Skip to main content

Bilateral Common Carotid Artery Occlusion: Stroke Model

  • Chapter
  • First Online:
Models and Techniques in Stroke Biology

Abstract

Ischemic stroke is a prime spawn of death, physical disability and imparts an immense socioeconomic burden for society. Despite, rigorous experimental and clinical research work over the past few decades, still, therapeutic options are scarce for patients with acute ischemic stroke (AIS). It caused an increase in the percentage of ischemic patients in the ensuing years. One approach is to develop a better understanding of the brain’s cellular and molecular mechanisms to combat this harmful problem. One of the extensively used approaches for Brain-induced neuroprotection is ischemic preconditioning (IPC) or ischemic tolerance (IT). IPC is a non-harmful stimulus applied to the brain, which leads to interim resistance in the wake of ischemic insult. The IPC takes place in two different categories: initial IT, which lasts from a few minutes to a few hours after the IPC, and delayed IT, which takes a couple of hours to occur. Until now, the investigation has focused on delayed IT but the molecular mechanism of IT is largely unknown. This chapter aims to provide insight into Bilateral Common Carotid Aartery Occlusion (BCCAO) methodology and factors affecting the biological pathways in the course of neurodegeneration in rodents (mice and rats).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AST:

Aspartate aminotransferace

LDH:

Lactate dehydrogenase

MDA:

Melondialdehyde

References

  • Andrabi SS, Parvez S, Tabassum H (2017) Progesterone induces neuroprotection following reperfusionpromoted mitochondrial dysfunction after focal cerebral ischemia in rats. DMM Dis Model Mech 10(6):787–796

    Article  CAS  PubMed  Google Scholar 

  • Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular k+ and h+ at critical levels of brain ischemia. Stroke 8(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Becker LB, Vanden Hoek TL, Shao ZH, Li CQ, Schumacker PT (1999) Generation of superoxide in cardiomyocytes during ischemia before reperfusion. Am J Phys 277(6):2240–2246

    Google Scholar 

  • Cao W, Carney JM, Duchon A, Floyd RA, Chevion M (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88(2):233–238

    Article  CAS  PubMed  Google Scholar 

  • Cechetti F, Worm PV, Pereira LO, Siqueira IR, A. Netto C (2010) The modified 2VO ischemia protocol causes cognitive impairment similar to that induced by the standard method, but with a better survival rate. Braz J Med Biol Res 43(12):1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21(1):2–14

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Cao Y, Li H, Tian J, Yi C, Sang W (2015) Impact of ischemic preconditioning on ischemia-reperfusion injury of the rat sciatic nerve. Int J Clin Exp Med 8(9):16245–16251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll M, Gerstbrein B (2003) Dying for a cause: Invertebrate genetics takes on human neurodegeneration. Nat Rev Genet 4(3):181–194

    Article  CAS  PubMed  Google Scholar 

  • Edrissi H, Schock SC, Cadonic R, Hakim AM, Thompson CS (2016) Cilostazol reduces blood brain barrier dysfunction, white matter lesion formation and motor deficits following chronic cerebral hypoperfusion. Brain Res 1646:494–503

    Article  CAS  PubMed  Google Scholar 

  • Freund TF, Buzsáki G, Leon A, Baimbridge KG, Somogyi P (1990) Relationship of neuronal vulnerability and calcium binding protein immunoreactivity in ischemia. Exp Brain Res 83(1):55–66

    Article  CAS  PubMed  Google Scholar 

  • Gemba T, Matsunaga K, Ueda M (1992) Changes in extracellular concentration of amino acids in the hippocampus during cerebral ischemia in stroke-prone SHR, stroke-resistant SHR and normotensive rats. Neurosci Lett 135(2):184–188

    Article  CAS  PubMed  Google Scholar 

  • Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21(2):99–109

    Article  CAS  PubMed  Google Scholar 

  • Gutsaeva DR et al (2008) Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. J Neurosci 28(9):2015–2024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handayani ES et al (2018) Effect of BCCAO duration and animal models sex on brain ischemic volume after 24 hours reperfusion. Bangladesh J Med Sci 17(1):129–137

