photocatalytic degradation of Rhodamine - B dye for textile engineering application. J Alloys Compd 727:1324–1337. https://doi.org/10.1016/j.jallcom.2017.08.209

    Article  CAS  Google Scholar 

  135. Kohantorabi M, Gholami MR (2017) MxNi100−x (M = Ag, and Co) nanoparticles supported on CeO2 nanorods derived from Ce–metal organic frameworks as an effective catalyst for reduction of organic pollutants: Langmuir-Hinshelwood kinetics and mechanism. New J Chem 41:10948–10958. https://doi.org/10.1039/C7NJ03009F

    Article  CAS  Google Scholar 

  136. Kohantorabi M, Gholami MR (2017) Kinetic analysis of the reduction of 4-nitrophenol catalyzed by CeO2 nanorods-supported CuNi nanoparticles. Ind Eng Chem Res 56:1159–1167. https://doi.org/10.1021/acs.iecr.6b04208

    Article  CAS  Google Scholar 

  137. Latha P, Karuthapandian S (2017) Novel, facile and swift technique for synthesis of CeO2 nanocubes immobilized on zeolite for removal of CR and MO dye. J Clust Sci 28:3265–3280. https://doi.org/10.1007/s10876-017-1292-z

    Article  CAS  Google Scholar 

  138. Zhang S, Guo J, Zhang W, Gao H, Huang J, Chen G, Xu X (2021) Dopant and defect doubly modified CeO2/g-C3N4 nanosheets as 0D/2D Z-scheme heterojunctions for photocatalytic hydrogen evolution: experimental and density functional theory studies. ACS Sustain Chem Eng 9:11479–11492. https://doi.org/10.1021/acssuschemeng.1c03683

    Article  CAS  Google Scholar 

  139. Zhu C, Wang Y, Jiang Z, Xu F, Xian Q, Sun C, Tong Q, Zou W, Duan X, Wang S (2019) CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption. Appl Catal B Environ 259:118072. https://doi.org/10.1016/j.apcatb.2019.118072

    Article  CAS  Google Scholar 

  140. Hao Y, Li L, Zhang J, Luo H, Zhang X, Chen E (2017) Multilayer and open structure of dendritic crosslinked CeO2-ZrO2 composite: enhanced photocatalytic degradation and water splitting performance. Int J Hydrog Energy 42:5916–5929. https://doi.org/10.1016/j.ijhydene.2017.01.093

    Article  CAS  Google Scholar 

  141. Li X, Li Z, Yang X, Jia L, Qing FuY, Chi B, Pu J, Li J (2017) First-principles study of the initial oxygen reduction reaction on stoichiometric and reduced CeO2(111) surfaces as a cathode catalyst for lithium–oxygen batteries. J Mater Chem A 5:3320–3329. https://doi.org/10.1039/C6TA10233F

    Article  CAS  Google Scholar 

  142. Tang T, Ding L, Yao Z-C, Pan H-R, Hu J-S, Wan L-J (2022) Synergistic electrocatalysts for alkaline hydrogen oxidation and evolution reactions. Adv Funct Mater 32:2107479. https://doi.org/10.1002/adfm.202107479

    Article  CAS  Google Scholar 

  143. Chauhan S, Mori T, Masuda T, Ueda S, Richards GJ, Hill JP, Ariga K, Isaka N, Auchterlonie G, Drennan J (2016) Design of low Pt concentration electrocatalyst surfaces with high oxygen reduction reaction activity promoted by formation of a heterogeneous interface between Pt and CeOx nanowire. ACS Appl Mater Interfaces 8:9059–9070. https://doi.org/10.1021/acsami.5b12469

    Article  CAS  Google Scholar 

  144. Demir E, Akbayrak S, Önal AM, Özkar S (2019) Ceria supported ruthenium(0) nanoparticles: highly efficient catalysts in oxygen evolution reaction. J Colloid Interface Sci 534:704–710. https://doi.org/10.1016/j.jcis.2018.09.075

    Article  CAS  Google Scholar 

  145. Fang G, Cai J, Huang Z, Zhang C (2019) One-step electrodeposition of cerium-doped nickel hydroxide nanosheets for effective oxygen generation. RSC Adv 9:17891–17896. https://doi.org/10.1039/C9RA02682G

    Article  CAS  Google Scholar 

  146. Zhang R, Ren X, Hao S, Ge R, Liu Z, Asiri AM, Chen L, Zhang Q, Sun X (2018) Selective phosphidation: an effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J Mater Chem A 6:1985–1990. https://doi.org/10.1039/C7TA10237B

    Article  CAS  Google Scholar 

  147. Ma G, Du X, Zhang X (2021) Selective sulfuration, phosphorization and selenylation: a universal strategy toward Co-Ni-M@CeO2/NF (M = O, S, P and Se) interface engineering for efficient water splitting electrocatalysis. J Alloys Compd 864:158486. https://doi.org/10.1016/j.jallcom.2020.158486

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KSK would like to acknowledge IIT (ISM) for research fellowship. BC would like to acknowledge Indo-German center for Science and Technology for funding in the project IGSTC/Call 2018/CO2 BioFeed/15/2019-20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajit Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keshri, K.S., Chowdhury, B. (2023). Ceria-Based Nano-composites: A Comparative Study on Their Contributions to Important Catalytic Processes. In: Uddin, I., Ahmad, I. (eds) Synthesis and Applications of Nanomaterials and Nanocomposites. Composites Science and Technology . Springer, Singapore. https://doi.org/10.1007/978-981-99-1350-3_13

Download citation

Publish with us

Policies and ethics