Skip to main content

Hypoxia and Senescence: Role of Oxygen in Modulation of Tumor Suppression

  • Chapter
  • First Online:
Hypoxia in Cancer: Significance and Impact on Cancer Therapy

Abstract

Cellular senescence is a state of growth arrest implicated in both physiological and pathophysiological conditions. In aging cells, while senescence is induced via replicative exhaustion due to telomere shortening, in preneoplastic cells it emerges as a cellular failsafe program provoked by oncogenic activation and serves as an initial barrier constraining the malignant progression. Regulation of senescence is influenced by various intrinsic and extrinsic factors including tissue hypoxia, which apparently helps premalignant cells to evade instigation of “oncogene-induced senescence” (OIS). For a better understanding of the pathological consequences of senescence bypass, it is crucial and of great interest to explicit the hypoxia-related mechanisms and factors contributing to the modulation of oncogene-induced senescence. This chapter reviews the previous and recent data that contribute to the understanding of the fundamentals of cellular senescence as well as the mechanisms of hypoxia-induced modulation of OIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramova MV, Svetlikova SB, Kukushkin AN, Aksenov ND, Pospelova TV, Pospelov VA (2011) HDAC inhibitor sodium butyrate sensitizes E1A+Ras-transformed cells to DNA damaging agents by facilitating formation and persistence of gammaH2AX foci. Cancer Biol Ther 12(12):1069–1077

    Article  CAS  PubMed  Google Scholar 

  • Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15(8):978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta JC, Gil J (2012) Senescence: a new weapon for cancer therapy. Trends Cell Biol 22(4):211–219

    Article  CAS  PubMed  Google Scholar 

  • Alimirah F, Pulido T, Valdovinos A et al (2020) Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK Signaling. Cancer Res 80(17):3606–3619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alster O, Korwek Z (2014) Markers of cellular senescence. Postepy Biochem 60(2):138–146

    PubMed  Google Scholar 

  • Aoki M, Fujishita T (2017) Oncogenic roles of the PI3K/AKT/mTOR Axis. Curr Top Microbiol Immunol 407:153–189

    PubMed  Google Scholar 

  • Astle MV, Hannan KM, Ng PY et al (2012) AKT induces senescence in human cells via mTORC1 and p53 in the absence of DNA damage: implications for targeting mTOR during malignancy. Oncogene 31(15):1949–1962

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Chen X, Hou K, Zhang P, Feng Z, Fu B (2007) Effect of cell cycle inhibitor p19ARF on senescence of human diploid cell. Sci China C Life Sci 50(2):155–160

    Article  CAS  PubMed  Google Scholar 

  • Barradas M, Gonos ES, Zebedee Z et al (2002) Identification of a candidate tumor-suppressor gene specifically activated during Ras-induced senescence. Exp Cell Res 273(2):127–137

    Article  CAS  PubMed  Google Scholar 

  • Bartek J (2011) DNA damage response, genetic instability and cancer: from mechanistic insights to personalized treatment. Mol Oncol 5(4):303–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartek J, Bartkova J, Lukas J (2007a) DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26(56):7773–7779

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J (2007) DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 19(2):238–245

    Article  CAS  PubMed  Google Scholar 

  • Bartek J, Lukas J, Bartkova J (2007b) DNA damage response as an anti-cancer barrier: damage threshold and the concept of 'conditional haploinsufficiency'. Cell Cycle 6(19):2344–2347

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Hamerlik P, Stockhausen MT et al (2010) Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 29(36):5095–5102

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K et al (2005) DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434(7035):864–870

    Article  CAS  PubMed  Google Scholar 

  • Beausejour CM, Krtolica A, Galimi F et al (2003) Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J 22(16):4212–4222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell EL, Klimova TA, Eisenbart J, Schumacker PT, Chandel NS (2007) Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol Cell Biol 27(16):5737–5745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Betts DH, Perrault SD, King WA (2008) Low oxygen delays fibroblast senescence despite shorter telomeres. Biogerontology 9(1):19–31

