Skip to main content

Genetic Improvement of Industrial Crops Through Genetic Engineering

  • Chapter
  • First Online:
Industrial Crop Plants

Abstract

Genetic engineering is one of the modern biotechnology techniques that allows the transfer of genes between unrelated genera or species. It is being applied to crop improvement as one of the latest tools in plant breeding. Advances in biotechnology and breeding techniques offer new opportunities to further improve the efficiency of industrial crops. Genetic engineering tool has already generated tremendous benefits for farmers due to improved farm efficiency and profitability in industrial crops. Since the first transgenic crop was commercialized in 1994, industrial crops like cotton, soybean, and rapeseed have become among the major crops improved using genetic engineering and are the main commercially grown transgenic crops worldwide. The central objective of this chapter is to highlight the important advancements in plant genetic improvement using genetic engineering with an emphasis on industrial crops such as fiber, oil, and sugar crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Aziz M, Brini F, Rouached H, Masmoudi K (2022) Genetically engineered crops for sustainably enhanced food production systems. Front Plant Sci 13:1027828

    Article  PubMed  PubMed Central  Google Scholar 

  • Abudulai M, Boachie Chamba E, Asalma Nboyine J, Adombilla R, Yahaya I, Seidu A, Kangben F (2018) Field efficacy of genetically modified FK 95 Bollgard II cotton for control of bollworms, Lepidoptera in Ghana. Agric Food Secur 7(1):81. https://doi.org/10.1186/s40066-018-0232-y

    Article  Google Scholar 

  • Aerni P (2018) The use and abuse of the term ‘GMO’ in the ‘common weal rhetoric’ against the application of modern biotechnology in agriculture. In: Ethical tensions from new technology: the case of agricultural biotechnology. CAB International, Wallingford, pp 39–52

    Google Scholar 

  • Aldemita RR, Hautea RA (2018) Biotech crop planting resumes high adoption in 2016. GM Crops Food 9(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Altenbuchner C, Vogel S, Larcher M (2018) Social, economic and environmental impacts of organic cotton production on the livelihood of smallholder farmers in Odisha, India. Renew Agric Food Syst 33(4):373–385

    Article  Google Scholar 

  • Babu KH, Devarumath RM, Thorat AS, Nalavade VM, Saindane M, Appunu C, Suprasanna P (2021) Sugarcane transgenics: developments and opportunities. In: Kavi Kishor PB, Rajam MV, Pullaiah T (eds) Genetically modified crops: current status, prospects and challenges, vol 1. Springer, Singapore, pp 241–265

    Chapter  Google Scholar 

  • Bajwa KS, Shahid AA, Rao AQ, Bashir A, Aftab A, Husnain T (2015) Stable transformation and expression of GhEXPA8 fiber expansin gene to improve fiber length and micronaire value in cotton. Front Plant Sci 6:838

    Article  PubMed  PubMed Central  Google Scholar 

  • Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4(1):1–12

    Article  Google Scholar 

  • Barton JH (1991) Patenting life. Sci Am 264(3):40–47

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Sinha S, Das N, Maiti MK (2015) Increasing the stearate content in seed oil of Brassica juncea by heterologous expression of MlFatB affects lipid content and germination frequency of transgenic seeds. Plant Physiol Biochem 96:345–355

    Article  CAS  PubMed  Google Scholar 

  • Binns AN, Thomashow MF (1988) Cell biology of Agrobacterium infection and transformation of plants. Annu Rev Microbiol 42(1):575–606

    Article  CAS  Google Scholar 

  • Brookes G (2022) Farm income and production impacts from the use of genetically modified (GM) crop technology 1996-2020. GM Crops Food 13(1):171–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Brookes G, Barfoot P (2015) Global income and production impacts of using GM crop technology 1996–2013. GM Crops Food 6(1):13–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Budeguer F, Enrique R, Perera MF, Racedo J, Castagnaro AP, Noguera AS, Welin B (2021) Genetic transformation of sugarcane, current status and future prospects. Front Plant Sci 12:768609

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerny RE, Bookout JT, Cajacob CA, Groat JR, Hart JL, Heck GR et al (2010) Development and characterization of a cotton (Gossypium hirsutum L.) event with enhanced reproductive resistance to glyphosate. Crop Sci 50:1375–1384

