Skip to main content

Lignocellulosic-Derived Carbohydrates: A Splendid Biomolecule for Human Health and the Environment

  • Chapter
  • First Online:
Agricultural Biomass Nanocatalysts for Green Energy Applications

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 15 Accesses

Abstract

In recent times, resources based on fossil fuels have been considered the basis for the generation of energy. Currently, there has been a paradigm shift in this conventional practice, and the investigation of more sustainable, cost-effective, and eco-friendly feedstocks is being pursued for the generation of fuels and prebiotics. Lignocellulosic biomasses (LCBs) are a sustainable and alternate renewable resource that has been recognized as a substitute to curtail the dependency of this sector on fuels derived from fossil resources and to remove their imprints on the environment. Lignocellulosic biomasses are not only abundant but also renewable resources. The concept of biorefineries has set a stage for numerous biomasses, principally lignocellulosic biomasses, to be investigated for the production of fuels and prebiotics. The production of biofuels in a biorefinery can substantially curtail the emission of greenhouse gases (GHG) and are sustainable and eco-friendly. The industrial production of biofuels has taken novel dimensions, and approaches are reorganized for their production. Their production helps in uplifting the renewable economy under a sustainability regime. This chapter provides a deep insight into various aspects of oligosaccharides and biofuel, along with the strategies employed in the production of various oligosaccharides and biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agbogbo FK, Coward-Kelly G (2008) Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett 30:1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Albayrak N, Yang ST (2002) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77:8–19

    Article  CAS  PubMed  Google Scholar 

  • Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  • Balat H, Kirtay E (2010) Hydrogen from biomass—present scenario and future prospects. Int J Hydrog Energy 35:7416–7426

    Article  CAS  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  PubMed  Google Scholar 

  • Bhalamurugan GL, Valerie O, Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environ Eng Res 23:229–241

    Article  Google Scholar 

  • Bhardwaj N, Chanda K, Kumar B, Prasad HK, Sharma GD, Verma P (2017) Statistical optimization of nutritional and physical parameters for xylanase production from newly isolated Aspergillus oryzae LC1 and its application in the hydrolysis of lignocellulosic agro-residues. Bioresources 12(4):8519–8538

    Article  CAS  Google Scholar 

  • Bhardwaj N, Kumar B, Agarwal K, Chaturvedi V, Verma P (2019) Purification and characterization of a thermo-acid/alkali stable xylanases from Aspergillus oryzae LC1 and its application in Xylo-oligosaccharides production from lignocellulosic agricultural wastes. Int J Biol Macromol 122:1191–1202

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj N, Kumar B, Verma P (2020a) Microwave-assisted pretreatment using alkali metal salt in combination with orthophosphoric acid for generation of enhanced sugar and bioethanol. Biomass Convers Biorefinery 12:1–8

    Google Scholar 

  • Bhardwaj N, Kumar B, Agrawal K, Verma P (2020b) Bioconversion of rice straw by synergistic effect of in-house produced ligno-hemicellulolytic enzymes for enhanced bioethanol production. Bioresour Technol Rep 10:100352

    Article  Google Scholar 

  • Bhardwaj N, Agrawal K, Kumar B, Verma P (2021) Role of enzymes in deconstruction of waste biomass for sustainable generation of value-added products. In: Bioprospecting of enzymes in industry, healthcare and sustainable environment, pp 219–250

    Chapter  Google Scholar 

  • Bhatia L (2019) Potential thermophilic enzymes for bioethanol production. In: Sarangi PK, Nanda S (eds) Biotechnology for sustainable energy and products. IK International Publishing House Pvt. Ltd, New Delhi, pp 129–148

    Google Scholar 

  • Bhatia L, Johri S (2014) Fourier transform infrared mapping of peels of Citrus sinensis var mosambi after physiochemical pretreatment and its SSF for ethanol production by Saccharomyces cerevisiae MTCC 3821—an economic & ecological venture. Int J Sci Res 3(11):1653–1664