    Article  CAS  PubMed  Google Scholar 

  • Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM (2015) An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell 162(3):540–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blagosklonny MV, An WG, Romanova LY, Trepel J, Fojo T, Neckers L (1998) p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273(20):11995–11998

    Article  CAS  PubMed  Google Scholar 

  • Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6(8):611–622

    Article  CAS  PubMed  Google Scholar 

  • Box AH, Demetrick DJ (2004) Cell cycle kinase inhibitor expression and hypoxia-induced cell cycle arrest in human cancer cell lines. Carcinogenesis 25(12):2325–2335

    Article  CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436(7051):660–665

    Article  CAS  PubMed  Google Scholar 

  • Bray SJ (2016) Notch signalling in context. Nat Rev Mol Cell Biol 17(11):722–735

    Article  CAS  PubMed  Google Scholar 

  • Brazina J, Svadlenka J, Macurek L et al (2015) DNA damage-induced regulatory interplay between DAXX, p53, ATM kinase and Wip1 phosphatase. Cell Cycle 14(3):375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes S, Rowe J, Gutierrez Del Arroyo A, Bond J, Peters G (2004) Contribution of p16(INK4a) to replicative senescence of human fibroblasts. Exp Cell Res 298(2):549–559

    Article  CAS  PubMed  Google Scholar 

  • Brookes S, Rowe J, Ruas M et al (2002) INK4a-deficient human diploid fibroblasts are resistant to RAS-induced senescence. EMBO J 21(12):2936–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapman J, Fielder E, Passos JF (2019) Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett 593(13):1566–1579

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Li M, Luo J, Gu W (2003) Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function. J Biol Chem 278(16):13595–13598

    Article  CAS  PubMed  Google Scholar 

  • Chen J (2016) The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 6(3):a026104

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Ames BN (1994) Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci U S A 91(10):4130–4134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A 92(10):4337–4341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436(7051):725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien Y, Scuoppo C, Wang X et al (2011) Control of the senescence-associated secretory phenotype by NF-kappaB promotes senescence and enhances chemosensitivity. Genes Dev 25(20):2125–2136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cipriano R, Kan CE, Graham J, Danielpour D, Stampfer M, Jackson MW (2011) TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci U S A 108(21):8668–8673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collado M, Gil J, Efeyan A et al (2005) Tumour biology: senescence in premalignant tumours. Nature 436(7051):642

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Serrano M (2005) The senescent side of tumor suppression. Cell Cycle 4(12):1722–1724

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Serrano M (2006) The power and the promise of oncogene-induced senescence markers. Nat Rev Cancer 6(6):472–476

    Article  CAS  PubMed  Google Scholar 

  • Collado M, Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10(1):51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppe JP, Desprez PY, Krtolica A, Campisi J (2010b) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coppe JP, Patil CK, Rodier F et al (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6(12):2853–2868

    Article  CAS  PubMed  Google Scholar 

  • Coppe JP, Patil CK, Rodier F et al (2010a) A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One 5(2):e9188

    Article  PubMed  PubMed Central  Google Scholar 

  • Damsky WE, Bosenberg M (2017) Melanocytic nevi and melanoma: unraveling a complex relationship. Oncogene 36(42):5771–5792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasari A, Bartholomew JN, Volonte D, Galbiati F (2006) Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res 66(22):10805–10814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davalos AR, Kawahara M, Malhotra GK et al (2013) p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J Cell Biol 201(4):613–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4(12):1798–1806

    Article  CAS  PubMed  Google Scholar 

  • Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    Article  CAS  PubMed  Google Scholar 

  • van Deursen JM (2019) Senolytic therapies for healthy longevity. Science 364(6441):636–637

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhomen N, Reis-Filho JS, da Rocha DS et al (2009) Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 15(4):294–303

    Article  CAS  PubMed  Google Scholar 

  • Di Micco R (2017) Sensing the breaks: cytosolic chromatin in senescence and cancer. Trends Mol Med 23(12):1067–1070