    Article  CAS  Google Scholar 

  • Chakravarthy VS, Reddy TP, Reddy VD, Rao KV (2014) Current status of genetic engineering in cotton (Gossypium hirsutum L.): an assessment. Crit Rev Biotechnol 34(2):144–160

    Article  CAS  PubMed  Google Scholar 

  • Correa CM, Correa JI, De Jonge B (2020) The status of patenting plants in the global south. J World Intellect Property 23(1–2):121–146

    Article  Google Scholar 

  • Datta A (2013) Genetic engineering for improving quality and productivity of crops. Agric Food Secur 2(1):1–3

    Article  Google Scholar 

  • Ducor PG (1998) Patenting the recombinant products of biotechnology and other molecules. Wolters Kluwer Law International, pp 1–200

    Google Scholar 

  • Fernández Ríos D, Rubinstein C, Vicién C (2018) Capacities for the risk assessment of GMOs: challenges to build sustainable systems. Front Bioeng Biotechnol 6:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Georges F, Ray H (2017) Genome editing of crops: a renewed opportunity for food security. GM Crops Food 8(1):1–12. https://doi.org/10.1080/21645698.2016.1270489

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao C, Nielsen KK (2013) Comparison between Agrobacterium-mediated and direct gene transfer using the gene gun. In: Biolistic DNA delivery: methods and protocols. Humana Press, pp 3–16

    Chapter  Google Scholar 

  • Graff GD, Cullen SE, Bradford KJ, Zilberman D, Bennett AB (2003) The public–private structure of intellectual property ownership in agricultural biotechnology. Nat Biotechnol 21(9):989–995

    Article  CAS  PubMed  Google Scholar 

  • Gupta SK (2015) Breeding oilseed crops for sustainable production: opportunities and constraints. Academic Press

    Google Scholar 

  • Hashmiu I, Agbenyega O, Dawoe E (2022) Cash crops and food security: evidence from smallholder cocoa and cashew farmers in Ghana. Agric Food Secur 11(1):12

    Article  Google Scholar 

  • Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940

    Article  CAS  PubMed  Google Scholar 

  • Herring R, Paarlberg R (2016) The political economy of biotechnology. Annu Rev Resour Econ 8:397–416

    Article  Google Scholar 

  • Houmiel KL, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K et al (1999) Poly(beta-hydroxybutyrate) production in oilseed leukoplasts of brassica napus. Planta 209(4):547–550. https://doi.org/10.1007/s004250050760

    Article  CAS  PubMed  Google Scholar 

  • IAEA (2003) Improvement of new and traditional industrial crops by induced mutations and related biotechnology. International Atomic Energy Agency

    Google Scholar 

  • Ibáñez S, Carneros E, Testillano PS, Pérez-Pérez JM (2020) Advances in plant regeneration: shake, rattle and roll. Plants 9(7):897

    Article  PubMed  PubMed Central  Google Scholar 

  • ISAAA (2019) Brief 55: Global status of commercialized biotech/GM crops: 2019

    Google Scholar 

  • Ismail RM (2013) Evaluation of genetically modified sugarcane lines carrying Cry 1AC gene using molecular marker techniques. GM Crops Food 4(1):58–66

    Article  PubMed  Google Scholar 

  • James C, Krattiger AF (1996) Global review of the field testing and commercialization of transgenic plants: 1986 to 1995 ISAAA Briefs No. 1. ISAAA

    Google Scholar 

  • Jones S, Gibbon P (2011) Developing agricultural markets in sub-Saharan Africa: organic cocoa in rural Uganda. J Dev Stud 47(10):1595–1618

    Article  Google Scholar 

  • Jung C (2000) Molecular tools for plant breeding. In: Agricultural biotechnology in developing countries: towards optimizing the benefits for the poor. Springer US, Boston, MA, pp 25–37

    Chapter  Google Scholar 

  • Karthik K, Nandiganti M, Thangaraj A, Singh S, Mishra P, Rathinam M et al (2020) Transgenic cotton (Gossypium hirsutum L.) to combat weed vagaries: utility of an apical meristem-targeted in planta transformation strategy to introgress a modified CP4-EPSPS gene for glyphosate tolerance. Front Plant Sci 11:768. https://doi.org/10.3389/fpls.2020.00768