    Google Scholar 

  • Bhatia L, Johri S (2015a) Biovalorization potential of peels of Ananas comosus (L) Merr. For ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077. Indian J Exp Biol 53:819–827

    PubMed  Google Scholar 

  • Bhatia L, Johri S (2015b) FTIR analysis & optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from peels of Ananas comosus by Mucor indicus MTCC 4349. Waste Biomass Valorization 7(3):427–438. https://doi.org/10.1007/s12649-015-9462-4

    Article  CAS  Google Scholar 

  • Bhatia L, Johri S (2016) Optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from sugarcane bagasse by Pachysolen tannophilus MTCC 1077. Sugar Tech 18(5):457–467. https://doi.org/10.1007/s12355-015-0418-6

    Article  CAS  Google Scholar 

  • Bhatia L, Johri S (2017) Fourier transform infrared mapping of peels of Litchi chinensis after acid treatment and its SSF for ethanol production by Pachysolen tannophilus MTCC 1077—an economic & ecological venture. Indian J Biotechnol 16:444–456

    Google Scholar 

  • Bhatia L, Johri S (2018) Optimization of simultaneous saccharification and fermentation parameters for sustainable production of ethanol from wheat straw by Pichia stipitis NCIM 3498. Indian J Exp Biol 56:932–941

    CAS  Google Scholar 

  • Bhatia L, Johri S, Ahmad R (2012) An economic and ecological perspective of ethanol production from renewable agro-waste—a review. Appl Microbiol Biotechnol Express 2:65. https://doi.org/10.1186/2191-0855-2-65

    Article  CAS  Google Scholar 

  • Bhatia L, Singh A, Chandel AK, Singh OM (2018) Chapter 3: Biotechnological advancements in cellulosic ethanol production. In: Singh OV, Chandel AK (eds) Sustainable biotechnology: enzymatic resources of renewable energy. Springer International Publishing AG, pp 57–82. https://doi.org/10.1007/978-3-319-95480-6

    Chapter  Google Scholar 

  • Bhatia L, Garlapati VK, Chandel AK (2019a) Scalable technologies for lignocellulosic biomass processing into cellulosic ethanol. In: Pogaku R (ed) Horizons in bioprocess engineering. Springer International Publishing, pp 73–90. https://doi.org/10.1007/978-3-030-29069-6

    Chapter  Google Scholar 

  • Bhatia L, Sharma A, Bachheti RK, Chandel AK (2019b) Lignocellulose derived functional oligosaccharides: production, properties, and health benefits. Prep Biochem Biotechnol 49(8):744–758

    Article  CAS  PubMed  Google Scholar 

  • Bhatia L, Bachetti R, Ravindra P, Chandel AK (2020) Third generation biorefineries: a sustainable platform for food, clean energy and nutraceuticals production. In: Biomass conversion and biorefinery. Springer. https://doi.org/10.1007/s13399-020-00843-6

    Chapter  Google Scholar 

  • Bhatia L, Sarangi PK, Shadangi KP, Srivastava RK, Sahoo UK, Singh AK, Rene ER, Kumar B (2023) A Systematic Review on Photocatalytic Biohydrogen Production from Waste Biomass. BioEnergy Res.:1–24

    Google Scholar 

  • BIO (2016) Advancing the biobased economy: renewable chemical biorefinery commercialization, progress and market opportunities and beyond. https://www.bio.org/advancing biobased economy renewable chemical biorefinery commercialization progress and market

  • Boro M, Verma AK, Chettri D, Yata VK, Verma AK (2022) Strategies involved in biofuel production from agro-based lignocellulose biomass. Environ Technol Innov 28:102679

    Article  CAS  Google Scholar 

  • Chandel AK, Bhatia L, Garlapati VK, Roy L, Arora A (2017) Chapter 19: Biofuel Policy in Indian Perspective: socio-economic indicators and sustainable rural development. In: Chandel AK, Sukumaran RK (eds) Sustainable biofuels development in India. Springer International Publishing AG, Cham, pp 459–488. https://doi.org/10.1007/978-3-319-50219-9_19