    Article  PubMed  Google Scholar 

  • Di Micco R, Cicalese A, Fumagalli M et al (2008) DNA damage response activation in mouse embryonic fibroblasts undergoing replicative senescence and following spontaneous immortalization. Cell Cycle 7(22):3601–3606

    Article  PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444(7119):638–642

    Article  PubMed  Google Scholar 

  • Di Micco R, Krizhanovsky V, Baker D, d'Adda di Fagagna F (2021) Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol 22(2):75–95

    Article  PubMed  Google Scholar 

  • Di Micco R, Sulli G, Dobreva M et al (2011) Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 13(3):292–302

    Article  PubMed  PubMed Central  Google Scholar 

  • Dierick JF, Eliaers F, Remacle J et al (2002) Stress-induced premature senescence and replicative senescence are different phenotypes, proteomic evidence. Biochem Pharmacol 64(5-6):1011–1017

    Article  CAS  PubMed  Google Scholar 

  • Dimri GP (2004) The search for biomarkers of aging: next stop INK4a/ARF locus. Sci Aging Knowledge Environ 2004(44):pe40

    Article  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A 92(20):9363–9367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimri GP, Nakanishi M, Desprez PY, Smith JR, Campisi J (1996) Inhibition of E2F activity by the cyclin-dependent protein kinase inhibitor p21 in cells expressing or lacking a functional retinoblastoma protein. Mol Cell Biol 16(6):2987–2997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan J, Duan J, Zhang Z, Tong T (2005) Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening. Int J Biochem Cell Biol 37(7):1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Efeyan A, Murga M, Martinez-Pastor B et al (2009) Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression. PLoS One 4(5):e5475

    Article  PubMed  PubMed Central  Google Scholar 

  • Evangelou K, Bartkova J, Kotsinas A et al (2013) The DNA damage checkpoint precedes activation of ARF in response to escalating oncogenic stress during tumorigenesis. Cell Death Differ 20(11):1485–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelou K, Gorgoulis VG (2017) Sudan Black B, the specific histochemical stain for lipofuscin: a novel method to detect senescent cells. Methods Mol Biol 1534:111–119

    Article  CAS  PubMed  Google Scholar 

  • Faget DV, Ren Q, Stewart SA (2019) Unmasking senescence: context-dependent effects of SASP in cancer. Nat Rev Cancer 19(8):439–453

    Article  CAS  PubMed  Google Scholar 

  • Falck J, Mailand N, Syljuasen RG, Bartek J, Lukas J (2001) The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 410(6830):842–847

    Article  CAS  PubMed  Google Scholar 

  • Ferbeyre G (2018) Aberrant signaling and senescence associated protein degradation. Exp Gerontol 107:50–54

    Article  CAS  PubMed  Google Scholar 

  • Ferbeyre G, de Stanchina E, Querido E, Baptiste N, Prives C, Lowe SW (2000) PML is induced by oncogenic ras and promotes premature senescence. Genes Dev 14(16):2015–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freiberg RA, Krieg AJ, Giaccia AJ, Hammond EM (2006) Checking in on hypoxia/reoxygenation. Cell Cycle 5(12):1304–1307

    Article  CAS  PubMed  Google Scholar 

  • Freund A, Laberge RM, Demaria M, Campisi J (2012) Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell 23(11):2066–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galluzzi L, Vitale I, Aaronson SA et al (2018) Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25(3):486–541

    Article  PubMed  PubMed Central  Google Scholar 

  • Goda N, Ryan HE, Khadivi B, McNulty W, Rickert RC, Johnson RS (2003) Hypoxia-inducible factor 1alpha is essential for cell cycle arrest during hypoxia. Mol Cell Biol 23(1):359–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC (2007) HIF-2alpha promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 11(4):335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordan JD, Lal P, Dondeti VR et al (2008) HIF-alpha effects on c-Myc distinguish two subtypes of sporadic VHL-deficient clear cell renal carcinoma. Cancer Cell 14(6):435–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorgoulis V, Adams PD, Alimonti A et al (2019) Cellular senescence: defining a path forward. Cell 179(4):813–827