    Article  Google Scholar 

  • Hara H et al (1997) Inhibition of interleukin 1β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A 94(5):2007–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hokari M, Kuroda S, Kinugawa S, Ide T, Tsutsui H, Iwasaki Y (2010) Overexpression of mitochondrial transcription factor A (TFAM) ameliorates delayed neuronal death due to transient forebrain ischemia in mice. Neuropathology 30(4):401–407

    Article  PubMed  Google Scholar 

  • Hossmann K-A (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36(4):557–565

    Article  CAS  PubMed  Google Scholar 

  • Hussein AH, Shaheed DK (2015) Histopathological effects of L-methionine in rat cerebral ischemia reperfusion I/R injury. Br J Med Heal Res 2:1–10

    Google Scholar 

  • Iwasaki Y, Ito S, Suzuki M, Nagahori T, Yamamoto T, Konno H (1989) Forebrain ischemia induced by temporary bilateral common carotid occlusion in normotensive rats. J Neurol Sci 90(2):155–165

    Article  CAS  PubMed  Google Scholar 

  • Karpiak SE, Tagliavia A, Wakade CG (1989) Animal models for the study of drugs in ischemic stroke. Annu Rev Pharmacol Toxicol 29:403–414

    Article  CAS  PubMed  Google Scholar 

  • Khoshnam SE, Farbood Y, Fathi Moghaddam H, Sarkaki A, Badavi M, Khorsandi L (2018) Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab Brain Dis 33(3):785–793

    Article  CAS  PubMed  Google Scholar 

  • Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239(1):57–69

    Article  CAS  PubMed  Google Scholar 

  • Kuan CY et al (2003) A critical role of neural-specific JNK3 for ischemic apoptosis. Proc Natl Acad Sci U S A 100(25):15184–15189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapi D, Vagnani S, Pignataro G, Esposito E, Paterni M, Colantuoni A (2012) Protective effects of quercetin on rat pial microvascular changes during transient bilateral common carotid artery occlusion and reperfusion. Front Physiol 3:32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94(4):491–501

    Article  CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79(4):1431–1568

    Article  CAS  PubMed  Google Scholar 

  • Liu DY et al (2018) Sigma-1 receptor activation alleviates blood-brain barrier dysfunction in vascular dementia mice. Exp Neurol 308:90–99

    Article  CAS  PubMed  Google Scholar 

  • Lust WD, Taylor C, Pundik S, Selman WR, Ratcheson RA (2002) Ischemic cell death: dynamics of delayed secondary energy failure during reperfusion following focal ischemia. Metab Brain Dis 17(2):113–121

    Article  CAS  PubMed  Google Scholar 

  • Ma L et al (2015) Mitochondrial CB1 receptor is involved in ACEA-induced protective effects on neurons and mitochondrial functions. Sci Rep 5:1–13

    Google Scholar 

  • Maulik N et al (1996) Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett 396(2–3):233–237

    Article  CAS  PubMed  Google Scholar 

  • Mizuno A, Umemura K, Nakashima M (1998) Inhibitory effect of MCI-186, a free radical scavenger, on cerebral ischemia following rat middle cerebral artery occlusion. Gen Pharmacol 30(4):575–578

    Article  CAS  PubMed  Google Scholar 

  • Moreira AJ et al (2004) Quercetin prevents oxidative stress and NF-ÎşB activation in gastric mucosa of portal hypertensive rats. Biochem Pharmacol 68(10):1939–1946

    Article  CAS  PubMed  Google Scholar 

  • Nakashima M, Niwa M, Iwai T, Uematsu T (1999) Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. Free Radic Biol Med 26(5–6):722–729

    Article  CAS  PubMed  Google Scholar 

  • Nathan AJ, Scobell A (2012) How China sees America. Foreign Aff 91(5):1689–1699

    Google Scholar 

  • Negishi H, Ikeda K, Nara Y, Yamori Y (2003) Estimation of hydroxyl radicals based on the salicylate trapping method in hippocampus of Stroke-prone Spontaneously Hypertensive rats (SHRSP) during transient ischemia and recirculation. Adv Exp Med Biol 510:313–317