    Article  PubMed  PubMed Central  Google Scholar 

  • Kathage J, Qaim M (2012) Economic impacts and impact dynamics of Bt (Bacillus thuringiensis) cotton in India. Proc Natl Acad Sci 109(29):11652–11656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MT, Seema N, Khan IA, Yasmine S (2017) Applications and potential of sugarcane as an energy crop. Agric Res Updates 16:1–24

    CAS  Google Scholar 

  • Klümper W, Qaim M (2014) A meta-analysis of the impacts of genetically modified crops. PLoS One 9(11):e111629

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh H-J, Kwon S-Y, Thomson M (2015) Current technologies in plant molecular breeding. A guide book of plant molecular breeding for researchers. Springer

    Book  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  CAS  PubMed  Google Scholar 

  • Komen J, Tripathi L, Mkoko B, Ofosu DO, Oloka H, Wangari D (2020) Biosafety regulatory reviews and leeway to operate: case studies from sub-Sahara Africa. Front Plant Sci 11:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Chin JH, Ahn SN, Koh HJ (2015) Brief history and perspectives on plant breeding. Current technologies in plant molecular breeding: a guide book of plant molecular breeding for researchers, pp 1–14

    Book  Google Scholar 

  • Li F, Wu S, Lü F, Chen T, Ju M, Wang H et al (2009) Modified fiber qualities of the transgenic cotton expressing a silkworm fibroin gene. Chin Sci Bull 54(7):1210–1216

    Article  CAS  Google Scholar 

  • Mabaya E, Fulton J, Simiyu-Wafukho S, Nang’ayo F (2015) Factors influencing adoption of genetically modified crops in Africa. Dev South Afr 32(5):577–591

    Article  Google Scholar 

  • Mall T, Han L, Tagliani L, Christensen C (2018) Transgenic crops: status, potential, and challenges. In: Biotechnologies of crop improvement, Transgenic approaches, vol 2. Springer, pp 451–485

    Chapter  Google Scholar 

  • Mall AK, Misra V, Santeshwari, Pathak AD, Srivastava S (2021) Sugar beet cultivation in India: prospects for bio-ethanol production and value-added co-products. Sugar Tech 23(6):1218–1234. https://doi.org/10.1007/s12355-021-01007-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manickavasagam M, Ganapathi A, Anbazhagan V, Sudhakar B, Selvaraj N, Vasudevan A, Kasthurirengan S (2004) Agrobacterium-mediated genetic transformation and development of herbicide-resistant sugarcane (Saccharum species hybrids) using axillary buds. Plant Cell Rep 23:134–143

    Article  CAS  PubMed  Google Scholar 

  • Massarani L (2012) Monsanto may lose GM soya royalties throughout Brazil. Nature. https://doi.org/10.1038/nature.2012.10837

  • Matola A, Masamba K, Mwangwela A, Mlotha V (2015) Quality evaluation of sunflower and groundnut oil produced by two cooperatives under the one village one product programme in central Malawi. Afr J Agric Res 10(11):1338–1343

    Google Scholar 

  • Meena MR, Appunu C, Arun Kumar R, Manimekalai R, Vasantha S, Krishnappa G et al (2022) Recent advances in sugarcane genomics, physiology, and phenomics for superior agronomic traits. Front Genet 13:854936. https://doi.org/10.3389/fgene.2022.854936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mersereau M, Pazour GJ, Das A (1990) Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90(1):149–151. https://doi.org/10.1016/0378-1119(90)90452-w

    Article  CAS  PubMed  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107(3):193–232

    Article  CAS  PubMed  Google Scholar 

  • Mishra N, Sun L, Zhu X, Smith J, Prakash Srivastava A, Yang X et al (2017) Overexpression of the rice SUMO E3 ligase gene OsSIZ1 in cotton enhances drought and heat tolerance, and substantially improves fiber yields in the field under reduced irrigation and rainfed conditions. Plant Cell Physiol 58(4):735–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molinari HBC, Marur CJ, Daros E, De Campos MKF, De Carvalho JFRP, Filho JCB et al (2007) Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130(2):218–229