    Article  CAS  PubMed  Google Scholar 

  • Green SL, Freiberg RA, Giaccia AJ (2001) p21(Cip1) and p27(Kip1) regulate cell cycle reentry after hypoxic stress but are not necessary for hypoxia-induced arrest. Mol Cell Biol 21(4):1196–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greider CW (1990) Telomeres, telomerase and senescence. Bioessays 12(8):363–369

    Article  CAS  PubMed  Google Scholar 

  • Greider CW (1993) Telomerase and telomere-length regulation: lessons from small eukaryotes to mammals. Cold Spring Harb Symp Quant Biol 58:719–723

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337(6205):331–337

    Article  CAS  PubMed  Google Scholar 

  • Greten TF, Eggert T (2017) Cellular senescence associated immune responses in liver cancer. Hepat Oncol 4(4):123–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Guccini I, Revandkar A, D'Ambrosio M et al (2021) Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell 39(1):68–82 e9

    Article  CAS  PubMed  Google Scholar 

  • Hall BM, Balan V, Gleiberman AS et al (2017) p16(Ink4a) and senescence-associated beta-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging (Albany NY) 9(8):1867–1884

    Article  CAS  PubMed  Google Scholar 

  • Hammer S, To KK, Yoo YG, Koshiji M, Huang LE (2007) Hypoxic suppression of the cell cycle gene CDC25A in tumor cells. Cell Cycle 6(15):1919–1926

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ (2002) Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22(6):1834–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond EM, Giaccia AJ (2004) The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. DNA Repair (Amst) 3(8-9):1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Hansson LO, Friedler A, Freund S, Rudiger S, Fersht AR (2002) Two sequence motifs from HIF-1alpha bind to the DNA-binding site of p53. Proc Natl Acad Sci U S A 99(16):10305–10309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley CB, Kim NW, Prowse KR et al (1994) Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol 59:307–315

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28(6):436–453

    Article  CAS  PubMed  Google Scholar 

  • Hoare M, Ito Y, Kang TW et al (2016) NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol 18(9):979–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutter E, Unterluggauer H, Uberall F, Schramek H, Jansen-Durr P (2002) Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress. Exp Gerontol 37(10-11):1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Hoare M, Narita M (2017) Spatial and temporal control of senescence. Trends Cell Biol 27(11):820–832

    Article  CAS  PubMed  Google Scholar 

  • Jung H, Seong HA, Ha H (2008) Direct interaction between NM23-H1 and macrophage migration inhibitory factor (MIF) is critical for alleviation of MIF-mediated suppression of p53 activity. J Biol Chem 283(47):32669–32679

    Article  CAS  PubMed  Google Scholar 

  • Jung SH, Hwang HJ, Kang D et al (2019) mTOR kinase leads to PTEN-loss-induced cellular senescence by phosphorylating p53. Oncogene 38(10):1639–1650

    Article  CAS  PubMed  Google Scholar 

  • Kang TW, Yevsa T, Woller N et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547–551

    Article  CAS  PubMed  Google Scholar 

  • Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432(7015):316–323

    Article  CAS  PubMed  Google Scholar 

  • Katoh S, Fujimaru A, Iwasaki M et al (2021) Reversal of senescence-associated beta-galactosidase expression during in vitro three-dimensional tissue-engineering of human chondrocytes in a polymer scaffold. Sci Rep 11(1):14059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilic Eren M, Tabor V (2014) The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence. PLoS One 9(7):e101064

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilic M, Kasperczyk H, Fulda S, Debatin KM (2007) Role of hypoxia inducible factor-1 alpha in modulation of apoptosis resistance. Oncogene 26(14):2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Kim RH, Kang MK, Kim T et al (2015) Regulation of p53 during senescence in normal human keratinocytes. Aging Cell 14(5):838–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM, Seo YH, Park CB, Yoon SH, Yoon G (2010) Roles of GSK3 in metabolic shift toward abnormal anabolism in cell senescence. Ann N Y Acad Sci 1201:65–71