    Chapter  Google Scholar 

  • Chandel AK, Garlapati VK, Singh AK, Antunes FAF, Silva SS (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour Technol 264:370–381

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17:40–71

    Article  CAS  Google Scholar 

  • Chen LL, Zhang M, Zhang DH, Chen XL, Sun CY, Zhou BC, Zhang YZ (2009) Purification and enzymatic characterization of two β-endoxylanases from Trichoderma sp. K9301 and their actions in xylooligosaccharide production. Bioresour Technol 100:5230

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Xie Y, Ajuwon KM, Zhong R, Li T, Chen L, Zhang H, Beckers Y, Everaert N (2021) Xylo-oligosaccharides, preparation and application to human and animal health: a review. Front Nutr 8:731930

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi JJ, Oh EJ, Lee YJ, Suh DS, Lee JH, Lee SW, Shin HT, Kwon ST (2003) Enhanced expression of the gene for β-glycosidase of Thermus caldophilus GK24 and synthesis of galacto-oligosaccharides by the enzyme. Biotechnol Appl Biochem 38:131–136

    Article  CAS  PubMed  Google Scholar 

  • Christakopoulos P, Katapodis P, Kalogeris E, Kekos D, Macris BJ, Stamatis H, Skaltsa H (2003) Antimicrobial activity of acidic xylo-oligosaccharides produced by family 10 and 11 endoxylanases. Int J Biol Macromol 31(4-5):171–175

    Article  CAS  PubMed  Google Scholar 

  • Coulier L, Zha Y, Bas R, Punt PJ (2013) Analysis of oligosaccharides in lignocellulosic biomass hydrolysates by high-performance anion-exchange chromatography coupled with mass spectrometry (HPAEC-MS). Bioresour Technol 133:221–231

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Guerrero A, Gómez-Ruiz L, Guzmán-Rodríguez F (2022) Xylooligosaccharides (XOS). In: Handbook of Food Bioactive Ingredients: Properties and Applications. Springer International Publishing, Cham, pp 1–28

    Google Scholar 

  • de Freitas C, Carmona E, Brienzo M (2019) Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioact Carbohydr Diet Fibre 18:100184

    Article  Google Scholar 

  • Deng W, Feng Y, Fu J, Guo H, Guo Y, Han B, Jiang Z, Kong L, Li C, Liu H, Nguyen PTT, Ren P, Wang F, Wang S, Wang Y, Wang Y, Wong SS, Yan K, Yan N, Yang X, Zhang Y, Zhang Z, Zeng X, Zhou H (2023) Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy & Environment 8(1):10–114

    Article  CAS  Google Scholar 

  • Dotsenko G, Meyer AS, Canibe N, Thygesen A, Nielsen MK, Lange L (2017) Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota. Biomass Convers Biorefinery 8:497. https://doi.org/10.1007/s13399-017-0298-y

    Article  CAS  Google Scholar 

  • Esposito D, Antonietti M (2015) Redefining biorefinery: the search for unconventional building blocks for materials. Chem Soc Rev 44:5821–5835

    Article  CAS  PubMed  Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges and future direction. Energy Fuel 20:1727–1737

    Article  CAS  Google Scholar 

  • Fonseca GG, Heinzle E, Wittmann C, Gombert AK (2008) The yeast Kluyveromyces marxianus and its biotechnological potential. Appl Microbiol Biotechnol 79:339–354

    Article  CAS  PubMed  Google Scholar 

  • Geng BY, Cao LY, Li F, Song H, Liu CG, Zhao XQ, Bai FW (2020) Potential of Zymomonas mobilis as an electricity producer in ethanol production. Biotechnol Biofuels. 13:1–11

    Article  Google Scholar 

  • Ginni G, Kavitha S, Kannah Y, Bhatia SK, Kumar A, Rajkumar M, Kumar G, Pugazhendhi A, Chi NTL, Banu RJ (2021) Valorization of agricultural residues: Different biorefinery routes. J Environ Chem Eng. 9(4):105435