    Article  CAS  Google Scholar 

  • Morse S, Bennett R, Ismael Y (2004) Why Bt cotton pays for small-scale producers in South Africa. Nat Biotechnol 22(4):379–380

    Article  CAS  PubMed  Google Scholar 

  • Mubarik MS, Ma C, Majeed S, Du X, Azhar MT (2020) Revamping of cotton breeding programs for efficient use of genetic resources under changing climate. Agronomy 10(8):1190. Retrieved from https://www.mdpi.com/2073-4395/10/8/1190

    Article  CAS  Google Scholar 

  • Mulleegadoo K, Dookun-Saumtally A (2009) Genetic transformation of two Mauritian sugarcane varieties for resistance to the herbicide Basta®. Sugar Cane Int 27(2):65–69

    CAS  Google Scholar 

  • Murphy DJ (1996) Engineering oil production in rapeseed and other oil crops. Trends Biotechnol 14(6):206–213

    Article  CAS  Google Scholar 

  • Nester EW, Gordon MP, Amasino RM, Yanofsky MF (1984) Crown gall: a molecular and physiological analysis. Annu Rev Plant Physiol 35(1):387–413

    Article  CAS  Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re D, LaVallee B, Tinius C et al (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35(5):1451–1461

    Article  CAS  Google Scholar 

  • Pan Z, Zhang R, Zicari S (2019) Integrated processing technologies for food and agricultural by-products. Academic Press

    Google Scholar 

  • Pan P, Xing Y, Zhang D, Wang J, Liu C, Wu D, Wang X (2023) A review on the identification of transgenic oilseeds and oils. J Food Sci 88(8):3189–3203

    Article  CAS  PubMed  Google Scholar 

  • Patel A, Miles A, Strackhouse T, Cook L, Leng S, Patel S et al (2023) Methods of crop improvement and applications towards fortifying food security. Front Genome Ed 5:1171969

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrie JR, Zhou X-R, Leonforte A, McAllister J, Shrestha P, Kennedy Y et al (2020) Development of a Brassica napus (Canola) crop containing fish oil-like levels of DHA in the seed oil. Front Plant Sci 11:727

    Article  PubMed  PubMed Central  Google Scholar 

  • Pray CE, Huang J, Hu R, Rozelle S (2002) Five years of Bt cotton in China–the benefits continue. Plant J 31(4):423–430

    Article  CAS  PubMed  Google Scholar 

  • Qaim M, De Janvry A (2003) Genetically modified crops, corporate pricing strategies, and farmers’ adoption: the case of Bt cotton in Argentina. Am J Agric Econ 85(4):814–828

    Article  Google Scholar 

  • Qaim M, Traxler G (2005) Roundup ready soybeans in Argentina: farm level and aggregate welfare effects. Agric Econ 32(1):73–86

    Article  Google Scholar 

  • Ramessar K, Capell T, Twyman RM, Quemada H, Christou P (2009) Calling the tunes on transgenic crops: the case for regulatory harmony. Mol Breed 23:99–112

    Article  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24(1):63–71

    Article  CAS  PubMed  Google Scholar 

  • Ryan CD, Schaul AJ, Butner R, Swarthout JT (2020) Monetizing disinformation in the attention economy: the case of genetically modified organisms (GMOs). Eur Manag J 38(1):7–18

    Article  Google Scholar 

  • Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5(1):27–37

    Article  CAS  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants: international regulations for genetically modified organisms should be altered to exempt cisgenesis. EMBO Rep 7(8):750–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrawat AK, Armstrong CL (2018) Development and application of genetic engineering for wheat improvement. Crit Rev Plant Sci 37(5):335–421

    Article  Google Scholar 

  • Siddiqui HA, Asad S, Naqvi RZ, Asif M, Liu C, Liu X et al (2022) Development and evaluation of triple gene transgenic cotton lines expressing three genes (Cry1Ac-Cry2Ab-EPSPS) for lepidopteran insect pests and herbicide tolerance. Sci Rep 12(1):18422. https://doi.org/10.1038/s41598-022-22209-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth SJ (2017) Genetically modified crops, regulatory delays, and international trade. Food Energy Secur 6(2):78–86