    Article  CAS  PubMed  Google Scholar 

  • Kochetkova EY, Blinova GI, Bystrova OA, Martynova MG, Pospelov VA, Pospelova TV (2017) Targeted elimination of senescent Ras-transformed cells by suppression of MEK/ERK pathway. Aging (Albany NY) 9(11):2352–2375

    Article  CAS  PubMed  Google Scholar 

  • Kocylowski MK, Halazonetis TD (2011) SAHF, to senesce or not to senesce? Cell Cycle 10(5):738–739

    Article  PubMed  Google Scholar 

  • Kondoh H, Lleonart ME, Gil J et al (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res 65(1):177–185

    Article  CAS  PubMed  Google Scholar 

  • Kordowitzki P (2021) Oxidative stress induces telomere dysfunction and shortening in human oocytes of advanced age donors. Cells 10:8

    Article  Google Scholar 

  • Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, Bartek J (2011) Senescence-associated heterochromatin foci are dispensable for cellular senescence, occur in a cell type- and insult-dependent manner and follow expression of p16(ink4a). Cell Cycle 10(3):457–468

    Article  CAS  PubMed  Google Scholar 

  • Koshiji M, Huang LE (2004) Dynamic balancing of the dual nature of HIF-1alpha for cell survival. Cell Cycle 3(7):853–854

    Article  CAS  PubMed  Google Scholar 

  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24(22):2463–2479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon SM, Hong SM, Lee YK, Min S, Yoon G (2019) Metabolic features and regulation in cell senescence. BMB Rep 52(1):5–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larribere L, Wu H, Novak D et al (2015) NF1 loss induces senescence during human melanocyte differentiation in an iPSC-based model. Pigment Cell Melanoma Res 28(4):407–416

    Article  CAS  PubMed  Google Scholar 

  • Lee AC, Fenster BE, Ito H et al (1999) Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J Biol Chem 274(12):7936–7940

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Schmitt CA (2019) The dynamic nature of senescence in cancer. Nat Cell Biol 21(1):94–101

    Article  CAS  PubMed  Google Scholar 

  • Lee YY, Ryu MS, Kim HS, Suganuma M, Song KY, Lim IK (2016) Regulations of reversal of senescence by PKC isozymes in response to 12-O-Tetradecanoylphorbol-13-Acetate via nuclear translocation of pErk1/2. Mol Cells 39(3):266–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12(19):3008–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loo TM, Miyata K, Tanaka Y, Takahashi A (2020) Cellular senescence and senescence-associated secretory phenotype via the cGAS-STING signaling pathway in cancer. Cancer Sci 111(2):304–311

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Cepero E, Evan G (2004) Intrinsic tumour suppression. Nature 432(7015):307–315

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Kang Y (2010) Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 16(24):5928–5935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maciel-Baron LA, Morales-Rosales SL, Aquino-Cruz AA et al (2016) Senescence associated secretory phenotype profile from primary lung mice fibroblasts depends on the senescence induction stimuli. Age (Dordr) 38(1):26

    Article  CAS  PubMed  Google Scholar 

  • de Magalhaes JP, Chainiaux F, Remacle J, Toussaint O (2002) Stress-induced premature senescence in BJ and hTERT-BJ1 human foreskin fibroblasts. FEBS Lett 523(1-3):157–162

    Article  PubMed  Google Scholar 

  • de Magalhaes JP, Passos JF (2018) Stress, cell senescence and organismal ageing. Mech Ageing Dev 170:2–9

    Article  PubMed  Google Scholar 

  • Malaquin N, Tu V, Rodier F (2019) Assessing functional roles of the senescence-associated secretory phenotype (SASP). Methods Mol Biol 1896:45–55

    Article  CAS  PubMed  Google Scholar 

  • Mancini OK, Acevedo M, Fazez N et al (2021) Oxidative stress-induced senescence mediates inflammatory and fibrotic phenotypes in fibroblasts from systemic sclerosis patients. Rheumatology (Oxford)