    Article  Google Scholar 

  • Gupta R, Sharma KK, Kuhad RC (2009) Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498. Bioresour Technol 100(3):1214–1220

    Article  CAS  PubMed  Google Scholar 

  • Hakkim HS, Raveendran S, Pandey A, Parameswaran B (2020) Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresour Technol 302:122873. https://doi.org/10.1016/j.biortech.2020.122873

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward. Trends Biotechnol 27:287–297. https://doi.org/10.1016/j.tibtech.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  • Hassan H, Nguyen TH, Intanon M, Kori LD, Patel BK, Haltrich D, Divne C, Tan TC (2015) Biochemical and structural characterization of a thermostable β-glucosidase from Halothermothrix orenii for galacto-oligosaccharide synthesis. Appl Microbiol Biotechnol 99:1731–1744

    Google Scholar 

  • Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  CAS  PubMed  Google Scholar 

  • Jain I, Kumar V, Satyanarayana T (2015) Xylooligosaccharides: an economical prebiotic from agro residues and their health benefits. Indian J Exp Biol 53:131–142

    PubMed  Google Scholar 

  • Jonathan MC, DeMartini J, Thans SVS, Hommes R, Kabel MA (2015) Characterization of non-degraded oligosaccharides in enzymatically hydrolysed and fermented, dilute ammonia-pretreated corn stover for ethanol production. Biotechnol Biofuels 10:112. https://doi.org/10.1186/s13068-017-0803-3

    Article  CAS  Google Scholar 

  • Kaenying W, Choengpanya K, Tagami T, Wattana-Amorn P, Lang W, Okuyama M, Li Y-K, Kimura A, Kongsaeree PT (2023) Crystal structure and identification of amino acid residues for catalysis and binding of GH3 AnBX β-xylosidase from Aspergillus niger. Appl Microbiol Biotechnol 107(7):2335–2349

    Article  CAS  PubMed  Google Scholar 

  • Karnaouri A, Matsakas L, Bühler S, Muraleedharan MN, Christakopoulos P, Rova U (2019) Tailoring celluclast® cocktail’s performance towards the production of prebiotic cello-oligosaccharides from waste forest biomass. Catalysts 9(11):897

    Article  CAS  Google Scholar 

  • Khamaiseh EI, Abdul Hamid A, Abdeshahian P, Wan Yusoff WM, Kalil MS (2014) Enhanced butanol production by Clostridium acetobutylicum NCIMB 13357 grown on date fruit as a carbon source in P2 medium. Scientific World Journal. 2014:1–8

    Article  Google Scholar 

  • Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012. https://doi.org/10.1016/j.apenergy.2010.12.055

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2020) Enzyme mediated multi-product process: a concept of bio-based refinery. Ind Crop Prod 154:112607

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Techno 199:106244

    Article  CAS  Google Scholar 

  • Kumar B, Verma P (2021) Biomass-based biorefineries: an important architype towards a circular economy. Fuel 288:119622

    Article  CAS  Google Scholar 

  • Kumar B, Bhardwaj N, Alam A, Agrawal K, Prasad H, Verma P (2018) Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB Express 8:1–16

    Article  Google Scholar 

  • Kumar B, Bhardwaj N, Agrawal K, Chaturvedi V, Verma P (2020) Current perspective on pretreatment technologies using lignocellulosic biomass: an emerging biorefinery concept. Fuel Process Technol 199:106244

    Article  CAS  Google Scholar 

  • Leggio LL, Kalogiannis S, Eckert K, Teixeira SC, Bhat MK, Andrei C, Pickersgill RW, Larsen S (2001) Substrate specificity and subsite mobility in T. aurantiacus xylanase 10A. FEBS letters 509(2):303–308

    Article  PubMed  Google Scholar 

  • Maeda R, Ida T, Ihara H, Sakamoto T (2012) Induction of apoptosis in MCF-7 cells by β-1, 3-xylooligosaccharides prepared from Caulerpa lentillifera. Biosci Biotechnol Biochem 76(5):1032–1034