    Article  Google Scholar 

  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: potential ecological risks. Bioscience 47(2):86–96

    Article  Google Scholar 

  • Stofer KA, Schiebel TM (2017) US adults with agricultural experience report more genetic engineering familiarity than those without. J Agric Educ 58(4):160–174

    Article  Google Scholar 

  • Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG (2000) High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous Delta12-desaturases. Biochem Soc Trans 28(6):938–940

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Dotson M, Keen N, t. (1992) Plant transformation: a simple particle bombardment device based on flowing helium. Plant Mol Biol 18:835–839

    Article  CAS  PubMed  Google Scholar 

  • Tarazi R, Jimenez JLS, Vaslin MFS (2019) Biotechnological solutions for major cotton (Gossypium hirsutum) pathogens and pests. Biotechnol Res Innov 3:19–26. https://doi.org/10.1016/j.biori.2020.01.001

    Article  Google Scholar 

  • Tariq M, Khan MA, Muhammad W, Ahmad S (2022) Fiber crops in changing climate. In: Ahmed M (ed) Global agricultural production: resilience to climate change. Springer International Publishing, Cham, pp 267–282

    Chapter  Google Scholar 

  • Vain P, De Buyser J, Trang VB, Haicour R, Henry Y (1995) Foreign gene delivery into monocotyledonous species. Biotechnol Adv 13(4):653–671

    Article  CAS  PubMed  Google Scholar 

  • Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    Article  CAS  PubMed  Google Scholar 

  • Wang WZ, Yang BP, Feng XY, Cao ZY, Feng CL, Wang JG et al (2017) Development and characterization of transgenic sugarcane with insect resistance and herbicide tolerance. Front Plant Sci 8:1535

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber N, Halpin C, Hannah LC, Jez JM, Kough J, Parrott W (2012) Editor’s choice: crop genome plasticity and its relevance to food and feed safety of genetically engineered breeding stacks. Plant Physiol 160(4):1842–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilmink A, Dons J (1993) Selective agents and marker genes for use in transformation of monocotyledonous plants. Plant Mol Biol Report 11:165–185

    Article  CAS  Google Scholar 

  • Yang H, Bozorov TA, Chen X, Zhang D, Wang J, Li X et al (2021) Yield comparisons between cotton variety xin nong mian 1 and its transgenic ScALDH21 lines under different water deficiencies in a desert-oasis ecotone. Agronomy 11(5):1019

    Article  CAS  Google Scholar 

  • Yuan D, Dashevskaya S, Twyman R, Capell Christou T (2012) Crop plants transformation methods. In: Encyclopedia of sustainability science and technology. Springer

    Google Scholar 

  • Yue Y, Zhang M, Zhang J, Tian X, Duan L, Li Z (2012) Overexpression of the AtLOS5 gene increased abscisic acid level and drought tolerance in transgenic cotton. J Exp Bot 63(10):3741–3748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B (2012) Transgenic cotton: from biotransformation methods to agricultural application. In: Transgenic cotton: methods and protocols. Humana Press, pp 3–15

    Google Scholar 

  • Zhang SZ, Yang BP, Feng CL, Chen RK, Luo JP, Cai WW, Liu FH (2006) Expression of the Grifola frondosa trehalose synthase gene and improvement of drought-tolerance in sugarcane (Saccharum officinarum L.). J Integr Plant Biol 48(4):453–459

    Article  CAS  Google Scholar 

  • Zhu X, Sun L, Kuppu S, Hu R, Mishra N, Smith J et al (2018) The yield difference between wild-type cotton and transgenic cotton that expresses IPT depends on when water-deficit stress is applied. Sci Rep 8(1):2538

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abebaw, Y.M., Abate, B.A. (2024). Genetic Improvement of Industrial Crops Through Genetic Engineering. In: Kumar, N. (eds) Industrial Crop Plants. Interdisciplinary Biotechnological Advances. Springer, Singapore. https://doi.org/10.1007/978-981-97-1003-4_6

Download citation

Publish with us

Policies and ethics