    Google Scholar 

  • Martinez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11(3):161–176

    Article  CAS  PubMed  Google Scholar 

  • Martinez P, Thanasoula M, Munoz P et al (2009) Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23(17):2060–2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masutomi K, Yu EY, Khurts S et al (2003) Telomerase maintains telomere structure in normal human cells. Cell 114(2):241–253

    Article  CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Mooi WJ, Peeper DS (2008) BRAF(E600) in benign and malignant human tumours. Oncogene 27(7):877–895

    Article  CAS  PubMed  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436(7051):720–724

    Article  CAS  PubMed  Google Scholar 

  • Nacarelli T, Azar A, Altinok O, Orynbayeva Z, Sell C (2018) Rapamycin increases oxidative metabolism and enhances metabolic flexibility in human cardiac fibroblasts. Geroscience

    Google Scholar 

  • Nacarelli T, Sell C (2017) Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol 455:83–92

    Article  CAS  PubMed  Google Scholar 

  • Nassrally MS, Lau A, Wise K et al (2019) Cell cycle arrest in replicative senescence is not an immediate consequence of telomere dysfunction. Mech Ageing Dev 179:11–22

    Article  CAS  PubMed  Google Scholar 

  • Nehme J, Borghesan M, Mackedenski S, Bird TG, Demaria M (2020) Cellular senescence as a potential mediator of COVID-19 severity in the elderly. Aging Cell 19(10):e13237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neurohr GE, Terry RL, Lengefeld J et al (2019) Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell 176(5):1083–97 e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogrunc M, Di Micco R, Liontos M et al (2014) Oncogene-induced reactive oxygen species fuel hyperproliferation and DNA damage response activation. Cell Death Differ 21(6):998–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohh M, Park CW, Ivan M et al (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2(7):423–427

    Article  CAS  PubMed  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41(1):181–190

    Article  CAS  PubMed  Google Scholar 

  • Otero-Albiol D, Carnero A (2021) Cellular senescence or stemness: hypoxia flips the coin. J Exp Clin Cancer Res 40(1):243

    Article  PubMed  PubMed Central  Google Scholar 

  • Packer L, Fuehr K (1977) Low oxygen concentration extends the lifespan of cultured human diploid cells. Nature 267(5610):423–425

    Article  CAS  PubMed  Google Scholar 

  • Pantoja C, Serrano M (1999) Murine fibroblasts lacking p21 undergo senescence and are resistant to transformation by oncogenic Ras. Oncogene 18(35):4974–4982

    Article  CAS  PubMed  Google Scholar 

  • Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J (2003) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 5(8):741–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passos JF, Nelson G, Wang C et al (2010) Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol 6:347

    Article  PubMed  PubMed Central  Google Scholar 

  • Passos JF, Saretzki G, Ahmed S et al (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol 5(5):e110

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrenko O, Fingerle-Rowson G, Peng T, Mitchell RA, Metz CN (2003) Macrophage migration inhibitory factor deficiency is associated with altered cell growth and reduced susceptibility to Ras-mediated transformation. J Biol Chem 278(13):11078–11085

    Article  CAS  PubMed  Google Scholar 

  • Pouyssegur J, Lopez-Barneo J (2016) Hypoxia in health and disease. Mol Aspects Med 47-48:1–2

    Article  PubMed  Google Scholar 

  • Ravi R, Mookerjee B, Bhujwalla ZM et al (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhinn M, Ritschka B, Keyes WM (2019) Cellular senescence in development, regeneration and disease. Development 146:20

    Article  Google Scholar 

  • Rivlin N, Brosh R, Oren M, Rotter V (2011) Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis. Genes Cancer 2(4):466–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohwer N, Dame C, Haugstetter A et al (2010) Hypoxia-inducible factor 1alpha determines gastric cancer chemosensitivity via modulation of p53 and NF-kappaB. PLoS One 5(8):e12038

    Article  PubMed  PubMed Central  Google Scholar 

  • Romagosa C, Simonetti S, Lopez-Vicente L et al (2011) p16(Ink4a) overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30(18):2087–2097

    Article  CAS  PubMed  Google Scholar 

  • Saito H, Hammond AT, Moses RE (1995) The effect of low oxygen tension on the in vitro-replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp Cell Res 217(2):272–279