    Article  CAS  PubMed  Google Scholar 

  • Noor JI et al (2005) Short-term administration of a new free radical scavenger, edaravone, is more effective than its long-term administration for the treatment of neonatal hypoxic-ischemic encephalopathy. Stroke 36(11):2468–2474

    Article  CAS  PubMed  Google Scholar 

  • Okubo S et al (2004) Ischemic preconditioning and morphine attenuate myocardial apoptosis and infarction after ischemia-reperfusion in rabbits: role of δ-opioid receptor. Am J Physiol 287(4):56–54

    Google Scholar 

  • Otani H et al (2005) Temporal effects of edaravone, a free radical scavenger, on transient ischemia-induced neuronal dysfunction in the rat hippocampus. Eur J Pharmacol 512(2–3):129–137

    Article  CAS  PubMed  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11(5):491–498

    Article  CAS  PubMed  Google Scholar 

  • Robin E et al (2007) Oxidant stress during simulated ischemia primes cardiomyocytes for cell death during reperfusion. J Biol Chem 282(26):19133–19143

    Article  CAS  PubMed  Google Scholar 

  • Sharp FR, Lu A, Tang Y, Millhorn DE (2000) Multiple molecular penumbras after focal cerebral ischemia. J Cereb Blood Flow Metab 20(7):1011–1032

    Article  CAS  PubMed  Google Scholar 

  • Shcherbak NS et al (2013) Lactate dehydrogenase activity in the cerebral cortex and hippocampus of mongolian gerbils in ischemic and reperfusion injuries. Neurosci Behav Physiol 43(8):941–945

    Article  CAS  Google Scholar 

  • Shutenko Z et al (1999) Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharmacol 57(2):199–208

    Article  CAS  PubMed  Google Scholar 

  • Smith ML, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat following 2-10 min of forebrain ischemia. Acta Neuropathol 64(4):319–332

    Article  CAS  PubMed  Google Scholar 

  • Tekam CKS, Tripathi AK, Kumar G, Patnaik R (2019) Emerging role of electromagnetic field therapy in stroke. Adv Pathophysiol Cereb Stroke 1:93–102

    Article  Google Scholar 

  • Tripathi A, Ali S, Mishra DP (2013) Attenuated antioxidant property of UV-B irradiated piperine in ischemia-reperfusion injury in SD rat. J Environ Sci Technol 1(2):29–36

    Google Scholar 

  • Tripathi AK, Tiwari SK, Mishra P, Jain M (2019a) Emerging role of microRNAs in cerebral stroke pathophysiology. In: Advancement in the pathophysiology of cerebral stroke. Springer, Singapore, pp 123–137

    Chapter  Google Scholar 

  • Tripathi AK, Dhanesha N, Kumar S (2019b) Stroke induced blood-brain barrier disruption. In: Advancement in the pathophysiology of cerebral stroke. Springer, Singapore, pp 23–41

    Chapter  Google Scholar 

  • Watanabe T, Yuki S, Egawa M, Nishi H (1994) Protective effects of MCI-186 on cerebral ischemia: possible involvement of free radical scavenging and antioxidant actions. J Pharmacol Exp Ther 268(3):1597–1604

    CAS  PubMed  Google Scholar 

  • Ye ZY, Xing HY, Wang B, Liu M, Lv PY (2019) DL-3-n-butylphthalide protects the blood-brain barrier against ischemia/hypoxia injury via upregulation of tight junction proteins. Chin Med J 132(11):1344–1353

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang FY, Chen XC, Ren HM, Bao WM (2006) Effects of ischemic preconditioning on blood-brain barrier permeability and MMP-9 expression of ischemic brain. Neurol Res 28(1):21–24

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tekam, C.K.S., Shinde, S., Patnaik, R., Mahto, S.K. (2021). Bilateral Common Carotid Artery Occlusion: Stroke Model. In: Tripathi, A.K., Singh, A.K. (eds) Models and Techniques in Stroke Biology . Springer, Singapore. https://doi.org/10.1007/978-981-33-6679-4_2

Download citation

Publish with us

Policies and ethics