    Article  CAS  PubMed  Google Scholar 

  • Moure A, Gullon P, Domínguez H, Parajo JC (2006) Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem 41:1913–1923

    Article  CAS  Google Scholar 

  • Nabarlatz D, Montane D, Kardosova A, Bekesova S, Hrıbalova V, Ebringerova A (2007) Almond shell xylooligosaccharides exhibiting immunostimulatory activity. Carbohydr Res 342:1122

    Article  CAS  PubMed  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first- and second-generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sust Energ Rev 50:925–941

    Article  CAS  Google Scholar 

  • Nath K, Das D (2004) Improvement of fermentative hydrogen production: various approaches. Appl Microbiol Biotechnol 65:520–529

    Article  CAS  PubMed  Google Scholar 

  • Niesner J, Jecha D, Stehl KP (2013) Biogas upgrading technologies: state of art review in European region. Chem Eng Trans 35:517–522. https://doi.org/10.3303/CET1335086

    Article  Google Scholar 

  • Nurizzo D, Nagy T, Gilbert HJ, Davies GJ (2002) The structural basis for catalysis and specificity of the Pseudomonas cellulosa α-glucuronidase, GlcA67A. Structure 10(4):547–556

    Article  CAS  PubMed  Google Scholar 

  • Otieno DO, Ahring BK (2012) The potential for oligosaccharide production from the hemicellulose fraction of biomasses through pretreatment processes: xylooligosaccharides (XOS), arabinooligosaccharides (AOS), and mannooligo-saccharides (MOS). Carbohydr Res 360:8492

    Article  Google Scholar 

  • Pasha C, Nagavalli M, Venkateswar RL (2007) Lantana camara for fuel ethanol production using thermotolerant yeast. Lett Appl Microbiol 44(6):666–672

    Article  CAS  PubMed  Google Scholar 

  • Pereira MAF, Cesca K, Poletto P, de Oliveira D (2021) New perspectives for banana peel polysaccharides and their conversion to oligosaccharides. Food Res Int 149:110706

    Article  CAS  PubMed  Google Scholar 

  • Placier G, Watzlawick H, Rabiller C, Mattes R (2009) Evolved β-galactosidases from Geobacillus stearothermophilus with improved transgalactosylation yield for galacto-oligosaccharides production. Appl Environ Microbiol 75:6312–6321

    Google Scholar 

  • Popp J, Harangi-Rákos M, Gabnai Z, Balogh P, Antal G, Bai A (2016) Biofuels and their co-products as livestock feed: global economic and environmental implications. Molecules 21(3):285

    Article  PubMed  PubMed Central  Google Scholar 

  • Pothiraj C, Arumugam R, Gobinath M (2014) Sustaining ethanol production from lime-pretreated water hyacinth biomass using mono and co-cultures of isolated fungal strains with Pichia stipitis. Bioresour Bioprocess 1(27):1–10

    Google Scholar 

  • Qing Q, Li H, Kumar R, Wyman CE (2013) Xylooligosaccharides production, quantification, and characterization in context of lignocellulosic biomass pretreatment. In: Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals. Wiley

    Google Scholar 

  • Quiñones TS, Retter A, Hobbs PJ, Budde J, Heiermann M, Plöchl M, Ravella SR (2015) Production of xylooligosaccharides from renewable agricultural lignocellulose biomass. Biofuels 6(3–4):147–155

    Article  Google Scholar 

  • Rivas B, Torrado A, Torre P, Converti A, Domínguez JM (2008) Submerged citric acid fermentation on orange peel autohydrolysate. J Agric Food Chem 56(7):2380–2387

    Article  CAS  PubMed  Google Scholar 

  • Sahoo A, Dwivedi A, Madheshiya P, Kumar U, Sharma RK, Tiwari S (2023) Insights into the management of food waste in developing countries: With special reference to India. Environ Sci Pollut Res 31:17887–17913