    Article  CAS  PubMed  Google Scholar 

  • Salminen A, Kauppinen A, Kaarniranta K (2012) Emerging role of NF-kappaB signaling in the induction of senescence-associated secretory phenotype (SASP). Cell Signal 24(4):835–845

    Article  CAS  PubMed  Google Scholar 

  • Sanders YY, Liu H, Zhang X et al (2013) Histone modifications in senescence-associated resistance to apoptosis by oxidative stress. Redox Biol 1:8–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar S, Julicher KP, Burger MS et al (2000) Different combinations of genetic/epigenetic alterations inactivate the p53 and pRb pathways in invasive human bladder cancers. Cancer Res 60(14):3862–3871

    CAS  PubMed  Google Scholar 

  • Schito L, Semenza GL (2016) Hypoxia-inducible factors: master regulators of cancer progression. Trends Cancer 2(12):758–770

    Article  PubMed  Google Scholar 

  • Sebastian T, Malik R, Thomas S, Sage J, Johnson PF (2005) C/EBPbeta cooperates with RB:E2F to implement Ras(V12)-induced cellular senescence. EMBO J 24(18):3301–3312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (1999) Perspectives on oxygen sensing. Cell 98(3):281–284

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2000) Expression of hypoxia-inducible factor 1: mechanisms and consequences. Biochem Pharmacol 59(1):47–53

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2007) Hypoxia-inducible factor 1 (HIF-1) pathway. Sci STKE 2007(407):cm8

    Article  PubMed  Google Scholar 

  • Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol 9:47–71

    Article  CAS  PubMed  Google Scholar 

  • Seo YH, Jung HJ, Shin HT et al (2008) Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 7(6):894–907

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88(5):593–602

    Article  CAS  PubMed  Google Scholar 

  • de Stanchina E, Querido E, Narita M et al (2004) PML is a direct p53 target that modulates p53 effector functions. Mol Cell 13(4):523–535

    Article  PubMed  Google Scholar 

  • Stockl P, Hutter E, Zwerschke W, Jansen-Durr P (2006) Sustained inhibition of oxidative phosphorylation impairs cell proliferation and induces premature senescence in human fibroblasts. Exp Gerontol 41(7):674–682

    Article  PubMed  Google Scholar 

  • Sullivan R, Pare GC, Frederiksen LJ, Semenza GL, Graham CH (2008) Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 7(7):1961–1973

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Takahashi A (2021) Senescence-associated extracellular vesicle release plays a role in senescence-associated secretory phenotype (SASP) in age-associated diseases. J Biochem 169(2):147–153

    Article  CAS  PubMed  Google Scholar 

  • Tsai CC, Chen YJ, Yew TL et al (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117(2):459–469

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1990) Blood flow, oxygen consumption and tissue oxygenation of human tumors. Adv Exp Med Biol 277:895–905

    Article  CAS  PubMed  Google Scholar 

  • Vaupel P, Kallinowski F, Runkel S, Schlenger K, Fortmeyer HP (1989) Blood flow and oxygen consumption rates of human gynecological tumors xenografted into rnu/rnu-rats. Strahlenther Onkol 165(7):502

    CAS  PubMed  Google Scholar 

  • Walters HE, Deneka-Hannemann S, Cox LS (2016) Reversal of phenotypes of cellular senescence by pan-mTOR inhibition. Aging (Albany NY) 8(2):231–244

    Article  CAS  PubMed  Google Scholar 

  • Wang AS, Ong PF, Chojnowski A, Clavel C, Dreesen O (2017) Loss of lamin B1 is a biomarker to quantify cellular senescence in photoaged skin. Sci Rep 7(1):15678