    Article  Google Scholar 

  • Samanta AK, Kolte AP, Elangovan AV, Dhali A, Senani S, Sridhar M, Suresh KP, Jayapal N, Jayaram C, Roy S (2016) Value addition of corn husks through enzymatic production of xylooligosaccharides. Braz Arch Biol Technol 59:e16160078

    Article  Google Scholar 

  • Sanchez S, Bravo V, Castro E, Moya AJ, Camacho F (1999) Comparative study of the fermentation of D-glucose/D-xylose mixtures with Pachysolen tannophilus and Candida shehatae. Bioprocess Eng 21:525–532

    CAS  Google Scholar 

  • Silveira MHL, Chandel AK, Vanelli BA, Sacilotto KS, Cardoso EB (2018) Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: pilot scale study. Bioresour Technol Rep 3:138–146

    Article  Google Scholar 

  • Sheu WHH, Lee IT, Chen W, Chan YC (2008) Effects of xylooligosaccharides in type 2 diabetes mellitus. J Nutr Sci Vitaminol 54(5):396–401

    Article  CAS  PubMed  Google Scholar 

  • Shimoda K, Hamada H, Hamada H (2011) Synthesis of xylooligosaccharides of daidzein and their anti-oxidant and anti-allergic activities. Int J Mol Sci 12(9):5616–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siguier B, Haon M, Nahoum V, Marcellin M, Burlet-Schiltz O, Coutinho PM, Henrissat B, Mourey L, O’Donohue MJ, Berrin JG, Tranier S, Dumon C (2014) First structural insights into α-L-arabinofuranosidases from the two GH62 glycoside hydrolase subfamilies. J Biol Chem 289(8):5261–5273

    Google Scholar 

  • Srivastava RK, Sarangi PK, Bhatia L, Singh AK, Shadangi KP (2021) Conversion of methane to methanol: technologies and future challenges. Biomass Convers Biorefinery 12:1851. https://doi.org/10.1007/s13399-021-01872-5

    Article  CAS  Google Scholar 

  • Sudhakar K, Premalatha M (2015) Characterization of micro algal biomass through FTIR/TGA/CHN analysis: application to Scenedesmus sp. Energy Sources A: Recovery Util Environ Eff 37:2330–2337

    Article  CAS  Google Scholar 

  • Taniguchi H (2004) Carbohydrate research and industry in Japan and the Japanese society of applied glycoscience. Starch/Staerke 56:15

    Article  Google Scholar 

  • Torrado AM, Cortés S, Salgado JM, Max B, Rodríguez N, Bibbins BP, Converti A, Domínguez JM (2011) Citric acid production from orange peel wastes by solid-state fermentation. Braz J Microbiol 42:94–409

    Article  Google Scholar 

  • Valls C, Pastor FJ, Vidal T, Roncero MB, Díaz P, Martínez J, Valenzuela SV (2018) Antioxidant activity of xylooligosaccharides produced from glucuronoxylan by Xyn10A and Xyn30D xylanases and eucalyptus autohydrolysates. Carbohydr Polym 194:43–50

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Wang Y, Li J, Lin Q (2009) Effect of prebiotic xylooligosaccharides on growth performances and digestive enzyme activities of allogynogenetic crucian carp. Fish Physiol Biochem 35:351

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Xu Y, Wang W, Griffin J, Roozeboom K, Wang D (2020) Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel 281:118725

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

The authors declare that they have no competing interest to declare.

Funding and Acknowledgments

BK is thankful to the DST-SERB NPDF (PDF/2022/001781) scheme for his post-doctoral research.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhatia, L., Sahu, D.K., Singh, S., Kumar, B. (2024). Lignocellulosic-Derived Carbohydrates: A Splendid Biomolecule for Human Health and the Environment. In: Srivastava, M., Rai, A.K. (eds) Agricultural Biomass Nanocatalysts for Green Energy Applications. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-97-1623-4_1

Download citation

Publish with us

Policies and ethics