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Lu Z, Zhao J et al (2021) Selective oxidative stress induces dual damage to telomeres and mitochondria in human T cells. Aging Cell 20(12):e13513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Martindale JL, Yang X, Chrest FJ, Gorospe M (2005) Increased stability of the p16 mRNA with replicative senescence. EMBO Rep 6(2):158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O, Wind F, Negelein E (1927) The metabolism of tumors in the body. J Gen Physiol 8(6):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welford SM, Bedogni B, Gradin K, Poellinger L, Broome Powell M, Giaccia AJ (2006) HIF1alpha delays premature senescence through the activation of MIF. Genes Dev 20(24):3366–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welford SM, Dorie MJ, Li X, Haase VH, Giaccia AJ (2010) Renal oxygenation suppresses VHL loss-induced senescence that is caused by increased sensitivity to oxidative stress. Mol Cell Biol 30(19):4595–4603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welford SM, Giaccia AJ (2011) Hypoxia and senescence: the impact of oxygenation on tumor suppression. Mol Cancer Res 9(5):538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano K, Takahashi RU, Shiotani B et al (2021) PRPF19 regulates p53-dependent cellular senescence by modulating alternative splicing of MDM4 mRNA. J Biol Chem 297(1):100882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yevsa T, Kang TW, Zender L (2012) Immune surveillance of pre-cancerous senescent hepatocytes limits hepatocellular carcinoma development. Oncoimmunology 1(3):398–399

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin XM (2000) Signal transduction mediated by Bid, a pro-death Bcl-2 family proteins, connects the death receptor and mitochondria apoptosis pathways. Cell Res 10(3):161–167

    Article  CAS  PubMed  Google Scholar 

  • Yosef R, Pilpel N, Papismadov N et al (2017) p21 maintains senescent cell viability under persistent DNA damage response by restraining JNK and caspase signaling. EMBO J 36(15):2280–2295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yosef R, Pilpel N, Tokarsky-Amiel R et al (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7:11190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young AP, Schlisio S, Minamishima YA et al (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10(3):361–369

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Kaneko T, Matsuo M (1995) Relevance of oxidative stress to the limited replicative capacity of cultured human diploid cells: the limit of cumulative population doublings increases under low concentrations of oxygen and decreases in response to aminotriazole. Mech Ageing Dev 81(2-3):159–168

    Article  CAS  PubMed  Google Scholar 

  • von Zglinicki T, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220(1):186–193

    Article  Google Scholar 

  • von Zglinicki T, Saretzki G, Ladhoff J, d'Adda di Fagagna F, Jackson SP (2005) Human cell senescence as a DNA damage response. Mech Ageing Dev 126(1):111–117

    Article  Google Scholar 

  • Zhang R, Liu ST, Chen W et al (2007) HP1 proteins are essential for a dynamic nuclear response that rescues the function of perturbed heterochromatin in primary human cells. Mol Cell Biol 27(3):949–962

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Hu D, Ji W et al (2014) Histone modifications contribute to cellular replicative and hydrogen peroxide-induced premature senescence in human embryonic lung fibroblasts. Free Radic Res 48(5):550–559

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Gundelach J, Lindquist LD, Baker DJ, van Deursen J, Bram RJ (2019) Chemotherapy-induced cellular senescence suppresses progression of Notch-driven T-ALL. PLoS One 14(10):e0224172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng QH, Ma LW, Zhu WG, Zhang ZY, Tong TJ (2006) p21Waf1/Cip1 plays a critical role in modulating senescence through changes of DNA methylation. J Cell Biochem 98(5):1230–1248

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59(22):5830–5835

    CAS  PubMed  Google Scholar 

  • Zhu D, Xu G, Ghandhi S, Hubbard K (2002) Modulation of the expression of p16INK4a and p14ARF by hnRNP A1 and A2 RNA binding proteins: implications for cellular senescence. J Cell Physiol 193(1):19–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was funded by TUBITAK 108S179 to MKE.

The author thanks Dr. G. Ercan Şencicek (Yale School of Medicine), for her comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtap Kilic Eren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eren, M.K. (2023). Hypoxia and Senescence: Role of Oxygen in Modulation of Tumor Suppression. In: Mukherjee, S., Kanwar, J.R. (eds) Hypoxia in Cancer: Significance and Impact on Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-99-0313-9_5

Download citation

Publish with us

Policies and ethics